CHAPTER 6

CONCLUSIONS

- 1. All fungal strains could grow and produced reducing sugar and enzymes such as cellulase, xylanase, mannanase, pectinase and amylase on sugar depleted dried longan.
- 2. Maximum reducing sugar production was obtained from *A. foetidus* TISTR 3461, it was 30.84 ± 0.59 g/l or 102.79 ± 1.96 mg/g dried substrate at 7 days cultivation, followed by reducing sugar content from *A. niger* TISTR 3089 at 25.10 ± 0.32 g/l or 83.67 ± 1.06 mg/g dried substrate after cultured for 6 days.
- 3. The reducing sugar obtained consist of *S. cerevisiae* fermentable reducing sugar around 65.71 \pm 2.09 % in *A. foetidus* TISTR 3461 extract and 57.41 \pm 6.41 % in *A. niger* TISTR 3089 extract. The mainly of fermentable reducing sugar was glucose.
- 4. After extracted and concentrated of both fungal extracts, they were used to produce ethanol by *S. cerevisiae* TISTR 5606. The maximum ethanol concentration when using *A. foetidus* TISTR 3461 extract and *A. niger* TISTR 3089 extract as substrate were 22.88 ± 0.34 g/l and 20.19 ± 0.43 g/l, respectively. The maximum ethanol production yield (Y_{p/s}) from both fungal culture extracts were 0.41 ± 0.003 g/g and 0.40 ± 0.005 g/g representing 80.39% and 78.43% fermentation conversion efficiency, respectively.
- 5. The pH value of the *A. niger* TISTR 3089 extract should be adjusted for appropriate ethanol production.
- 6. These fungal extracts were not necessary to be sterilized before cultivation and ethanol production by *S. cerevisiae* TISTR 5606.