
CHAPTER 3 

RESEARCH  METHODOLOGY 

 

3.1  Studied Populations 

 In this research thirteen ethnic populations were studied.  These populations 

were divided into three groups, based on linguistic and ethnohistorical data. 

1) The Tai groups including the Yuan, Yong, Lue and Khuen.  Their language 

belongs to the Tai-Kadai linguistic family. 

2) Indigenous group comprises the Mon, Lawa, H’tin, Plang, Paluang and 

Mlabri.  Their language belongs to the Mon-Khmer linguistic subfamily of Austro 

Asiatic family. 

3) The hill tribes including the Karen, Hmong, and Yao.  The Karen uses the 

language in the Tibeto-Burman linguistic subfamily of Sino Tibetan family, while the 

Hmong and Yao use the language belongs to Hmong-Mien linguistic family. 

 The studied populations were 256 individuals (137 males and 119 females) 

from 13 ethnic groups in the upper northern part of Thailand.  The details of various 

studied populations are shown in Table 3.1.  Blood samples collection and DNA 

extraction were done by the population genetics research group, Department of 

Biology, Faculty of Science, Chiang Mai University. 

 

  



Table 3.1  Detail description of studied populations 

 

Ethnic 

group 

ID 

Code 

Linguistic affiliation 

(Family, Subfamily) 

Location 

(District, Province) 

Number 

of 

samples 

Yuan TU Tai–Kadai, Tai San Sai and Mae Tang, Chiang Mai ; Ban Hong, Lamphun ; Saw Hai, Saraburi 20 

Yong TY Tai–Kadai, Tai Pa Sang, Lamphun 20 

Lue TL Tai–Kadai, Tai Pua, Nan ; Doi Sa Ket, Chiang Mai 20 

Khuen TK Tai–Kadai, Tai Mae Wang and San Pa Tong, Chiang Mai 20 

Lawa LW Austro-Asiatic, Mon-Khmer Mae La Noi,  Mae Hong Son 19 

H’Tin TN Austro-Asiatic, Mon-Khmer Tung Chang and Chiang Klang, Nan 20 

Mlabri MA Austro-Asiatic, Mon-Khmer Wiang Sa, Nan 19 

Mon MO Austro-Asiatic, Mon-Khmer Pa Sang, Lamphun 19 

Plang PP Austro-Asiatic, Mon-Khmer Mae Sai and Mae Chan, Chiang Rai 20 

Paluang PL Austro-Asiatic, Mon-Khmer Fang and Chiang Dao, Chiang Mai 20 

Karen KA Sino-Tibetan, Tibeto-Burman Mae Sariang, Mae Hong Son 20 

Hmong HM Hmong–Mien, Hmong Mae Rim , Chiang Mai 20 

Yao YA Hmong–Mien, Yao Mae Yao and Muang, Chiang Rai 19 

  

      4
3
 

http://en.wikipedia.org/wiki/Tai%E2%80%93Kadai_languages
http://en.wikipedia.org/wiki/Tai%E2%80%93Kadai_languages
http://en.wikipedia.org/wiki/Tai%E2%80%93Kadai_languages
http://en.wikipedia.org/wiki/Tai%E2%80%93Kadai_languages
http://en.wikipedia.org/wiki/Hmong%E2%80%93Mien_languages
http://en.wikipedia.org/wiki/Hmong%E2%80%93Mien_languages
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3.2  SNP data 

 The SNPs genotyping, as a part of Pan-Asian SNP Initiative, was performed 

by Dr. Metawee Srikummool, using the Affymetrix GeneChip Human Mapping 50K 

Xba array.  The SNP genotyping data of 256 unrelated individuals, from 13 

populations, were obtained from the Pan-Asian SNP database (PanSNPdb).  A set of 

58,960 SNPs, the biallelic markers, which were generated, was used in this study. 

These SNPs are fairly evenly spaced across all of the autosomes and X chromosome.  

Table 3.2 illustrates the format of the Affymetrix export being a tab delimited text file 

consisting of rows of SNPs and their attributes.  The first two lines are headers 

describing the file title and attribute names. 

 

Table 3.2  Affymetrix SNP array export file example of the Hmong ethnic group 

Dynamic Model Mapping Analysis  

No. of 

SNP 
SNP ID 

Chromo- 

some 

Physical 

Position 

dbSNP  

RS ID 

TSC ID 

TH-HM-

000106-1-

01_Call 

TH-HM-

000106-1-

01_Confidence 

… 

1 SNP_A-1650338 2 168550528 rs836702  BB 0.008301 … 

2 SNP_A-1716667 19 40749462 rs725986 TSC58722 AA 0.000488 … 

3 SNP_A-1712945 19 53411226 rs2009373 TSC47071 BB 0.000977 … 

4 SNP_A-1653742 6 65265069 rs10494882  NoCall 0.480469 … 

…
 …

 

…
 

…
 

…
 

…
 

…
 

…
 

… 

58957 SNP_A-1714915 13 71972490 rs9318082  BB 0.000488 … 

58958 SNP_A-1655697 X 86473638 rs10521379  AA 0.007813 … 

58959 SNP_A-1724002 8 85324682 rs977858 TSC291521 AA 0.001465 … 

58960 SNP_A-1674163 12 66603891 rs1905444 TSC949662 BB 0.016113 … 
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 The SNP summary result information from genotyping analysis is shown in 

Table 3.3.  From the analysis, the SNP call (AA, AB, BB or Nocall) was obtained at 

any locus for each individual.  In this thesis, the individual genotype pattern at any 

SNP locus is of interested.   

 

Table 3.3  Example of SNP information from Affymetrix  SNP array genotyping 

analysis 

Attribute Sample of attribute Description 

SNP ID SNP_A-1716667 Affymetrix SNP ID. 

Chromosome 19 The chromosome on which the SNP is located on 

the current genome version. 

Physical Position 40749462 The nucleotide base position where the SNP is 

found. The genomic coordinates given are in 

relation to the current genome version and may 

shift as subsequent genome builds are released. 

dbSNP RS ID rs725986 The dbSNP at the National Center for 

Biotechnology Information (NCBI). 

TSC ID TSC58722 The SNP Consortium (TSC) ID that corresponds to 

this probe set. 

Sample 1 AA Genotype in an individual. 

… … … 

Sample 20 BB Genotype in an individual. 

Allele A A The alternative nucleotides at the SNP position that 

occur in the population and can be identified by the 

probe set. All the SNPs measured by the 

Affymetrix mapping arrays are biallelic. 

Allele B G 
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3.3  Computational Method 

 The computational method comprises four main sections: mutual information, 

decision tree, correspondence analysis, and genetic distance and phylogenetic tree 

analysis.  The framework of thesis illustrates in Figure 3.1. 

 

 

Figure 3.1  Diagram of  research design 

 

3.3.1  Mutual information with SNP 

 Due to the large amount of available SNPs loci, the SNPs which are specific in 

each population group were extracted.  Input features are importance to improve the 

efficiency of feature selection.  Therefore, the feature ranking is used in our 
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experiment to determine each feature’s population classification power.  In this work, 

mutual information estimation is used as the ranking measure. 

 According to ranking criteria of information theory, this theory was applied to 

SNPs ranking with the equation (2.2) in CHAPTER 2.  The feature selection method 

is to compute        as the expected mutual information of any SNP locus     and 

class    .  Mutual inoformation measures how much information present or absent of 

a term contributes to make the correct classification decision on  .  Formally 

(Christopher et al., 2008):  

 I    )    - ∑ P     ea ,    ec)ea { , }  ec  { , }  log
2

P     ea ,    ec)

P      ea) P     ec)
  (3.1) 

 When S is a random variable that takes values        (the ethnic group 

contain allele AA) and        (the ethnic group does not contains allele AA), when 

every allelic pattern, AA, AB, BB and Nocall (or NC in the equations) is included, 

and   is a random variable that takes values       (the SNP is in the ethnic group  ) 

and        (the SNP is not in the ethnic group  ).  The counts of the number of 

individuals with the eight possible combinations of indicator values are in Table 3.4. 

 

Table 3.4  Genotype frequency at any locus 

 ec= eethnic group = 1 ec= eethnic group= 0 Total 

ea  = eallele=AA  NAA1 NAA0 NAA.  

ea   = eallele=AB  NAB1 NAB0 NAB.  

ea   = eallele=BB  NBB1 NBB0 NBB.  

ea = eallele= NC  NNC1 NNC0 NNC.  

Total N.1 N.0 N..  
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 The mutual information in terms of maximum likelihood estimations of the 

probabilities is written as equation (3.2). 
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 Given         is the value of any SNP locus in considered ethnic group. 

 N.1 is the number of individuals in considered ethnic group. 

 N.0 is the number of individuals does not in considered ethnic group. 

 NAA. is the total number of individuals who have allele pattern AA. 

 NAB. is the total number of individuals who have allele pattern AB. 

 NBB. is the total number of individuals who have allele pattern BB. 

 NNC. is the total number of individuals who have allele pattern NC. 

 Then, the value is calculated for each SNP locus for the entire ethnic groups 

and called mutual information value.  The value measures how much information - in 

the information theoretic sense - a term contains about the class.  Any SNP which has 

maximum value; means the SNP is closely related with the ethnic group (class) 

(Kwak and Choi, 2002).  If a term's distribution is the same in the class as it is in the 

collection as a whole, then           (Christopher et al., 2008). 
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3.3.2  Decision tree 

3.3.2.1  Problem description 

 In decision tree problem description, there is a set of n SNPs,    {       }, 

of m sample individuals and their ethnic group.  There is also decision tree which is 

able to predict ethnic group for any given subset,  ́    .  The predict accuracy is 

defined by decision tree for subset  ́ as   (  ́   ).  The goal is finding a subset SNP 

which gives a maximal prediction accuracy, Pmax  (Kim et al, 2007). 

        ́    {       }              ( ́   ) 

 Thus, the different SNPs number from the top MI value ranking list is chosen, 

as the subsets, to solve this problem.  The subsets are   , 2 , 3 , …, 100 SNPs of  

each ethnic group that use for the training set, then take them as the testing set and 

fine the one giving the best prediction accuracy. 

 

3.3.2.2  SNP data set in decision tree 

 According to the Affymetrix export file, the SNP genotype of individual was 

extracted to use as the data set.  The input data for classification is a collection of 

records.  For each record, also known as an instance or example, is characterized by a 

tuple (x,y), where x is the attribute set as a SNP locus and y is a target attribute as 

ethnic group, designated as the class label (also known as category attribute).  Table 

3.5 shows a sample data set which is used for classifying population into one of the 

following categories:  

 Yuan  denoted as “TU”), classifying the Yuan ethnic group. 

 Lue  denoted as “TL”), classifying the Lue ethnic group. 

 Yong  denoted as “TY”), classifying the Yong ethnic group. 
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 Khuen  denoted as “TK”), classifying the Khuen ethnic group. 

 Lawa  denoted as “LW”), classifying the Lawa ethnic group. 

 Mon  denoted as “MO”), classifying the Mon ethnic group. 

 Mlabri  denoted as “M ”), classifying the Mlabri ethnic group. 

 H’tin  denoted as “T ”), classifying the H’tin ethnic group. 

 Paluang  denoted as “PL”), classifying the Paluang ethnic group. 

 Plang (denoted as “PP”), classifying the Plang ethnic group. 

 Karen  denoted as “K ”), classifying the ethnic group. 

 Hmong  denoted as “HM”), classifying the Hmong ethnic group. 

 Yao  denoted as “Y ”), classifying the Yao ethnic group. 

Table 3.5  SNP data set for decision tree analysis 

Sample code 

(Individual) 

SNP_A-

1650338 

SNP_A-

1714915 

… SNP_A-

1655697 

Class label 

 (Ethnic group) 

TH-HM-001 AA AB … AA KA 

TH-HM-002 AB BB … AB KA 

… … … … … … 

… … … … … … 

TH-KA-019 AB AB … … TK 

TH-KA-020 AA AA … BB TK 

 

3.3.2.3  Population classification via decision tree using R program 

 In Rweka qewpackage of R program, C4.5 algorithm is used to build decision 

trees.  C4.5 algorithm is an improvement of IDE3 algorithm, developed by Ross 

Quinlan   993).  It is based on Hunt’s algorithm  Hunts et al., 1966 cited in Anyanwu 

and Shiva, 2009) and also like IDE3.  By using the best single feature test, the tree is 
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first constructed by finding the root node of the tree that is most discriminative for 

classifying.  The criterion of the best single feature test is the normalized information 

gain, which results from choosing a feature to split the data into subsets.  The test 

selects the feature with the highest normalized information gain as the root node. 

 

3.3.2.4  Decision tree definition 

 Considering any SNP subset ( ́    ), the training data     composing of SNPs 

which have N loci, is defined to be indexed by        .  The   depends on the 

number of SNPs of any subset, which is chosen for data training (e.g.,   

           ).  The possible attribute value is SNP genotype, which has values of 

AA, AB, BB, and NC.  Let there be    distinct ethnic group, indexed by       

  , and let       {      } be the ethnic group of individual        .  Let 

       ∑         
     be number of individual in the training set of ethnic group k.  

Let     be the genotype for individual   at SNP . 

 Let   be the ethnic group (class) from the 13 groups.  The class attribute   is 

discrete and has value of TU, TY, TL, TK, LW, MO, MA, TN, PL, PP, KA, HM and 

YA. 

 The goal is to learn from the training cases a function, 

                           (    )           

 that maps from the SNP values to a predicted ethnic group. 

 

3.3.2.5  Decision tree construction 

 The process is started by defining a measure called entropy, which measures 

the homogeneity of examples. 
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                                           (3.3) 

 S  is a sample of training examples 

     is the proportion of positive examples in S 

     is the proportion of negative examples in S 

 Information gain is simply the expected reduction in entropy caused by 

partitioning the examples according to this SNP. 

                         ∑
|  |

| |                          (3.4) 

 Values (A) is the set of all possible genotype for SNP A 

     is the subset of S for which SNP A has genotype ν. 

 First in the tree, the information gain for SNPs (SNP_A-1650338, SNP_A-

 7 49 5, …) are determined.  Applying the computation of information gain with the 

SNP data, which used in this thesis, is shown below (Figure 3.2).  

    [                                                     ] 

 Thus, S: [20, 20, 19, 19, 20, 19, 19, 20, 20, 20, 20, 20, 20]. 

According to the equation (3.3)  

                                                          

 

 

 

 

 

 

 

Figure 3.2  Example of information gain calculation  

S: [20, 20, 19, 19, 20, 19, 19, 20, 20, 20, 20, 20, 20] 

E =  0.765 
SNP_A-1650338 

AA 

AB 

S: [11LW,3PP, 6PL] 

E =  0.237 

S: [5KA,9TL, 13TK] 

E =  0.765 

BB 

S: [8KA,11TN, 10TK] 

E =  0.149 

NC 

S: [13MA,1MO, 10TY] 

E =  0.486 
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 The information gain for SNP is:  

                                           (
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 The calculation is applied with all SNP, then the SNP which has highest gain 

value is selected; it is the decision attribute for the root node. 

 

3.3.2.6  Divide and conquer algorithm  

 C4.5 first grows decision tree learners, using a method known as divide and 

conquer to construct a suitable tree from a training set   of cases: 

 If all the cases in   belong to the same class (      ), 

the decision tree is a leaf labeled with   . 

 Otherwise, let   be a test with outcomes               

that produces a non-trivial partition of  , and denote by    the set of 

cases in   that has outcome    of  .  The decision tree is as shown 

below, where    is the result of growing a decision tree for the cases in 

   (Kohavi and Quinlan, 1999). 

 

 

 

 

 

 

T3 

b3 

B 

b1 

T1 
T2 

b2 

Tt 
… 

bt 
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3.3.2.7  Candidate tests 

 C4.5 uses the tests of three types, each involving only a single attribute   . 

Decision regions in the instance space are thus bounded by hyperplanes, each 

orthogonal to one of the attribute axes.  

 In SNP case,    is a discrete attribute with   values, possible tests are: 

 -“     ?” with   outcomes, one for each value of   , (this is the default.)  

 -“    ” with        outcomes, where     {          } is a 

partition of the values of attribute Aa.  Tests of this kind are found by a greedy search 

for a partition   that maximizes the value of the splitting criterion. 

  

3.3.2.8  Selecting tests 

 In the divide and conquer algorithm, any test   that partitions   non-trivially 

will lead to a decision tree, but    give trees.  Most learning systems attempt to keep 

the tree as small as possible, because small trees are easily understood and, by 

Occam's Razor arguments, are likely to have high predictive accuracy (Quinlan and 

Rivest, 1989).  Since it is infeasible to guarantee the minimality of the tree (Hya and 

Rivest, 1976 cited in Kohavi and Quinlan, 1999), C4.5 relies on greedy search, 

selecting the candidate test that maximizes a heuristic splitting criterion.  In C4.5, 

there are two criterions, information gain and gain ratio. 

 Let          denote the relative frequency of cases in S that belong to class 

   . The information content of a message that identifies the class of a case in S is 

then 

       ∑   (    )    (  (     ))   
     (3.5) 
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 After   is partitioned into subsets              by a test  , the information 

gained is then 

            ∑
|  |

| |
 
      (

|  |

| |
)   (3.6) 

 The gain criterion chooses the test B that maximizes        . 

 A problem with this criterion is that it favors tests with numerous outcomes - 

for example,        is maximized by a test in which each    contains a single case. 

The gain ratio criterion sidesteps this problem by also taking into account the 

potential information from the partition itself: 

          ∑
|  |

| |
    

   
|  |

| |
    (3.7) 

 Gain ratio then chooses, from among the tests with at least average gain, the 

test B that maximizes  
      

       
 . 

 

3.3.2.9  Performance of evaluation measure  

 The training set is used to build a classification model, which is subsequently 

applied to the test set, consisting of records with unknown class label. 

 Evaluation of the performance of a classification model is based on the counts 

of test records correct and incorrect predicted by the model.  These counts are 

contained in the table, known as a confusion matrix.  Consider in its main diagonal, 

the number of observations that have been correctly classified for each class; the off-

diagonal elements, indicate the number of observations that have been incorrectly 

classified.  One benefit of a confusion matrix is that it is easy to see if the system is 

confusing two classes (i.e., commonly mislabeling one as another).  For every 

instance in the test set, the actual ethnic group is compared to the ethnic group that 
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Table 3.6  Testing data set for decision tree analysis 

Sample code 

(Individual) SNP1 SNP2 … SNPn 

class label (ethnic 

group) 

TH-HM-001 AA AB … AA ? 

TH-HM-002 AB BB … AB ? 

… … … … … ? 

… … … … … ? 

TH-KA-019 AB AB … … ? 

TH-KA-020 AA AA … BB ? 

 

was assigned by the trained classifier.  In Table 3.7, the number of positive (negative) 

example that is correctly classified by the classifier, is called a true positive (true 

negative); a number of positive (negative) example that is incorrectly classified, is 

called a false negative (false positive) (Tan et al., 2006).  

 

Table 3.7 Calculation of accuracy 

 

 

 

 

 

 The accuracy obtains from equation (3.8) and error rate from equation (3.9).  

 

  ccuracy    
                              

                           
  

 TP T )

 TP T   P   )
   (3.8) 

 

 

Number of model prediction 

+ - 

Actual 
+ True  Positive  (TP) False  Positive  (FP) 

- False  Negative  (FN) True  Negative  (TN) 
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  rror rate    
                            

                           
   

  P   )

 TP T   P   )
   (3.9) 

 

 or                                    

 

 TP is the number of correct predictions when an example is from positive 

class; 

 TN is the number of correct predictions when an example is from negative 

class;  

 FN is the number of incorrect predictions when an example is from negative 

class; 

 FP is the number of incorrect predictions when an example is from positive 

class. 

 

3.3.3  Correspondence analysis  

 Correspondence analysis is an exploratory data analytic technique designed to 

analyze simple two-way and multi-way tables, containing some measure of 

correspondence between the rows and columns.  The aim, common to all of these, is 

the representation of a data set by a number of points in multidimensional space, 

enabling a visual interpretation of the patterns existing in the data (Greenacre and 

Degos, 1977). 
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3.3.3.1  Contingency table in research 

 The following contingency table shows the SNP genotype (AA, AB, BB and 

NC) frequencies of thirteen ethnic groups in the SNP subset, which have the high 

accuracy from decision tree, among 256 individuals. 

Table 3.8  Example of contingency table of SNP genotype 

Ethnic group SNP1AA SNP1AB SNP1BB SNP1NC … SNP N NC 

KA 1 5 13 1  9 

HM 7 10 3 0  13 

…
       

TY 18 0 0 2  2 

TL 15 4 0 1  3 

TK 1 15 2 2  6 

 

 This data matrix in Table 3.8 contains the counts of the   SNP loci multiply 

with number genotype format (S x 4) for 13 different ethnic groups (rows of matrix).  

Each row contains genotype counts in a SNP of individual from each ethnic group.  

Note that   obtains from the SNP set which has the highest decision tree classification 

accuracy.  

 

3.3.3.2  Correspondence analysis using R program 

 The package ‘ca’ version 0.33 in R program is used.  The basic concepts of 

profile, mass and chi-squared distance are introduced in an initial simple example 

using data on the relationship between population ethnic group and SNP loci.  The 
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main result of the correspondence analysis is a geometric map of this relationship, 

showing the relative frequencies of population ethnic group with the genotype 

frequency in each SNP loci.  

 As in principal component analysis, the idea is to reduce the dimensionality of 

a data matrix and visualize it in a subspace of low-dimensionality, commonly two- or 

three dimensional.  

 There are certain fundamental concepts and definition in correspondence 

analysis which is described below.  

 1)  Correspondence table 

 The original data matrix,         , or contingency table, is called the primitive 

matrix or primitive table. The elements of this matrix are     .  The data of interest in 

simple correspondence analysis are usually a two-way contingency table, or any other 

table of nonnegative ratio-scale data, for which relative values are of primary interest.  

In this application, the matrix consists of SNP genotype frequencies, such that     is 

the frequency of      in the ethnic group  .  Ethnic groups figure as rows and SNP 

genotypes at each locus as columns of this matrix.  

 2)  Profile (set of proportion) 

 While interpreting a cross-tabulation, it makes little sense to compare the 

actual frequencies in each cell.  Each row and each column has a different number of 

respondents, called the base of respondents.  For comparison, it is essential to reduce 

either the rows or columns to the same base. 

 When consider a contingency table,         with                  and 

  columns                having frequencies      marginal frequencies are denoted 

by     and    . 
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         ∑            (3.10) 

         ∑          (3.11) 

 Total frequency is 

       ∑ ∑            (3.12) 

 Row profile 

 The profile of each row i is a vector of conditional densities: 

     
   

   
                                 (3.13) 

 

Table 3.9  Matrix of rows profile 

Rows Columns Total 

 1 2 … J  

1 n11/n1. n12/n1. … n1j/n1. 1 

2 n21/n2. n22/n2. … n2j/n2. 1 

3 n31/n3. n33/n3. … n3j/n3. 1 

…
 

…
 

…
 

 …
 

…
 

I ni1/ni. ni2/ni. … nij/ni. 1 

Column mass n.1/n.. n.2/n.. … n.j/n.. 1 

 

 Define the set of row profile as       matrix     

 The average of row profile as follow ; 

      ̅   
   

 
                      (3.14) 

 Column profile 

 The profile of each column j is a vector of conditional densities.  The complete 

set of the column profiles may be denoted by (i ´ j) matrix C. 

     
   

   
                     ( i   , 2,… ,I and j   , 2,… ,J)  (3.15) 
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Table 3.10  Matrix of columns profile 

Rows Columns Row mass 

 1 2 … J  

1 n11/n.1 n12/n1. … n1j/n.j n.1/n.. 

2 n21/n.1 n22/n2. … n2j/n.j n.2/n.. 

3 n31/n.1 n33/n3. … n3j/n.j n.3/n.. 

…
 

…
 

…
  

…
 

 

I ni1/n.1 ni2/ni. … nij/n.j n.i/n.. 

Total 1 1  1 1 

 

 Define the set of row profile as i x j matrix C   

 The average of column profile ; 

    ̅   
   

 
                   I     (3.16) 

 

 3)  Mass (Marginal profile) 

 Another fundamental concept in correspondence analysis is the concept of 

mass which obtain from the following equations: 

                          
                              

           
 

   
   

 
            (3.17) 

                             
                              

           
 

       
   

 
        (3.18) 
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 4)  Distance 

 Distance measure in correspondence analysis is Chi-square distance method.  

Where       ́   is the distance between two rows, which row i
th

 and  ́ from formula: 

        ́   ∑
 

   

 
    [

   

   
   

  ́ 

   ́
]        

(3.19) 

 In the same way, the distance between two column j and  ́ calculates from 

        ́   ∑
 

   

 
    [

   

   
   

   ́

   ́
]          

(3.20) 

 The Chi-square distance differs from the usual Euclidean distance in that each 

square is weighted by the inverse of the frequency corresponding to each term. 

 5)  Inertia 

 Inertia is a term borrowed from the "moment of inertia" in mechanics.  A 

physical object has a center of gravity (or centroid).  Every particle of the object has a 

certain mass m and a certain distance d from the centroid.  The moment of inertia of 

the object is the quantity md
2
 summed over all the particles that constitute the object. 

                             (3.21) 

 This concept has an analogy in correspondence analysis.  There is a cloud of 

profile points with masses adding up to 1.  These points have a centroid (i.e., the 

average profile) and a distance (Chi-square distance) between profile points.  Each 

profile point contributes to the inertia of the whole cloud.  The inertia of a profile 

point can be computed by the following formula. 

 Where     is the ratio 
   

    
  and is 

   

 
 

 The inertia of the     column profile is computed similarly. 

 The total inertia of the contingency table is given by: 
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                 ∑    
             (3.22) 

 Where    is mass of the point     

    is the distance from     to controid  measure by chi-square distance method. 

 Also, the proportion of inertia is proportion of inertia in each dimension as 

follow:  

                         
        

             
      (3.23) 

 6)  Score in dimension 

 Score in dimension is the co-ordinate of each variable in dimension 1 and 2 

demonstrate in correspondence mapping. 

 

3.3.3.3  Visualization of correspondence analysis result 

 The correspondence analysis results are presented on graphs that represent the 

configurations of points in projection planes, formed by the first principal axes taken 

two at a time.  It is customary to summarize the row and column coordinates in a 

single plot.  The graph is commonly done with so-called symmetric maps.  In that 

case, the row and column coordinates on each axis are scaled to have inertias 

(weighted variances) equal to the principal inertia (eigenvalue) along that axis: these 

are the principal row and column coordinates. Depending on the situation, other types 

of display are appropriate   enadić and Greenacre, 2  7). 
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3.3.4  Population genetic distance  and relationship visualization 

 Genetic distance analysis, which focuses on average genetic distance between 

populations, is quite efficient while constructing an evolutionary tree from allele 

frequency data.  In this research, the genetic distance calculates in pairwise difference, 

using PEAS program (Xu and Jin, 2010).  Then, phylogenetic tree analysis was 

performed as an implement in the MEGA5 software (Tamura et al., 2011).  There are 

several genetic distances perform well for reconstruction of phylogenetic when the 

populations are of the same species and are very closely related (Dínç H., 2003).  

Thus, genetic distance matrix of  ei’s standard and Cavalli–Sforza are provided, 

applicable to SNP genotype data that are widely used in human genetic studies.  The 

SNP loci are obtained from the subset which has the highest decision tree 

classification accuracy. 

 

3.3.4.1  Genetic distance using PEAS program 

 This format is the same style as HapMap genotype data, with SNPs in rows 

and genotypes of sample in columns.  But the genotypes are coded by single 

character, with ‘ ’ and ‘ ’ coding for two homozygotes, ‘H’ coding for heterozygote 

and ‘U’ coding for missing genotype.   ecause of the large   P surveys which have 

much larger number of SNPs than that of individuals, thus this format is more 

readable than the others.  The genotype data file is supplied by the user to specify how 

many individuals there are to be analyzed, how many sites each individual has been 

typed at, and the genotypes for each individual.  The information that the user has to 

provide includes also ID of SNPs (the first column), which chromosome that each 

SNP is of (the second column), the physical position of each SNP (the third column), 
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the two possible allele state of each SNP (the fourth column), which DNA strand each 

SNP was genotyped (the fifth column), followed by genotype data (the rest columns).  

One example of standard format of genotype data can be seen in Appendix D: 

 The population distances estimation use PEAS program, which can provide 

including Wright’s  ST, FST distance,  ei’s standard distance,  ei’s DA distance and 

Cavalli- forza’s distance.  The program generates also output files which can be 

recognized by MEGA and PHYLIP programs for further processing.  In this research, 

the only two distances, including  ei’s standard and Cavalli- forza’s distance can be 

calculated.  The notation of the distance measures are shown below: 

 1)  Nei’s standard distance 

 Nei (1972), developed a genetic distance measure (called standard genetic 

distance) whose expected value is proportional to evolutionary time, when both 

effects of mutation and genetic drift are taken in to account.  The  ei’s standard 

genetic distance, consider two populations   and  , is defined as follows. 

 

                           (3.24) 

where   is the normalized identity of SNPs between X and Y with respect to the 

average in all loci, is defined as 

       
 ̂  

√ ̂  ̂ 
         (3.25) 

 ̂    ̂    and  ̂    are the unbiased estimates of average of ∑  
  ∑   

  and ∑     for all 

loci respectively.  Let    and    be the frequencies of the k-th alleles (       ).  

For a single locus, the unbiased estimates of ∑  
  ∑   

  and ∑     are: 

      ̂   
   ∑  ̂ 

   

     
           (3.26) 



66 

      ̂   
   ∑  ̂ 

   

     
     (3.27) 

      ̂  ∑  ̂  ̂          (3.28) 

where  mX and mY are the number of diploids sampled from population X and Y 

respectively,   ̂ and   ̂  are allele frequencies in samples of allele Ai in population   

and   (Nei, 1987). Therefore,  ̂ ,   ̂   and   ̂    are the averages of    ̂ ,    ̂ and   ̂  in 

all loci,  respectively 

 The variances of   and   can be computed by the formulas given by Nei 

(1978, 1987) 

 2)  Cavalli-Sforza’s distance 

 Distance measures based on geometric consideration.  According to Cavalli-

Sforza and Edwards (1967) also used an angular transformation.  They proposed that 

the genetic distance between two populations be measured by the chord length 

between points X and Y on the q-dimensional hypersphere.  This chord length is 

given by [         ]   .  Since        corresponds to a complete gene 

substitution, it is convenient to work in terms of      , where   is in radians, for the 

unit distance is then one gene substitution. 

       
√ (   ∑ √    

 
   

)

 
              (3.29) 

where   is the number of alleles in     locus. 
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3.3.4.2  Phylogenetic tree and multidimensional scaling  

 The distance value is used to construct the phylogenetic tree by Neighbour 

Joining (Saitou and Nei, 1987).  MEGA5 software is used to graphically display the 

results.  The input data file for MEGA5 is matrix format generating from PEAS 

program.  The distance matrix (     ) shows the distance between the ethnic groups.  

The example is shown in Table 3.11.  Note that the matrix is symmetric, therefore 

only values of one side of the diagonal need to be computed. 

Table 3.11  Distance matrix example 

 i 

KA HM YA LW … TL TK 

j 

KA -       

HM 0.195031 -      

YA 0.166200 0.167043 -     

…        

TK 0.169001 0.211146 0.377981 0.54663 … 0.195137 0.193316 

 

 Since a tree presentation of the distance matrix might be misread as a 

succession of population splits (Kampuansai, 2007), multidimensional scaling was 

also performed by R program.  The purpose of using multidimensional scaling is to 

provide a visual representation of the complex pattern of genetic distance among a set 

of populations.  These distance values were projected onto two-dimensional space 

applying classical multidimensional scaling to the distance matrix (Table 3.11) using 

the R function cmdscale.  Multidimensional scaling is the methods for reconstructing 
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a map from a distance matrix.  The map is not restricted to two dimensions-it can be 

one dimensional, three dimensional, or higher dimensional.  Multidimensional scaling 

techniques attempt to find a set of coordinates for the objects, and representation of 

the units in a given number of dimensions, so that the most similar objects are plotted 

close together and the most dissimilar objects are plotted furthest apart (Everitt and 

Hothorn, 2009).  Thus, populations that are perceived to be very similar to each other 

are placed near each other on the map, and those that are perceived to be very 

different are placed far away. 

 


