TABLE OF CONTENTS	
	Page
ACKNOWLEDGEMENTS	G iii
ABSTRACT IN ENGLISH	v
ABSTRACT IN THAI	viii
LIST OF TABLES	xix
LIST OF FIGURES	xxi
ABBREVIATIONS AND SYMBOLS	xxvii
CHAPTER 1 INTRODUCTION	
1.1 Statement and significance of problem	91
1.2 Literature review	8
1.2.1 Carcinogenesis or tumorigenesis	8
1.2.2 Nicotine-derived nitrosamine ketone (NNK)	9
1.2.2.1 The NNK-induced lung tumorigenesis	10
1.2.2.2 NNK-induced DNA methyltransferase 1 (DNMT1)	11
nuclear accumulation	12
1.2.2.3 Studies of NNK in animal models	12
1.2.3 The MAPK/ERK pathway and cancer cell growth	13
1.2.4 The cell cycle Chiang Mai U	nivers
1.2.4.1 The cell cycle checkpoints	15
1.2.4.2 The cell cycle regulators	16

xii

1.2.4.3	The cyclin-dependent kinase inhibitors (CKIs)	20
1.2.4.4	The cell cycle and cancer	21
1.2.5	Cell death	25
1.2.5.1	Necrosis or necrotic cell death	25
1.2.5.2	Apoptosis	25
	Morphology of apoptosis	26
	Biochemical features of apoptosis	27
	Mechanisms of apoptosis	27
	Extrinsic pathway	28
	Intrinsic pathway	29
	Execution pathway	32
	Apoptosis and cancer development	34
1.2.6	Inflammation	35
1.2.6.1	Inflammation and colorectal cancer	35
1.2.6.2	Animal models to study the inflammation-related	37
	colorectal cancer	
1.2.6.3	Wnt signaling and colorectal cancer	38
1.2.7	Cancer chemoprevention	39
1.2.8	Fermented brown rice and rice bran (FBRA)	41
1.2.9	Gamma-tocotrienol (γ-T ₃)	41
1.2.10	Inositol hexaphosphate (IP ₆) or phytate	43
1.3	Objectives Chiang Mai Univ	44
1.4	Scopes of study	44

ີລິປຄໍ Copy

СНАР	TER 2 MATERIALS AND METHODS	49
2.1	Chemicals and materials	49
2.2	Preparation of fermented brown rice and rice bran	49
	(FBRA)	
2.3	Animals	51
2.4	Cell lines	51
2.5	Experimental designs for in vivo study	51
2.5.1	Chemopreventive effects of FBRA against NNK-induced	51
	lung tumorigenesis in female A/J mice	
2.5.2	Chemopreventive effects of FBRA against colorectal	53
	tumorigenesis in $Apc^{Min/+}$ and $Apc^{+/+}$ mice	
2.5.3	Chemopreventive effects of FBRA against DSS-induced	54
	colorectal tumorigenesis in $Apc^{Min/+}$ and $Apc^{+/+}$ mice	
2.5.4	Chemopreventive effects of FBRA on DSS-induced	55
	colitis in $Apc^{+/+}$ mice	
2.6	Total RNA preparation	56
2.6.1	RNA isolation from the lung and liver tissues of A/J mice	56
2.6.2	RNA isolation from the colonic tissues of $Apc^{+/+}$ mice	57
2.6.3	RNA isolation from NNK-treated A549 cells	57
2.7	Quantitative real-time reverse transcription polymerase	58
	chain reaction (qReal-time RT-PCR)	
2.7.1	qReal-time RT-PCR analysis of animal tissues	59
2.7.2	qReal-time RT-PCR analysis of NNK-treated A549 cells	60
2.8	Tissue sections staining	61
2.8.1	Hematoxylin and eosin (H&E) staining	

2.8.2	Immunohistochemical staining or Immunohistochemistry	62
2.9	High-performance liquid chromatography	63
	HPLC analysis for γ -tocotrienol content in Thai rice	63
2.10	Measurement of cell viability by MTT assay	64
2.10.1	Effect of NNK on the cell viability of lung cancer cell	64
	line A549	
2.10.2	Effect of γ -tocotrienol and phytic acid on the NNK-	65
	increased cell viability of A549 cells	
2.10.3	Effect of γ -tocotrienol and phytic acid on the cell	65
	viability of A549 cells	
2.10.4	Effect of γ -tocotrienol and phytic acid on the cell	66
	viability of colon cancer cell line SW480	
2.11	Measurement of cell proliferation by BrdU cell	66
	proliferation assay	
2.11.1	Effect of NNK on the cell proliferation of lung cancer	67
	cell line A549	
2.11.2	Effect of γ -tocotrienol and phytic acid on the NNK-	68
	increased cell proliferation of A549 cells	
2.11.3	Effect of γ -tocotrienol on the cell proliferation of A549	68
	cells	
2.12	Cell cycle distribution analysis by flow cytometry	68
2.12.1	Effect of γ-tocotrienol on cell cycle distribution in NNK-	69
	treated A549 cells	
2.12.2	Effect of γ-tocotrienol on cell cycle distribution of A549	69
	cells	
2.13	Detection of apoptosis by flow cytometry	70
	Effect of γ -tocotrienol on the induction of apoptosis in	Jniv ₇₁ rsi
	A549 cells, characterized by the externalization of	
	phosphatidylserine (PS)	

xiv

2.14	Scanning electron microscopy	71
	Effect of γ -tocotrienol on the induction of apoptosis in	72
	A549 cells, characterized by the cell morphology	
	changes	
2.15	Western blotting	72
2.15.1	Effect of NNK on the expression of cell cycle regulatory	74
	proteins and MAPK signal-transducing proteins in A549	
	cells	
2.15.2	Effect of γ-tocotrienol on the NNK-induced	75
	overexpression of cell cycleregulatory proteins and	
	MAPK signal-transducing proteins in A549 cells	
2.15.3	Effect of NNK on the nuclear accumulation of DNMT1	75
	protein in A549 cells	
2.15.4	Effect of γ -tocotrienol and phytic acid on the NNK-	76
	induced nuclear accumulation of DNMT1 protein in	
	A549 cells	
2.15.5	Effect of NNK on the expression of cytochrome P450	76
	isotypes 2A6 (CYP2A6) and 2A13 (CYP2A13) proteins	
	in A549 cells	
2.15.6	Effect of γ -tocotrienol and phytic acid on the NNK-	77
	induced overexpression of CYP2A6 and CYP2A13	
	proteins in A549 cells	
2.15.7	Effect of γ -tocotrienol on the expression of cyclinD1	77
	protein in A549 cells	
2.15.8	Effect of γ -tocotrienol on the expression of apoptosis-	78
	related proteins in A549 cells	
2.15.9	Effect of LPS on the nuclear accumulation of NF-κB	79
	protein in human colon cancer cell line SW480	
2.15.10	Effect of phytic acid on the NNK-induced nuclear	80
	accumulation of NF-κB protein in SW480 cells	

2.15.11	Effect of LPS on the expression of iNOS and cyclinD1 proteins in SW480 cells	80
0.15.10		01
2.15.12	Effect of phytic acid on the LPS-induced overexpression	81
	of iNOS and cyclinD1 proteins in SW480 cells	
2.16	DNA damage analysis by Comet assay	81
	Effect of γ -tocotrienol and phytic acid on the NNK-	82
	induced DNA damage in A549 cells	
2.17	Cell migration analysis by Boyden chamber assay	82
2.17.1	Effect of LPS on the secretion of chemoattractants from	83
	colorectal cancer cell line SW480	
2.17.2	Effect of γ -tocotrienol and phytic acid on the LPS-	83
	induced secretion of chemoattractants in SW480 cells	
2.18	Statistical analysis	83
СНАРТ	TER 3 RESULTS	85
3.1	Toxicity analysis of fermented brown rice and rice bran	85
	(FBRA) in A/J mice	
3.2	Chemopreventive effect of FBRA against NNK-induced	85
	lung tumorigenesis	
3.3	The anti-proliferative effect of FBRA in lung lesions of	86
	NNK-injected mice	
3.4	Effect of FBRA on the Cyp2a5 mRNA expression in the	86
3.4	Effect of FBRA on the Cyp2a5 mRNA expression in the liver and lung tissues	86
3.4 3.5		86 93
	liver and lung tissues	
3.5	liver and lung tissues Analysis for γ -tocotrienol concentration level in Thai rice	93
3.5	liver and lung tissues Analysis for γ-tocotrienol concentration level in Thai rice Prevention of the NNK-increased cell viability of lung	93
3.5	liver and lung tissues Analysis for γ -tocotrienol concentration level in Thai rice Prevention of the NNK-increased cell viability of lung cancer cell line A549 by γ -tocotrienol (γ -T ₃) but not	93
3.5 3.6	liver and lung tissues Analysis for γ -tocotrienol concentration level in Thai rice Prevention of the NNK-increased cell viability of lung cancer cell line A549 by γ -tocotrienol (γ -T ₃) but not phytic acid (IP ₆)	93 96
3.5 3.6	liver and lung tissues Analysis for γ -tocotrienol concentration level in Thai rice Prevention of the NNK-increased cell viability of lung cancer cell line A549 by γ -tocotrienol (γ -T ₃) but not phytic acid (IP ₆) Prevention of the NNK-increased cell proliferation of	93 96

xvi

3.8	The cell cycle arrest activity of γ -tocotrienol in NNK- treated A549 cells	104
3.9	Effect of NNK on the expression of cell cycle regulatory	106
3.7	proteins and MAPK signal-transducing proteins in A549	100
	cells	
3.10	Preventive effect of γ -tocotrienol on the NNK-induced	109
	overexpression of cell cycle regulatory proteins and	
	MAPK signal-transducing proteins in A549 cells	
3.11	Effect of γ -tocotrienol and phytic acid on the NNK-	112
	induced DNA damage in A549 cells	
3.12	Effect of γ -tocotrienol and phytic acid on the NNK-	112
	induced DNA methyl transferase 1 (DNMT1) nuclear	
	accumulation in A549 cells	
3.13	Effect of γ -tocotrienol and phytic acid on the NNK-	115
	induced cytochrome P450 isotype 2A6 (CYP2A6) and	
	isotype 2A13 (CYP2A13) overexpression in A549 cells	
3.14	Effect of NNK on the mRNA expression from <i>CYP2A6</i>	117
	and CYP2A13 genes in A549 cells	
3.15	Decreasing cell viability of A549 cells by γ -tocotrienol	118
	but not phytic acid	
3.16	Decreasing cell proliferation of A549 cells by γ -	121
	tocotrienol	
3.17	Induction of G0/G1 cell cycle arrest in A549 cells by	122
	γ-tocotrienol	
3.18	Induction of apoptosis in A549 cells by γ -tocotrienol	124
3.19	Induction of apoptosis via both intrinsic and extrinsic	127
	pathways in A549 cells by γ -tocotrienol	
3.20	Toxicity analysis of fermented brown rice and rice bran	129
Igni	(FBRA) in $Apc^{Min/+}$ and $Apc^{+/+}$ mice	mversity
3.21	Chemopreventive effect of FBRA against the colorectal	129
	tumorigenesis in $Apc^{Min/+}$ mice	rveo

xvii

VITA		204
APPE	NDICES	190
REFE	RENCES	158
СНАР	TER 4 DISCUSSION AND CONCLUSION	149
	overexpression in SW480 cells	
3.30	Effect of phytic acid on the LPS-induced cyclinD1	147
	of iNOS protein in SW480 cells	
3.29	Effect of phytic acid on the LPS-induced overexpression	144
	accumulation in SW480 cells	
3.28	Effect of phytic acid on the LPS-induced NF-κB nuclear	144
	cell line SW480	
	induced chemoattractants secretion in colorectal cancer	500
3.27	Effect of γ -tocotrienol and phytic acid on the LPS-	5 141
5.20	viability of SW480 cells	157
3.26	Effect of γ -tocotrienol and phytic acid on the cell	139
3.25	The anti-proliferative effect of FBRA in colonic crypts of DSS-treated mice	135
2.05	inflammation-related genes	125
3.24	Effect of FBRA on the mRNA expression of the	135
	and $Apc^{+/+}$ mice	30
	inflammation-related colorectal tumorigenesis in $Apc^{Min/+}$	
3.23	Chemopreventive effect of FBRA against the	132
	(DSS)-treated $Apc^{Min/+}$ and $Apc^{+/+}$ mice	

xviii

LIST OF TABLES

LIST OF TABLES			
Table		Page	
	Final composition of FBRA	50	
2	Oligonucleotide primers for qReal-time RT-PCR analysis in mouse tissues	60	
3	Oligonucleotide primers for qReal-time RT-PCR analysis in NNK-treated A549 cells	61	
4	The weights of body, liver, kidney and lung of FBRA- treated A/J mice	87	
5	Incidences, multiplicities, and size of NNK-induced lung lesions in female A/J mice treated with FBRA	88	
6	The content of γ -tocotrienol in Thai rice	95	
7	The inhibitory concentrations (IC) of γ -tocotrienol on the cell viability of NNK-treated A549 cells	100	
8	The inhibitory concentrations (IC) of γ -tocotrienol on the cell proliferation of NNK-treated A549	104	
9	The inhibitory concentrations (IC) of γ -tocotrienol in A549 cells	120	
10	The weights of body, liver, and kidney of FBRA-treated $Apc^{Min/+}$ and $Apc^{+/+}$ mice	130	
11 5	Incidences, multiplicities, and size of colonic tumors in colon in FBRA-treated $Apc^{Min/+}$ and $Apc^{+/+}$ mice		
12 18	The weights of body, liver, and kidney of FBRA- administered and DSS-treated $Apc^{Min/+}$ and $Apc^{+/+}$ mice	133 NIVERSIT	
13	Incidences, multiplicities, and size of colonic tumors in colon in FBRA-treated $Apc^{Min/+}$ and $Apc^{+/+}$ mice		

The effect of FBRA on the mRNA expression levels of136Cox2, iNos, and $Tnf\alpha$ genes in the colonic mucosa140The inhibitory concentrations (IC) of γ -tocotrienol on140the cell viability of SW480 cells140

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

14

15

	LIST OF FIGURES	
Figure		Page
1	Scheme linking nicotine addiction and lung cancer via	3 2
2	tobacco smoke carcinogens Proposed model of how inflammation associated with colitis promotes the development of colonic dysplasia	5
3	and cancer Scheme diagram of multi-step cancer progression	59
4	process NNK-mediated activation of signaling pathways	11
5	Possible mechenisms of NNK-induced DNMT1 nuclear accumulation	12
6	Possible interactions between MAPK pathways and the cell cycle	14
7	Checkpoints and stages of cell cycle	15
8	The cell cycle regulators	17
9	The kinase activity of CDK4 in the RB pathway	18
10	Retinoblastoma (RB) is bound to both SWI/SNF and histone deacetylase (HDAC) in G1 phase	19
11	Apoptosis via the extrinsic and intrinsic pathways	29
12	Mitochondria mediated (intrinsic) pathway of apoptosis	31
13	A model of apoptotic DNA fragmentation	33
14	Colitis-associated colon cancer	36
15	The canonical Wnt signaling	39

xxi

16	Carcinogenesis and mechanisms of chemoprevention	40
17	Structures of various homologs of tocopherol and	42
	tocotrienol	
18	Chemical structure of phytate	43
19	Scope of study in Phase 1	45
20	Scope of study in Phase 2	46
21	Scope of study in Phase 3	47
22	Scope of study in Phase 4	48
23	Experimental design for study the effects of FBRA	52
	against NNK-induced lung tumorigenesis in female A/J	
	mice	
24	Experimental design for study the effects of FBRA	53
	against colorectal tumorigenesis in $Apc^{Min/+}$ and $Apc^{+/+}$	
	mice	
25	Experimental design for study the effects of FBRA	54
	against DSS-induced colorectal tumorigenesis in	
	$Apc^{Min/+}$ and $Apc^{+/+}$ mice	
26	Experimental design for study the effects of FBRA on	55
	DSS-induced colitis in $Apc^{+/+}$ mice	
27	Detection of PCR products with SYBR® Green I	59
28	MTT is reduced to formazan by a mitochondrial	64
	reductase	
29	Histopathology of lung adenoma in NNK-treated mice	89
30	Effect of 10% FBRA treatment (B and D) in comparison	90
	with control diet (A and C) on the number of Ki67	
	positive cell in lung lesion	
31	Effect of 10% FBRA treatment on the cell proliferative	91
	index of lung lesions	

xxii

XXIII	

32	Effect of 10% FBRA treatment on the mRNA	92
	expression from <i>Cyp2a5</i> gene in both lung and liver	
	tissues	
33	HPLC profile of standard tocotrienols and tocopherols	94
	monitored at 292 nm	
34	Effect of NNK on the cell viability of human lung	97
	cancer cell line A549	
35	Preventive effect of γ -tocotrienol on the NNK-increased	98
	cell viability of A549 cells	
36	Effect of phytic acid on the NNK-increased cell viability	99
	of A549 cells	
37	Effect of NNK on the cell proliferation of A549 cells	101
38	Inhibitory effect of γ -tocotrienol on the NNK-induced	102
	cell proliferation of A549 cells	
39	Effect of phytic acid on the NNK-induced cell	103
	proliferation of A549 cells	
40	Effect of γ-tocotrienol on cell cycle distribution of	105
	NNK-treated A549 cells	
41	The carcinogenic effect of NNK on the expression of	107
	cell cycle reguratory proteins in A549 cells,	
	demonstration in both time-dependent (A) and dose-	
	response (B and C) manner	
42	The effect of NNK on the expression of p-MEK1/2 (A)	108
	and K-ras (B) proteins in A549 cells, demonstration in	
	time-dependent manner	
43	The preventive effect of γ -tocotrienol on the NNK-	110
	induced overexpression of cell cycle regulatory proteins	
	in A549 cells, demonstration in both time-dependent (A)	
	and dose-response (B and C) manner	

14	The preventive effect of γ-tocotrienol on the NNK-	111
	induced over-expression of p-MEK1/2 (A) and K-ras	
	(B) proteins in A549 cells, demonstration in dose-	
	response manner	
45	Effects of γ-tocotrienol or phytic acid pre-treatment on	113
	the NNK-induced DNA damage in A549 cells	
46	Effect of NNK treatment on the DNA methyl transferase	114
	1 (DNMT1) nuclear accumulation in A549 cells	
47	Preventive effect of γ -tocotrienol pre-treatment on the	114
	NNK-induced DNMT1 nuclear accumulation in A549	
	cells	
18	Effect of phytic acid pre-treatment on the NNK-induced	115
	DNMT1 nuclear accumulation in A549 cells	
19	Effect of NNK on the expression of cytochrome P450	116
	isotypes 2A6 (CYP2A6) and 2A13 (CYP2A13) proteins	
	in A549 cells	
50	Suppressive effect of γ -tocotrienol pre-treatment on the	116
	NNK-induced overexpression of CYP2A6 and	
	CYP2A13 proteins in A549 cells	
51	Effect of phytic acid pre-treatment on the NNK-induced	117
	overexpression of CYP2A6 and CYP2A13 proteins in	
	A549 cells	
52	Effect of NNK on the mRNA expression from CYP2A6	118
	and CYP2A13 genes in A549 cells	
53	Suppressive effect of γ -tocotrienol on the cell viability	119
	of A549 cells	
54	Effect of phytic acid on the cell viability of A549 cells	120
55	Effect of γ -tocotrienol on the cell proliferation of A549	121

xxiv

56	Effect of γ -tocotrienol on the cell cycle distribution of	123	
	A549 cells		
57	Effect of γ -tocotrienol on the expression of cyclin D1	123	
	protein		
58	The morphological changes in γ-tocotrienol-treated	125	
	A549 cells		
59	Effect of γ -tocotrienol on the induction of apoptosis in	126	
	A549 cells, characterized by the translocation of		
	phosphatidylserine (PS)		
60	Effect of γ -tocotrienol on the induction of apoptosis in	128	
	A549 cells		
61	Effect of 10% FBRA treatment (B and D) in comparison	137	
	with control diet (A and C) on the number of Ki67		
	positive cell in colonic crypts		
62	Effect of 10%FBRA on the cell proliferative index in	138	
	colonic crypts of DSS-treated $Apc^{+/+}$ mice		
63	Effect of γ -tocotrienol on the cell viability of SW480	139	
	cells		
64	Effect of phytic acid on the cell viability of SW480 cells	140	
65	Effect of lipopolysaccharide (LPS) on the leukemic cell	142	
	migration due to chemoattractants secretion from human		
	colorectal cancer cell line SW480 cells		
66	Effect of γ-tocotrienol and phytic acid on the LPS-	143	
	induced chemo-attractants secretion in colorectal cancer		
	cell line SW480		
67	Effect of LPS on the NF-kB nuclear accumulation in	145	
	SW480 cells		
68	Suppressive effect of phytic acid on the LPS-induced	145	
	NF-κB nuclear accumulation in SW480 cells		
69	Effect of LPS on the expression of iNOS protein in	146	
	SW480 cells		

XXV

XXVI	
7777 0 1	

70

71

72

Effect of phytic acid on the overexpression of iNOS	146
protein in LPS-treated SW480 cells	
Effect of LPS on the expression of cyclin D1 protein in	147
SW480 cells	
Effect of phytic acid on the overexpression of cyclin D1	148
protein in LPS-treated SW480 cells	

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

A260/A280	Absorbance at 260nm per Absorbance at 280nm
Ab	Antibody
Ag	Antigen
AIDS	Acquired Immune Deficiency Syndrome
Apaf-1	Apoptotic protease activating factor 1
APC	Adenomatous polyposis coli
AT	Ataxia Telangiectasia
ATCC	American Type Culture Collection
АТМ	Ataxia telangiectasia mutated
АТР	Adenosine triphosphate
Bad	Bcl-2-associated death promoter protein
BAG	Bcl-2-associated athanogene protein
Bak	Bcl-2 homologous antagonist/killer protein
Bax	Bcl-2-associated X protein
BCL1 gene	B-cell leukemia/lymphoma 1gene
Bcl-2	B-cell lymphoma 2 protein
Bid	BH3 interacting domain death agonist protein
BrdU	5-Bromo-2'-deoxyuridine
BSA	Bovine serum albumin

	٠		
VVU	1	1	1
ΛΛΥ	I	I	I

 Ca^{2+} Calcium ion CAD Caspase-activated DNase Cysteine-aspartic proteases Caspase CCD Charged coupled device CD Crohn's disease CDC2 Cell Division Cycle 2 CDK Cyclin-dependent kinase cDNA **Complementary DNA** c-FLIP Cellular FLICE inhibitory protein CIP/KIP CDK interacting protein/Kinase inhibitory protein **CKIs** Cyclin-dependent kinase inhibitors c-Myc Myelocytomatosis cellular oncogene CO_2 Carbondioxide COX-2 Cyclooxygenase-2 CRC Colorectal cancer CYP Cytochrome P450 CYP2A13 Cytochrome P450 isotype 2A13 Cytochrome P450 isotype 2a5 Cyp2a5 CYP2A6 Cytochrome P450 isotype 2A6 Cyto c Cytochrome c DAB 3,3V-Diaminobenzidine DD Death domain Death effector domains **DEDs** DEVD Aspartic-Glutamic-Valine-Aspartic domain Dihydrofolate reductase DHFR DI water Deionized water DISC Death-inducing signaling complex dkk Dickkopf protein Dulbecco's modified Eagle's medium DMEM DMSO Dimethylsulfoxide DNA Deoxyribonucleic acid

ລີ່ປີສີ Copy A I I

DNMT1	DNA methyltransferase 1
DR-4 and DR-5	Death Receptor-4 and Death Receptor-5
DSBs	Double strand breaks in the DNA
DSS	Dextran sodium sulfate
DTT	Dithiothreitol
E. coli	Escherichia coli
e.g.	Exempli gratia
ECL	Enhanced chemiluminescence system
EDTA	Ethylenediaminetetraacetic acid
EGTA	Ethylene glycol tetraacetic acid
ELISA	Enzyme-linked immunosorbent assay
ER	Endoplasmic reticulum
ERK1/2	Extracellular signal-regulated kinases 1 and 2
ET1	Etched1
FACs	Fluorescence activated cell sorter
FADD	Fas-associated death domain
FAP	Familial adenomatous polyposis
Fas/CD95	Fas/cluster of differentiation 95
FasL	Fas ligand
FasR	Fas receptor
FBRA	Fermented brown rice and rice bran
FBS	Fetal bovine serum
FHIT	Fragile histidine triad
FITC	Fluorescein isothiocyanate
g	grams
G1 phase	Gap 1 phase
G12D	The mutation at codon 12 aspartate-for-glycine
G1-G8	Group 1 to Group 8
G2 phase	Group 1 to Group 8 Gap 2 phase
GDP	Guanosine diphosphate
GSK3β	Glycogen synthase kinase 3 beta
0	

xxix

GTP	Guanosine triphosphate
h	hour
H ₂ O	Water
H ₂ O ₂	Hydrogen peroxide
HDACs	Histone deacetylases
HEPES	4-(2-Hydroxyethyl)-1-piperazineethanesulfonic
	acid
Her2/neu	Human Epidermal Growth Factor Receptor 2
HGD	High-grade dysplasia
HMG box	High Mobility Group box
hnRNP-U	Heterogeneous nuclear ribonucleoprotein U
HPLC	High-performance liquid chromatography
HPV	Human papillomavirus
i.p.	Intra-peritoneal
IAPs	Inhibitor of apoptosis family of proteins
IARC	International Agency for Research on Cancer
IBD	Inflammatory bowel diseases
IC	Inhibitory concentration
IC50	Inhibitory concentration at 50%
ICAD	Inhibitor of caspase activated Dnase
IgG	Immunoglobulin G
IHC	Immunohistochemistry
iNOS	Inducible Nitric Oxide Synthase
inv (11) (p15; q13)	The inversion in chromosomal 11 between codon
	15 of short arm and 13 of long arm
IOM	Institute of Medicine
IP_6	Inositol hexaphosphate
JNK	c-Jun N-terminal kinases
KCl	Potassium Chloride
KDa	Kilodalton
KH ₂ PO ₄	Potassium dihydrogen phosphate

XXX

КОН	Potassium hydroxide
K-ras	Kirsten rat sarcoma viral oncogene homolog
LEF/TCF	Lymphoid-enhancer-factor/T-cell factor
LGD	Low-grade dysplasia
LOH	Loss of heterozygosity
LPS	Lipopolysaccharide
LRP	Low density lipoprotein receptor-related protein
M phase	Mitosis phase
МАРК	Microtubule-associated protein kinase
mcr	Mutation cluster region
МЕК	MAPK/ERK kinase
MEKK1	MEK kinase 1
mg	Milligrams
mg/g	Milligrams per gram
Mg^{2+}	Magnesium ion
Min	Multiple intestinal neoplasia
min	Minute
MKK1/2	Mitogen-activated protein kinase (MAPK) kinase 1
	and 2
mL	milliliter
mm	millimeter
mM	Millimolar
mm ²	Square millimeter
MMPs	Matrix metalloproteinases
Mre11	Meiotic recombination 11
mRNA	Messenger ribonucleic acid
MTT	3-(4,5-Dimethylthiazol-2-yl)-2,5-
	diphenyltetrazolium bromide
MW	Molecular weight
Мус	Myelocytomatosis
Na ₂ CO ₃	Sodium carbonate

xxxi

xxxii

Na₂HPO₄ Monobasic sodium phosphate Na₃VO₄ Sodium vanadate Sodium chloride NaCl NADH Nicotinamide adenine dinucleotide NADPH Nicotinamide adenine dinucleotide phosphate Sodium fluoride NaF Dibasic sodium phosphate NaH₂PO₄ Sodium bicarbonate NaHCO₃ NaOH Sodium hydroxide NBS Nijmegen breakage syndrome NCCD The Nomenclature Committee on Cell Death ND Not determined NF-ĸB Nuclear factor-kB Nanometer nm Nicotine-derived nitrosamine ketone NNK Neuroblastoma RAS N-ras **NSAIDs** Non-steroidal anti-inflammatory drugs NSCLC Non-small-cell lung cancer NuMA Nuclear mitotic apparatus protein O6MG O6-methylguanine °C Celsius degree Osmium tetroxide OsO_4 **PACs** Pulmonary adenocarcinomas PARP Poly (ADP-ribose) polymerase PBS Phosphate buffered saline Phosphate Buffered Saline solution with the PBST detergent Tween 20 **PCNA** Proliferating cell nuclear antigen PCR Polymerase chain reaction **PDGF** Platelet-derived growth factor Potential of Hydrogen ion pН

	٠	٠	
vvv	1	1	1
ллл	I	L	L

РНА	Polycyclic aromatic hydrocarbon
PI	Propidium iodide
PI3K/Akt	Phosphatidylinositol 3-kinases/Akt
РІКЗСА	Phosphoinositide-3-kinase, catalytic, alpha
	polypeptide
РКСа	Protein kinase C isozyme α
p-MEK1/2	Phosphorylated MAPK/ERK kinase 1 and 2
PMSF	Phenylmethanesulfonylfluoride
ppm	Parts per million
PRAD1/CCND1	Parathyroid adenomatosis 1/Cyclin D1
PS	Phosphatidylserine
PTEN	Phosphatase and tensin homolog
Puma	p53 upregulated modulator of apoptosis protein
PVDF	Polyvinylidene fluoride
qReal-time RT-PCR	Quantitative Real-time reverse-transcriptase PCR
R point	Restriction point
Ras	Rat sarcoma
Rb	Retinoblastoma
RIP	Receptor interacting protein
RONs	Reactive oxygen and nitrogen species
ROS	Reactive oxygen specie
RP	Reverse-phase
rpm	Revolutions per minute
RT-PCR	Reverse transcription polymerase chain reaction
S	Seconds
S phase	Synthesis phase
SCF complex	S-phase-kinase- associated protein, Cullin, F-box
	containing complex
SCLC	Small-cell lung cancer
SD	Standard deviation
SDS	Sodium dodecyl sulfate

SD	S-PAGE	Sodium dodecyl sulfate polyacrylamide gel
		electrophoresis
SE	M	Scanning electron microscopy
ser	9 0 0	Phosphorylated at serine 9
Sm	ac	Second Mitochondria-derived Activator of
		Caspases protein
SW	/I/SNF	SWItch/Sucrose NonFermentable
t (1	1; 14)	The chromosomal translocation between codon 11
		and 14
T14	4	Threonine at 14
T1	61	Threonine at 161
TB	S	Tris buffered saline
TE	M	Transmission electron microscopy
TE	MED	N,N,N,N-tetamethyl ethylene-diamine
TG	ŀF-β	Transforming growth factor beta
ТК		Thymidine kinase
TM	ſB	3,3,5,5-Tetramethylbenzidine
TN	F	Tumor necrosis factor
TN	FR	Tumor necrosis factor receptor
Tnj	fα	Tumor necrosis factor-alpha
TR	ADD	Tumor necrosis factor receptor type 1-associated
		DEATH domain
TR	AIL	TNF-related apoptosis-inducing ligand
TS		Thymidylate synthase
TS	Gs	Tumor suppressor genes
U/r	ng 11299	Units per milliliter
UC		Ulcerative colitis
UV		Ultraviolet
vs.		Versus Versus
w/w		weight by volume
wk	st i g ii l	Weeks ESE U

xxxiv

Y15	Tyrosine at 15
α	Alpha
β	Beta
β-ΜΕ	β-mercaptoethanol
	Gamma
γ-T3	Gamma-tocotrienol
δ	Delta
μg	Micrograms
µg/ml	Micrograms per milliliter
μ	Microliter
μM	Micromolars
μm	Micrometer
µmol/L	Micromoles/Liter
-	Minus
%	Percent
±	Plus or Minus
X	Multiply
×g	Times gravity
9	Female
1/500	1 per 500 in dilution
7-AAD	7-Aminoactinomycin D

XXXV

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved