TABLE OF CONTENTS

TABLE OF CONTENTS		
		Page
ACKNOWLEDGM	ENT	iii
ABSTRACT IN EN	GLISH	iv
ABSTRACT IN TH	AI	vi
LIST OF TABLES		xiii
LIST OF FIGURES		xv
ABBREVIATIONS	AND SYMBOLS	xix
CHAPTER 1 INTR	ODUCTION	1995
CHAPTER 2 LITE	RATURE REVIEW	4
2.1 Biotransfo	ormation	4
2.1.1	Advantages and disadvantages of biotransformation	6
2.1.2	Methodology of biotransformation	7
2.2 Artemisin	in	9
2.2.1	The history of artemisinin	10
2.2.2	General information	11
right 2.2.3	Antimalarial activity of artemisinin	14
2.2.4	Cytotoxicity of artemisinin against tumor cells	18
2.2.5	Pharmacokinetic data of artemisinin and derivatives	19

		1 age
2.2.6	Clinical data	20
2.2.7	Resistance of artemisinin and derivatives	21
2.2.8	Recrudescence of artemisinin and derivatives	21
2.2.9	Toxicity of artemisinin and derivatives	22
2.2.10	The structural modifications of artemisinin and	22
	derivatives by chemical and biological methods	
2.3 Aspergilli	as species	27
2.3.1	Description and nature habitats	28
2.3.2	Growth and distribution	28
2.3.3	Commercial importance	28
2.3.4	Aspergillus oryzae	29
2.3.5	Aspergillus terricola	30
2.3.6	Aspergillus niger	31
2.3.7	Aspergillus usamii	33
2.3.8	Aspergillus melleus	34
CHAPTER 3 MATI	ERIALS AND METHODS	35
3.1 Chemical	s	35
3.2 Materials	and instruments and Mal Un	37
3.3 Microorga	anism strains and maintenance conditions	38

			Page	
	3.4 Cell lines	and culture conditions	39	
	4.2 Methods			
	3.5.1	Growth of fungi in the transformed medium	39	
	3.5.2	Biotransformation procedures	40	
	3.5.3	Purification of the transformed product	41	
	3.5.4	Chemical characterization of the transformed	541	
		product		
	3.5.5	Screening of ability of fungi in biotransformation	43	
	3.5.6	Optimization of biotransformation conditions	43	
	3.5.7	Biological activity assays	45	
CHAPTER 4 RESULTS 49				
4.1 Screening of ability of fungi in biotransformation			49	
	4.2 Optimization conditions		50	
	4.2.1	Effect of temperature on the growth of fungi and the	50	
		production of the transformed product		
	4.2.2	Effect of the transformed medium on the production	52	
		of transformed product		
	4.2.3	Effect of artemisinin concentration on the growth of	55	
		fungi and the production of the transformed product		

		rage
4.2.4	Effect of pre-incubation period on the production of	60
	the transformed product	
4.3 Chemic	al characterization of the transformed product	63
4.3.	Nuclear Magnetic Resonance (NMR) Spectra of the	63
	purified transformed product	
4.3.2	2 Infrared (IR) Spectra of the purified transformed	571
	product	
4.3.3	3 Mass Spectra (MS) of the purified transformed	72
	product	
4.3.4	4 Melting points of the purified transformed product	73
4.4 Biologic	cal activity of deoxyartemisinin	73
4.4.	Antimalarial activity of deoxyartemisinin	73
4.4.2	2 Antimicrobial activity of deoxyartemisinin	74
4.4.2	3 Cytotoxicity of deoxyartemisinin	76
CHAPTER 5 DIS	CUSSION	80
5.1 Screenin	ng of ability of fungi in biotransformation	80
5.2 Optimiz	ation conditions	81
oyright 5.2.	Effect of temperature on the growth of fungi and the	81
	production of the transformed product	

			Page
	5.2.2	Effect of the transformed medium on the production	82
		of the transformed product	
	5.2.3	Effect of artemisinin concentration on the growth of	83
		fungi and the production of the transformed product	
	5.2.4	Effect of pre-incubation period on the production of	85
		the transformed product	
	5.3 Chemical	characterization of the transformed product	88
	5.4 Biologica	al activity of deoxyartemisinin	89
	5.4.1	Antimalarial activity of deoxyartemisinin	89
	5.4.2	Antimicrobial activity of deoxyartemisinin	91
	5.4.3	Cytotoxicity of deoxyartemisinin	91
СНА	APTER 6 CON	CLUSION	95
REF	ERENCES		97
APP	ENDICES		114
APP	ENDIX A		115
APP	ENDIX B		118
CUR	RRICULUM VI	TAE Chiang Mai Un	149

LIST OF TABLES

Table	Page
2.1 Classification of chemical reaction types catalyzed by enzymes	5
2.2 The pharmacokinetic data of artemisinin and its derivatives	20
4.1 The growth of A. oryzae (Ozykat-1) and A. terricola TISTR 3109 at	51
room temperature (26°C), 30°C and 37°C after 48 hours	
4.2 The yields of crude extracts and the purified transformed product when	52
artemisinin was transformed by A. oryzae (Ozykat-1) or A. terricola	
TISTR 3109 at 30 and 37°C after 4 days of artemisinin addition	
4.3 The yields of the purified transformed product when artemisinin 0.5,	59
0.75 and 1.0 mg/ml were transformed by A. oryzae (Ozykat-1) or	
A. terricola TISTR 3109	
4.4 Comparative efficiency of A. oryzae (Ozykat-1) and A. terricola TISTR	62
3109 cultures for biotransformation of artemisinin to the transformed	
product as a function of pre-cultured period and incubation time	
4.5 The antimalarial activity of deoxyartemisinin and artemisinin against	74
P. falciparum K1	
4.6 The in vitro cytotoxicity of deoxyartemisinin, artemisinin and	78
doxorubicin against normal mouse fibroblast L929, mouse melanoma	
B16F10, human lung carcinoma A549, human colorectal	
adenocarcinoma HT-29 and Caco-2 cell lines	

LIST OF TABLES (CONTINUED)

TablePage4.7 Post hoc test results of IC50 (LD50) between compounds in each cell lines795.1 The ratio of the lethal dose (LD50) to the inhibition concentration (IC50)94of mouse melanoma B10F16, human lung carcinoma A549, human94colorectal adenocarcinoma HT-29 and human colorectal adenocarcinoma79Caco-2 cell lines treated with deoxyartemisinin79

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure	Page
2.1 Artemisia annua, L.	11
2.2 Chemical structure of artemisinin	11
2.3 Chemical structures of some artemisinin derivatives	12
2.4 Hydrogenation with Pd/C as catalyst at room temperature resulting in	13
deoxyartemisinin	
2.5 Reduction of artemisinin by sodium borohydride at -5°C resulting in	13
dihydroartemisinin	
2.6 Reduction of artemisinin by sodium borohydride at -5°C and then	14
methylation with methanol resulting in artemether	
2.7 Detoxification of hematin	15
2.8 Proposed biological models for the action of artemisinin	16
2.9 Biological activity of artemisinin	18
2.10 Chemical structure of deoxyartemisitene	24
2.11 Biotransformation of artemisinin by Streptomyces griseus ATCC 13273	25
into artemisitone-9, 9α and 9β -hydroxy-artemisinin	
2.12 Biotransformation of artemisinin into 9β-acetoxy artemisinin and	26
9α-hydroxyartemisinin by <i>Penicillium simplissimum</i>	

LIST OF FIGURES (CONTINUED)

Figure	Page
2.13 Biotransformation of artemisinin into deoxyartemisinin by plant cell	27
suspension cultures of Catharanthus roseus (L.) G. Don., Lavandura	
officinalis L. and Withania somnifera	
2.14 Aspergillus oryzae (Ozykat-1)	30
2.15 Morphology of Aspergillus oryzae	30
2.16 Aspergillus terricola TISTR 3109	31
2.17 Aspergillus niger TISTR 3254	32
2.18 Morphology of Aspergillus niger	33
2.19 Aspergillus usamii TISTR 3258	33
2.20 Aspergillus melleus	34
4.1 TLC Chromatogram of EtOAc extracts from fungal culture after 4 days	49
of artemisinin addition, the culture control is the medium added with	
artemisinin	
4.2 TLC chromatogram of the transformed medium I and II of EtOAc	53
extracts in single-stage biotransformation when using 1: 1 v/v of EtOA	с
and hexane as a mobile phase	
4.3 TLC chromatogram of the transformed medium III of EtOAc extracts i	n 54
two-stage biotransformation when using 1: 1 v/v of EtOAc and hexane	
as a mobile phase	

LIST OF FIGURES (CONTINUED)

Figure	Page
4.4 Time course of growth and pH by A. oryzae (Ozykat-1) during the	56
transformation at lag phase	
4.5 Time course of growth and pH by A. terricola TISTR 3109 during the	58
transformation at lag phase	
4.6 Fungal pellets of A. oryzae (Ozykat-1) and A. terricola TISTR 3109	60
without the addition of artemisinin and A. oryzae (Ozykat-1) and A.	
terricola TISTR 3109 adding with 0.5 mg/ml of artemisinin at lag phase	
4.7 TLC chromatogram of the EtOAc extracts performed by the free-cell	63
culture broth of A. oryzae (Ozykat-1) and A. terricola TISTR 3109	
4.8 The ¹ H-NMR spectra of the purified transformed product	64
4.9 Comparison of the ¹ H-NMR spectra of the transformed product and	65
artemisinin	
4.10 The ¹³ C-NMR spectra of the purified transformed product	66
4.11 The DEPT 135 spectra of the purified transformed product	67
4.12 The COSY spectra of the purified transformed product	68
4.13 The NOESY spectra of the purified transformed product	69
4.14 The HMQC spectra of the purified transformed product	70
4.15 IR spectrums of artemisinin and the purified transformed product	71
4.16 Mass spectrums of artemisinin and the purified transformed product	72

LIST OF FIGURES (CONTINUED)

Figure	Page
4.17 Antimicrobial activity of deoxyartemisinin determined by agar disc	75
diffusion assay	
4.18 Antimicrobial activity of deoxyartemisinin determined by agar well	76
diffusion assay	
5.1 The yield of the transformed product when artemisinin was added to the	87
lag, log and stationary phase of A. oryzae (Ozykat-1) and A. terricola	
TISTR 3109	
5.2 Biotransformation of artemisinin to deoxyartemisinin by A. oryzae	89
(Ozykat-1) and A.terricola TISTR 3109	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBERVIATIONS AND SYMBOLS

α	=	alpha
β	(1)	beta
μΜ		micromolar
μl		microliter
nm	-27	nanometer
mg		milligram
g	7=	gram
ml		milliliter
%	₹	percentage
°C	₹	degree Celsius
e.g.	=	for example
v/v	7	volume by volume
EtOAc		ethyl acetate
МеОН		methanol
DCM	=	dichloromethane
DMSO	FN	dimethyl sulfoxide
PBS		phosphate buffer saline
ATCC	=	the American Type Culture Collection
TISTR	Ē	Thailand Institute of Scientific and
		Technological Research
NAD	=	nicotinamide adenine dinucleotide
NADP	T	nicotinamide adenine dinucleotide
		phosphate

ATP	=	adenosine triphosphate
NMR	21	nuclear magnetic resonance
		spectroscopy
IR	G.C	infrared spectroscopy
MS		mass spectroscopy
TLC		thin layer chromatography
Н	EY	hydrogen
С		carbon
MTT	=)	3-(4, 5-dimethylthiazol-2-yl)-2, 5-
		diphenyltetrazolium bromide
CO ₂		carbon dioxide
IC ₅₀		the 50% growth inhibition

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved