
CHAPTER 3

MAIN RESULTS

In this section, we will present the construction of the output feedback control

law for the system (1.1). The control design consists of three steps. First, in Section

3.1, we assume that all of the states are available and then construct a Lyapunov

function and a state feedback control law for (1.1). Followed by showing how to

choose an observer for a nominal system of (1.1) based on the state feedback control

law in Section 3.2. the so-called nominal system is the system (1.1) without the

uncertain function φi(·). Finally, we solve the problem of output feedback of (1.1)

by introducing a change of coordinates to scale (1.1) into an appropriated form

and applying the output feedback control law of the nominal system to the scaled

system.

3.1 STABILIZATION BY HOMOGENEOUS STATE

FEEDBACK

In this section, we will design a new method for a state feedback stabilizer for

(1.1) under the following assumption:

Assumption 3.1: There is a negative constant τ , satisfying −1
p+1

< τ ≤ 0 and a

positive constant c such that

|φ1(x, t)| ≤ c(|x1|
m1+τ

m1 ), (3.1)

|φ2(x, t)| ≤ c(|x1|
m2+τ

m1 + |x2|
m2+τ

m2 ), (3.2)

with

m1 = 1, pm2 = m1 + τ, m2 + τ > 0 (3.3)

which m1 and m2 will always be Rodd. For simplicity, we assume τ = −q
d

, with pos-

itive even integers q and positive odd integers d. Note that m1 > m2 > m2+τ > 0.
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Lemma 3.1: By Assumption 3.1, there exists a homogeneous state feedback con-

troller such that the nonlinear system (1.1) is globally asymptotically stable.

Proof. The proof itself is a 2 step process which relies on the simultaneous con-

structions of a C1 Lyapunov function which is positive definite and proper.

Step 1. We define

V1 =
∫ x1

0
sm1−τds.

The time derivative of V1 along the trajectory of (1.1) is

V̇1 = xm1−τ
1 [xp

2 + φ1(x, t)]. (3.4)

By Assumption 3.1,

V̇1 ≤ xm1−τ
1 x∗p2 + |x|m1−τ

1 c|x|
τ+m1

m1
1 + xm1−τ

1 [xp
2 − x∗p2 ],

V̇1 ≤ xm1−τ
1 x∗p2 + c|x|21 + xm1−τ

1 [xp
2 − x∗p2 ]

Then, the virtual controller x∗p2 defined by

x∗p2 = −(2 + c)x
pm2/m1

1 = −β1x
(τ+m1)/m1

1

yields

V̇1 ≤ −2x2
1 + xm1−τ

1 [xp
2 − x∗p2 ]. (3.5)

Step 2. We define the following changes of coordinates:

ξ1 = x1, ξ2 = x
1/m2

2 − x
∗1/m2

2 (3.6)

and the Lypunov function V2 : R2 → R,

V2(x1, x2) = V1(x1) + W2(x1, x2) where W2 =

∫ x2

x∗2

(
s

1
m2 − x

∗ 1
m2

2

)(2m1−τ−m2)
ds(3.7)

which can be proven to be C1 using a similar method as in [12]. The derivative of

V2 along the trajectory of (1.1) is

V̇2 = V̇1 +
∂W2

∂x1

ẋ1 +
∂W2

∂x2

ẋ2

= V̇1 +
∂W2

∂x1

ẋ1 + ξ
(2m1−τ−m2)
2 ẋ2

≤ −2ξ2
1 + ξm1−τ

1 [xp
2 − x∗p2 ] +

∂W2

∂x1

ẋ1 + ξ
(2m1−τ−m2)
2

(
u + φ2(x, t)

)

= −2ξ2
1 + ξm1−τ

1 [xp
2 − x∗p2 ] +

∂W2

∂x1

ẋ1 + ξ
(2m1−τ−m2)
2 φ2(x, t)

+ξ
(2m1−τ−m2)
2 u (3.8)
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Next, we estimate the terms in the right hand side of (3.8). First, it follows from

pm2 = 1 + τ ≤ 1 and Lemma 2.3 in the Preliminaries that

(xp
2 − x∗p2 ) ≤

∣∣∣
(
x

1
m2
2

)pm2 − (
x
∗ 1

m2
2

)pm2

∣∣∣

≤ 21−pm2

∣∣∣x
1

m2
2 − x

∗ 1
m2

2

∣∣∣
pm2

= 21−pm2|ξ2|pm2 (3.9)

and by Lemma 2.4, it can be seen that for a constant c1 > 0,

ξm1−τ
1 (xp

2 − x∗p2 ) ≤ |ξ1|(m1−τ)21−pm2|ξ2|pm2

= |ξ1|(m1−τ)21−pm2|ξ2|m1+τ

≤
(

m1 − τ

2m1

)(
2m1

3(m1 − τ)

)
ξ2m1
1

+

(
m1 + τ

2m1

)(
2m1

3(m1 − τ)

)−
(

m1−τ
m1+τ

)
(
21−pm2

) 2m1
m1+τ ξ2m1

2

≤ 1

3
ξ2
1 + c1ξ

2
2 . (3.10)

Using Lemma 2.3 and the equations (3.6), (3.2) can be rewritten as

|φ2(x, t)| ≤ c
(
|x1|

m2+τ
m1 + |x2|

m2+τ
m2

)

= c
(
|x1|

m2+τ
m1 +

(|x2|
1

m2

)m2+τ
)

= c
(
|ξ1|m2+τ +

∣∣ξ2 + x
∗ 1

m2
2

∣∣m2+τ
)

≤ c
(
|ξ1|m2+τ +

∣∣ξ2 +
(
(−β1)

1
p ξm2

1

) 1
m2

∣∣m2+τ
)

≤ c
(
|ξ1|m2+τ +

∣∣ξ2 − β
1

pm2
1 ξ1

∣∣m2+τ
)

≤ c
(
|ξ1|m2+τ + 21−(m2+τ)

(|ξ2|m2+τ + |β
1

pm2
1 ξ1|m2+τ

))

≤ č2

(|ξ1|m2+τ + |ξ2|m2+τ
)

(3.11)
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for a constant č2 ≥ 0. From Lemma 2.4 and (3.11), we have

ξ2m1−τ−m2
2 φ2(·) ≤ |ξ2|2m1−τ−m2 č2

(|ξ1|m2+τ + |ξ2|m2+τ
)

= č2|ξ2|2m1−τ−m2|ξ1|m2+τ + č2|ξ2|2m1−τ−m2|ξ2|m2+τ

≤
(

m2 + τ

2m1

)(
2m1

3(m2 + τ)

)
ξ2m1
1

+

(
2m1 − τ −m2

2m1

)(
2m1

3(m2 + τ)

)−
(

m2+τ
2m1−τ−m2

)
č

(
2m1

2m1−τ−m2

)
2 ξ2m1

2

+č2ξ
2m1
2

≤ 1

3
ξ2
1 +

((2m1 − τ −m2

2m1

)( 2m1

3(m2 + τ)

)−(
m2+τ

2m1−τ−m2

)
č

(
2m1

2m1−τ−m2

)
2 + č2

)
ξ2
2

≤ 1

3
ξ2
1 + c2ξ

2
2 (3.12)

for a constant c2 > 0. The third term in (3.8) can be estimated with the help of

the following Proposition 3.1 whose proof is included in the Appendix.

Proposition 3.1: There is a constant c3 > 0 such that

∂W2

∂x1

ẋ1 <
1

3
ξ2
1 + c3ξ

2
2 . (3.13)

Substituting the estimates (3.10), (3.12) and (3.13) into (3.8), we arrive at

V̇2 ≤ −ξ2
1 + c̄ξ2

2 + ξ
(2m1−τ−m2)
2 u

for a constant c̄ = c1 + c2 + c3 > 0. Choosing an intermediate controller

u = u∗ = −(1 + c̄)ξτ+m2
2 = −β2ξ

τ+m2
2 , β2 > 0

yields

V̇2 ≤ −(ξ2
1 + ξ2

2) + ξ
(2m1−τ−m2)
2 (u− u∗). (3.14)

If the state x2 are available for feedback, the control law can be implemented and u

can be set to u∗. Then, the last term of V̇2 in (3.14) will be disappeared and we can

conclude that V̇2 < 0, ∀x 6= 0. This implies that the system (1.1) can be globally

asymptotically stabilized by a full-state feedback u∗. However, in our case, only x1

is available, the control law u∗ cannot be implemented. But, the inequality (3.14)

still holds for any system of the form (1.1) and satisfies the growth condition in

Assumption 3.1.
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3.2 STABILIZATION OF (1.1) BY OUTPUT FEED-

BACK

In this section, we show that under Assumption 3.1, the problem of global

output feedback stabilization for system (1.1) is solvable. We will first construct a

homogeneous output feedback controller for the nominal chain of power integrator,

i.e. φ1(·) = φ2(·) = 0:

ż1 = zp
2

ż2 = v

y = z1, (3.15)

with p is positive odd integer number. Then, based on this output feedback con-

troller, we will develop a scaled observer and controller to render the system (1.1)

globally asymptotically stable under the growth condition (3.1)-(3.2).

3.2.1 Output Feedback Control of Nominal Nonlinear System

Theorem 3.1: Given a real number −1
p+1

< τ ≤ 0, there is a homogeneous output

feedback controller of degree τ rendering the nonlinear systems (3.15) is global

asymptotically stable.

Proof. The construction of the homogeneous output feedback controller is accom-

plished in 3 steps. First, by Lemma 3.1, a homogeneous state feedback stabilizer is

constructed. Then, a homogeneous observer is designed, and lastly, the unmeasur-

able states are replaced with the estimates. The closed-loop system can be proven

globally asymptotically stable by an appropriate observer gain.

State Feedback Controller: For nonlinear systems (3.15), Assumption 3.1 is au-

tomatically satisfied since φ1(·), φ2(·) are trivial. Hence, by Lemma 3.1, there is

a homogeneous (with respect to the weight (3.3)) state feedback controller that

globally stabilizes (3.15). Therefore , there exist a Lyapunov function of the form

V2(z1, z2) =
∫ z1

0
sm1−τds +

∫ z2

z∗2

(
s

1
m2 − z

∗ 1
m2

2

)(2m1−τ−m2)

ds,
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a homogeneous control law

v∗(z) = −β2ξ
τ+m2
2 with ξ1 = z1, z∗p2 = −β1ξ

τ+m1
1 , ξ2 = z

1/m2

2 − z
∗1/m2

2 , (3.16)

and constants β1, β2 > 0 that renders

V̇2 ≤ −(ξ2
1 + ξ2

2) + ξ2m1−τ−m2
2

(
v − v∗(z)

)
. (3.17)

Homogeneous Observer Design: Next, similar to [2] and [12], a homogeneous

observer is constructed as follows

η̇2 = −l1ẑ
p
2 , ẑp

2 = [η2 + l1ẑ1]
m2p
m1 , (3.18)

where z1 = ẑ1 and l1 > 0 is the gains to be determined in a later step. Based on

the estimated state ẑ2, we design an output feedback controller

v(ẑ) = −β2

(
ẑ

1
m2
2 + β

1
pm2
1 z1

)τ+m2

. (3.19)

We choose the Lyapunov function for the observer (3.18) as follows

U2(z1, z2, η2) =
∫ z

(m1−τ)/m2
2

γ
(m1−τ)/m1
2

(
s

m1
m1−τ − γ2

)
ds where γ2 = η2 + l1z1 = ẑ

m1
m2
2 .

It can be verified that U2 is C1. In addition, with a constant b, we have the

following relationships

∂U2

∂z2

= bz
(m1−τ)

m2
−1

2

(
z

m1
m2
2 − γ2

)
,

∂U2

∂η2

= −
(
z

(m1−τ)
m2

2 − γ
(m1−τ)

m1
2

)
,

∂U2

∂z1

= −l1

(
z

(m1−τ)
m2

2 − γ
(m1−τ)

m1
2

)
.

Hence, the time derivative of U2 along the trajectories of (3.15)-(3.18) is

U̇2 = vbz
(m1−τ)

m2
−1

2

(
z

m1
m2
2 − γ2

)
− l1

(
zp
2 − ẑp

2

)(
z

(m1−τ)
m2

2 − γ
(m1−τ)

m1
2

)
.

From the definition of γ, we can rearrange the terms in the above equation as

follows.

U̇2 = vbz
(m1−τ)

m2
−1

2

(
z

m1
m2
2 − γ2

)
− l1

(
zp
2 − ẑp

2

)(
z

(m1−τ)
m2

2 − γ
(m1−τ)

m1
2

)

= vbz
(m1−τ)

m2
−1

2

(
z

m1
m2
2 − γ2

)
− l1

(
zp
2 − ẑp

2

)(
z

(m1−τ)
m2

2 − (
ẑ

m1
m2
2

) (m1−τ)
m1

)

= vbz
(m1−τ)

m2
−1

2

(
z

m1
m2
2 − γ2

)
− l1

(
zp
2 − ẑp

2

)(
z

(m1−τ)
m2

2 − ẑ
(m1−τ)

m2
2

)
(3.20)
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Let e2 = (z2− ẑ2)
m1/m2 . We estimate the second terms in (3.20). By Lemma A.1,

with constant m > 0

−l1
(
zp
2 − ẑp

2

)(
z

(m1−τ)
m2

2 − ẑ
(m1−τ)

m2
2

)
≤ −l1mem2p

2

(
z2 − ẑ2

) (m1−τ)
m2

= −l1meτ+m1
2

(
z2 − ẑ2

)m1(m1−τ)
m2m1

= −l1meτ+m1
2 (e2)

(m1−τ)
m1

= −l1me2
2. (3.21)

The first terms in (3.20) can be estimated using the following Proposition 3.2 whose

proofs are in the Appendix.

Proposition 3.2: For controller v(ẑ). there is a constant c4 ≥ 0 such that

v(ẑ)bz
(m1−τ)

m2
−1

2

(
z

m1
m2
2 − γ2

)
≤ 1

4
(ξ2

1 + ξ2
2) + c4e

2
2. (3.22)

With the help of the previous proposition and the estimates (3.21), the derivative

of U2 becomes

U̇2 ≤ 1

4
(ξ2

1 + ξ2
2)− (l1m− c4)e

2
2. (3.23)

Determination of Observer Gain l1: To choose the gain l1, we combine the Lya-

punov functions of the nominal system (3.15) and the observer (3.18).

T = V2 + U2

whose derivative is the combination of (3.17) and (3.23). Due to the unmeasurable

states, the controller v = v(ẑ) gives a redundant term in (3.17). To deal with this

term, we use the following proposition.

Proposition 3.3: There is a constant c5 > 0 such that

ξ2m1−τ−m2
2

(
v(ẑ)− v∗(z)

) ≤ 1

4
(ξ2

1 + ξ2
2) + c5e

2
2. (3.24)

Combining (3.17), (3.23) and (3.24) together yields

Ṫ ≤ −1

2
(ξ2

1 + ξ2
2)− (l1m− c4 − c5)e

2
2. (3.25)

Clearly, by choosing l1 = 1
m

[1
2

+ c4 + c5], (3.25) becomes

Ṫ ≤ −1

2
(ξ2

1 + ξ2
2 + e2

2). (3.26)
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Note that from the construction of T , it is easy to verify that T is positive definite

and proper with respect to

Z = (z1, z2, η2)
T . (3.27)

In addition, the right hand side of (3.26) is negative definite with respect to Z.

Therefore, the closed-loop system (3.15)-(3.16)-(3.18) is globally asymptotically

stable. Denoting f3 = η̇2, it is straightforward to verify that the closed-loop

system (3.15)-(3.16)-(3.18) can be rewritten in the following form

Ż = F (Z) = (zp
2 , v(z1, η2), f3)

T (3.28)

which is homogeneous. In fact, by choosing the dilation weight

4 =

(
m1, m2︸ ︷︷ ︸
forz1, z2

, m1︸︷︷︸
for η2

)
, (3.29)

It can be shown that (3.28) is homogeneous of degree τ . In addition, T is homoge-

neous of degree 2m1−τ and the right hand side of (3.26) is homogeneous of degree

2m1. The proofs are shown in Proposition 3.4 of the Appendix.

Remark 3.1: The right hand side of (3.26) is negative definite and homogenous

of degree 2m1. From Lemma 2.2, it can be shown that there is a constant c1 > 0

such that

∂T (Z)
∂Z F (Z) ≤ −c1‖Z‖2m1

4 ≤ −c1‖Z‖2
4

where ‖Z‖4 =
√
|z1|2/m1 + |z2|2/m2 + |η2|2/m1 .

3.2.2 Global Output Feedback Stabilization for System (1.1)

Utilizing of the homogeneous controller and observer established in the pre-

vious sections, we are ready to construct the output feedback for (1.1).

Theorem 3.2: Under Assumption 3.1, the system (1.1) can be globally stabilized

by output feedback.

Proof: Under the new coordinates

z1 = x1, z2 =
x2

Lκ2
, v =

u

Lκ2+1
with κ1 = 0 and κ2 =

1

p
, (3.30)
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the system (1.1) can be rewritten as

ż1 = Lzp
2 + φ1(·), ż2 = Lv + φ2(·)/Lκ2 (3.31)

with the scaling gain, L ≥ 1. Next, we construct an observer with the scaling gain

L.

η̇2 = −Ll1ẑ
p
2 , ẑp

2 = [η2 + l1ẑ1]
m2p/m1 (3.32)

where ẑ1 = z1 and l1 is the gain selected by (3.25) in Theorem 3.1. Using the same

notations as (3.27) and (3.28), the closed-loop system (3.31)-(3.32)-(3.19) can be

written as

Ż = LF (Z) +
(
φ1(·), φ2(·)

Lκ2
, 0

)T
. (3.33)

Note that the F (Z) in (3.33) has the exact same structure as (3.28) due to the use

of same gains l1 and β1, β2. Hence, adopting the same Lyapunov function T (Z)

used in preceding section, it can be concluded from Remark 3.1 that

Ṫ = L
∂T (Z)

∂Z F (Z) +
∂T (Z)

∂Z
(
φ1(·), φ2(·)

Lκ2
, 0

)T

≤ −Lc1‖Z‖2
4 +

∂T (Z)

∂Z
(
φ1(·), φ2(·)

Lκ2
, 0

)T

. (3.34)

Using the change of coordinates (3.30) and the fact that L ≥ 1, we deduce from

Assumption 3.1 that for some constants v1 and v2 > 0,

∣∣∣φ1(x, t)
∣∣∣ ≤ c|z1|

m1+τ
m1 ≤ cL1−v1|z1|

m1+τ
m1

∣∣∣φ2(x, t)

Lκ2

∣∣∣ ≤ c

Lκ2

(
|x1|

m2+τ
m1 + |x2|

m2+τ
m2

)

≤ cL1−v2

(
|z1|

m2+τ
m1 + |z2|

m2+τ
m2

)
. (3.35)

Recall that T is homogeneous of degree 2m1 − τ . Therefore, for i = 1, 2, ∂T (Z)
∂Zi

is

homogeneous of degree 2m1 − τ −mi, |z1|
m1+τ

m1 is homogeneous of degree m1 + τ

and
(|z1|

m2+τ
m1 + |z2|

m2+τ
m2

)
is homogeneous of degree m2 + τ . Then,

∣∣∣∂T (Z)

∂Z1

∣∣∣
(
|z1|

m1+τ
m1

)
and

∣∣∣∂T (Z)

∂Z2

∣∣∣
(
|z1|

m2+τ
m1 + |z2|

m2+τ
m2

)
(3.36)
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are homogeneous of degree 2m1. With (3.35) and (3.36) in mind, we can find a

constant ρi such that

∂T (Z)

∂Z1

φ1(·) ≤ ρ1L
1−v1‖Z‖2m1

4 ≤ ρ1L
1−v1‖Z‖2

4

∂T (Z)

∂Z2

φ2(x, t)

Lκ2
≤ ρ2L

1−v2‖Z‖2m1
4 ≤ ρ2L

1−v2‖Z‖2
4. (3.37)

Substituting (3.37) into (3.34) yields

Ṫ |(
(3.21)−(3.31)−(3.32)

) ≤ −L(c1 − ρ1L
−v1 − ρ2L

−v2)‖Z‖2
4. (3.38)

Obviously, if L is large enough then the right hand side of (3.38) is negative definite.

Clearly, the closed-loop system of (1.1) is globally asymptotically stable.

Note that when τ = 0, Assumption 3.1 reduces to the bound described in [12]

for planar systems, where r1 = 1, r2 = 1/p. Thus, the method presented here can

be used to globally asymptotically stabilize any planar system studied in [12].


