APPENDICES

Chief of the second sec

APPENDIC A

ATOM TYPES AND FORCE FIELD LIBRARY FILES OF

NAFION SIDE CHAIN FOR CHAPTER 2

Atom types file of Nafion side chain

• First, second and last columns are atom name, atom type and particle charge each of atom by respectively.

This is a remark line

molecule.res

UNK INT 0

CORRECT OMIT DU BEG

0.0000

1 DUMM	DU	Μ	0	-1	-2	0.000	.0	.0	.00000	
2 DUMM	DU	М	1	0	-1	1.449	.0	.0	.00000	
3 DUMM	DU	М	2	1	0	1.522	111.1	.0	.00000	
4 02	0	М	3	2	1	1.540	111.208	180.000	-0.565313	
5 S1	SO	М	4	3	2	1.483	72.290	131.671	0.957791	
6 03	0	E	5	4	3	1.479	115.066	-155.196	-0.568003	
7 04	0	Е	5	4	3	1.477	115.798	-15.532	-0.563128	
8 C5	СТ	М	5	4	3	1.887	102.403	94.060	0.143303	
9 F6	F	Е	8	5	4	1.362	109.682	-66.914	-0.156160	
10 F7	F	E	8	5	4	1.362	109.875	174.800	-0.154226	

11 C8	CT	Μ	8 5 4	1.545 117.	041 52.917	0.464168
12 F9	F	Е	11 8 5	1.367 109.	554 178.417	-0.171362
13 F10	F	E	11 8 5	1.344 110.	967 -64.321	-0.163274
14 011	OS	M	14 11 8	1.382 122.4	426 -167.285	0.271330
16 C13	СТ	3	15 14 11	1.554 106.	515 -128.317	0.338076
17 F1	F	Е	16 15 14	1.341 108.	872 65.971	-0.115090
18 F15	F	Е	16 15 14	1.336 111.	785 -54.258	-0.115941
19 F16	F	Е	16 15 14	1.347 110.	835 -175.344	-0.142704
20 F17	F	E	15 14 11	1.368 114.	273 -11.689	-0.141405
21 C18	СТ	ME	15 14 11	1.560 109.	591 108.800	0.353715
22 F19	F	Е	21 15 14	1.348 109.	696 66.316	-0.111988
23 F20	F	Е	21 15 14	1.362 108.	906 -176.783	-0.162546
24 O21	OS	М	21 15 14	1.370 107.	941 -56.954	-0.224090
25 C22	СТ	М	24 21 15	1.382 120.	416 159.669	0.493847
26 F24	F	E	25 24 21	1.321 112.	890 -71.026	-0.104389
27 F25	F	Е	25 24 21	1.354 110.	756 50.204	-0.160713
28 F23	F	М	25 24 21	1.326 106.	550 167.845	-0.113053
LOOP						
IMPROPE	RtC					
DONE						
STOP						

Force field	Force field library file of Nafion side chain							
remark goes	s here							
MASS								
O 16.000	0.434		same as o					
SO 32.060	2.900		ATTN, need revision					
CT 12.010	0.878		same as c3					
F 19.000	0.320		same as f					
OS 16.000	0.465		same as os					
BOND								
O -SO	330.70	1.600	ATTN, need revision					
SO-CT	226.40	1.820	ATTN, need revision					
CT-F	363.80	1.344	same as c3-f					
CT-CT	303.10	1.535	same as c3-c3					
CT-OS	301.50	1.439	same as c3-os					

ANGLE

O -SO-O 68.	.000 116.170	ATTN, need revision
O -SO-CT 63.	.800 106.820	ATTN, need revision
SO-CT-F 55.	.185 108.950	ATTN, need revision
SO-CT-CT 50.	.000 114.700	ATTN, need revision Serve
CT-CT-F 66.	.200 109.410	same as c3-c3-f
CT-CT-OS 67.	.800 108.420	same as c3-c3-os
F-CT-F 71.	.300 107.160	same as f -c3-f

CT-OS-CT	62.100	113.410	same as c3-os-c3
F-CT-OS	70.168	108.700	Calculated with empirical

CT-CT-CT 63.200 110.630 same as c3-c3-c3

DIHE					
O -SO-CT-F	1	0.333	0.000	3.000	ATTN, need revision
O -SO-CT-CT	1	0.333	0.000	3.000	ATTN, need revision
SO-CT-CT-F	1	0.156	0.000	3.000	ATTN, need revision
SO-CT-CT-OS	1	0.156	0.000	3.000	ATTN, need revision
CT-CT-OS-CT	1	0.383	0.000	3.000	same as X -c3-os-X
F-CT-CT-F	1	0.156	0.000	3.000	same as X -c3-c3-X
F-CT-CT-OS	1	0.156	0.000	3.000	same as X -c3-c3-X
CT-OS-CT-F	1	0.383	0.000	3.000	same as X -c3-os-X
OS-CT-CT-OS	1	0.156	0.000	3.000	same as X -c3-c3-X
CT-CT-CT-F	1	0.156	0.000	3.000	same as X -c3-c3-X
CT-CT-CT-OS	1	0.156	0.000	3.000	same as X -c3-c3-X
IMPROPER					

same as os

NONBON 0 1.6612 0.2100 2.0000 0.2500 SO 1.9080 0.1094 CT 1.7500 0.0610 F OS 1.6837 0.1700

same as o ATTN, need revision same as c3 same as f

approach

APPENDIC B

ATOM TYPE AND FORCE FIELD LIBRARY FILES OF

HYDRONIUM ION FOR CHAPTER 2

Atom types file of hydronium ion

This is a remark line

molecule.res

H3O INT 0

CORRECT OMIT DU BEG

0.0000

1	DUMM	DU	М	0	-1	-2	0.000	.0	.0	.00000		
2	DUMM	DU	М	1	0	-1	1.449	0.0	.0	.00000		
3	DUMM	DU	М	2	1	0	1.522	111.1	.0	.00000		
4	01	ОН	М	3	2	1	1.540	111.208	180.000	-0.567033		
5	H2	НО	Е	4	3	2	0.989	163.123	90.000	0.521665		
6	Н3	но	E	4	3	2	0.988	61.408	160.688	0.522684		
7	H4	но	Е	4	3	2	0.988	61.408	19.312	0.522684		
LO	OP S											
IMI	PROPER	i										
DO	NE											
~												

STOP

remark goes here MASS same as oh OH 16.000 0.465 0.135 HO 1.008 same as ho BOND 0.974 369.60 OH-HO same as ho-oh ANGLE 104.800 HO-OH-HO 41.900 same as ho-oh-ho DIHE IMPROPER NONBON 1.7210 OH 0.2104 same as oh HO 0.0000 0.0000 same as ho

120

Force field library files of hydronium ion

APPENDIC C

ATOM TYPE AND FORCE FIELD LIBRARY FILES OF

KRYTOX-SILICA FOR CHAPTER 2

Atom types f	ile of K	Trytox-S	Silica						
This is a rema	ark line								
molecule.res									
MOL INT ()								
CORRECT	OMIT	DU B	EG						
0.0000									
1 DUMM	DU	М	0 -1	l -2	0.000	.0	.0	.00000	
2 DUMM	DU	М	1 () -1	1.449	.0	.0	.00000	
3 DUMM	DU	М	2 1	0	1.522	111.100	.0	.00000	
4 F3	F	М	3 2	2 1	1.540	111.208	180.000	-0.26000	
5 C2	CT	М	4 3	3 2	1.312	71.097	105.324	0.78000	
6 F4	F	Е	5 4	3	1.311	108.787	-123.190	-0.26000	
7 F5	F	E	5 4	3	1.312	108.928	118.258	-0.26000	
8 C1	СТ	М	5 4	- 3	1.535	110.796	-3.798	0.52000	
9 F2	F	EO	8 5	5 4	1.324	107.674	-175.432	-0.26000	
10 F11	F	Е	8 5	5 4	1.326	107.469	-57.586	-0.26000	
11 C3	СТ	М	8 5	54	1.535	115.635	63.500	0.68000	
12 F1	F	Е	11 8	85	1.322	109.541	-55.327	-0.26000	
13 F6	F	Е	11	8 5	1.326	109.788	62.278	-0.26000	

14 O1	OS	Μ	11 8 5 1.352	107.798 -176.031	-0.32000
15 C4	СТ	М	14 11 1.377	121.142 -157.026	0.42000
16 C5	СТ	3	15 14 11 1.535	105.261 -165.005	0.78000
17 F7	F	E	16 15 14 1.315	108.991 -176.280	-0.26000
18 F8	F	Е	16 15 14 1.315	111.266 -56.363	-0.26000
19 F9	F	Е	16 15 14 1.308	110.189 64.283	-0.26000
20 F10	F	E	15 14 11 1.349	110.241 -51.033	-0.26000
21 C6	С	М	15 14 11 1.547	112.547 73.519	0.45000
22 O2	0	Е	21 15 14 1.195	117.641 46.968	-0.45000
23 N1	Ν	M	21 15 14 1.332	115.057 -135.124	-0.57400
24 H2	Н	E	23 21 15 0.994	118.413 3.599	0.35100
25 C7	СТ	М	23 21 15 1.458	123.377 -177.093	0.11700
26 H1	H1	E	25 23 21 1.084	108.243 -121.679	0.05300
27 H13	H1	E	25 23 21 1.080	107.045 -5.701	0.05300
28 C8	СТ	М	25 23 21 1.529	112.511 116.352	-0.10600
29 H14	HC	Е	28 25 23 1.088	109.166 59.297	0.05300
30 H15	HC	E	28 25 23 1.086	107.605 174.234	0.05300
31 C9	СТ	М	28 25 23 1.534	113.478 -63.861	-0.10600
32 Si2	Si	3	31 28 25 1.865	115.308 177.964	0.22980
33 03	ОН	sO	32 31 28 1.636	113.078 -54.025	-0.48660
34 H3	НО	Е	33 32 31 0.952	116.882 -105.752	0.41000
35 O4	ОН	S	32 31 28 1.631	107.769 67.092	-0.48660
36 H4	НО	Е	35 32 31 0.947	117.787 -167.271	0.41000
37 O5	OS	S	32 31 28 1.64	4 108.550 -173.086	-0.15320

A

38 Si1	Si	3	37 32 31	1.609	138.417 87.754	0.30640
39 O6	OH	S	38 37 32	1.633	110.975 -87.322	-0.48660
40 H5	НО	E	39 38 37	0.954	118.725 -63.963	0.41000
41 O7	ОН	S	38 37 32	1.632	107.360 30.713	-0.48660
42 H6	НО	Е	41 38 37	0.951	116.092 151.518	0.41000
43 08	OS	S	38 37 32	1.625	109.994 151.157	-0.15320
44 Si3	Si	3	43 38 37	1.619	135.042 -162.512	0.30640
45 09	ОН	S	44 43 38	1.633	105.512 25.496	-0.48660
46 H7	НО	Е	45 44 43	0.952	116.200 -158.272	0.41000
47 O10	OH	SE	44 43 38	1.621	111.356 145.262	-0.48660
48 H8	НО	Е	47 44 43	0.947	118.647 78.585	0.41000
49 O11	OS	S	44 43 38	1.627	109.620 -93.098	-0.15320
50 Si4	Si	3	49 44 43	1.617	138.426 132.458	0.30640
51 012	ОН	S	50 49 44	1.638	104.296 13.827	-0.48660
52 H9	НО	E	51 50 49	0.947	117.779 162.220	0.41000
53 O13	ОН	S	50 49 44	1.620	113.114 133.083	-0.48660
54 H10	НО	Е	53 50 49	0.951	116.620 105.525	0.41000
55 014	OS	S	50 49 44	1.624	109.210 -105.358	-0.15320
56 Si5	Si	3	55 50 49	1.617	142.570 -122.451	0.30640
57 015	OS	s O	56 55 50	1.611	110.089 133.201	-0.15320
58 Si6	Si	3	57 56 55	1.623	147.497 21.297	0.30640
59 O18	OH	S	58 57 56	1.647	109.497 -82.032	-0.48660
60 H18	НО	Е	59 58 57	0.948	117.932 -65.791	0.41000
61 O19	OH	S	58 57 56	1.615	112.270 35.993	-0.48660

C A

62	H19	НО	Е	61 58	57	0.955	118.183	-102.310	0.41000
63	O20	OH	S	58 57	56	1.621	104.936	157.348	-0.48660
64	H20	НО	E	63 58	57	0.947	116.969	-165.911	0.41000
65	016	ОН	S	56 55	50	1.625	112.715	-103.993	-0.48660
66	5 H11	НО	Е	65 56	55	0.947	118.364	-91.817	0.41000
67	017	ОН	S	56 55	50	1.636	104.532	12.731	-0.48660
68	H12	НО	Е	67 56	55	0.948	117.845	-166.898	0.41000
69	H16	НС	Е	31 28	25	1.089	109.773	-59.650	0.05300
70	H17	HC	E	31 28	25	1.088	109.962	56.566	0.05300

LOOP

IMPROPER

C4 N1 C6 O2 C6 C7 N1 H2

DONE

STOP

Force field library files of Krytox-Silica

remark goes here

MASS

MASS		
F 19.000	0.320	same as f
CT 12.010	0.878	same as c3
OS 16.000	0.465	same as os
C 12.010	0.616	same as c
O 16.000	0.434	same as o
N 14.010	0.530	same as n
H 1.008	0.161	same as hn
H1 1.008	0.135	same as hc
HC 1.008	0.135	same as hc
Si 28.086	1.100	ATTN, need revision
OH 16.000	0.465	same as oh
HO 1.008	0.135	same as ho

BOND

F-CT	363.80 1.344	same as c3-f
CT-CT	303.10 1.535	same as c3-c3
CT-OS	301.50 1.439	same as c3-os g Mai University
CT-C	328.30 1.508	same as c -c3
С-О	648.00 1.214	same as c -o
C -N	478.20 1.345	same as c -n
N -H	410.20 1.009	same as hn-n

N -CT	330.60	1.460	same as c3-n
CT-H1	337.30	1.092	same as c3-hc
CT-HC	337.30	1.092	same as c3-hc
CT-Si	238.00	1.809	ATTN, need revision
Si-OH	392.80	1.665	ATTN, need revision
Si-OS	392.80	1.665	ATTN, need revision
он-но	369.60	0.974	same as ho-oh

ANGLE

F-CT-F	71.300	107.160	same as f -c3-f
F -CT-CT	66.200	109.410	same as c3-c3-f
CT-CT-CT	63.200	110.630	same as c3-c3-c3
CT-CT-OS	67.800	108.420	same as c3-c3-os
CT-OS-CT	62.100	113.410	same as c3-os-c3
F -CT-OS	70.168	108.700	Calculated with empirical approach
OS-CT-C	68.000	109.820	same as c -c3-os
CT-C -O	68.000	123.110	same as c3-c -o
CT-C -N	67.900	115.150	same as c3-c -n
СТ-СТ-С	63.800	110.530	same as c -c3-c3
F-CT-C	63.719	110.055	Calculated with empirical approach
С -N -Н	49.200	118.460	same as c -n -hn e s e r v e d
C -N -CT	63.900	121.350	same as c -n -c3
O -C -N	75.800	122.030	same as n -c -o
N -CT-H1	49.800	109.500	same as hc-c3-n

- N -CT-CT 65.900 112.130 same as c3-c3-n
- H -N -CT 46.000 116.780 same as c3-n -hn
- CT-CT-HC 46.400 110.050 same as c3-c3-hc
- H1-CT-H1 39.400 108.350 same as hc-c3-hc
- H1-CT-CT 33.235 109.490 Calculated with empirical approach
- CT-CT-Si 44.400 113.500 ATTN, need revision
- HC-CT-HC 39.400 108.350 same as hc-c3-hc
- CT-Si-OH 44.400 113.500 ATTN, need revision
- CT-Si-OS 44.400 113.500 ATTN, need revision
- Si-CT-HC 34.500 112.300 ATTN, need revision
- Si-OH-HO 56.400 124.100 ATTN, need revision
- Si-OS-Si 31.100 149.800 ATTN, need revision
- OH-Si-OH 42.300 113.100 ATTN, need revision
- OH-Si-OS 42.300 113.100 ATTN, need revision
- OS-Si-OS 42.300 113.100 ATTN, need revision

DIHE

F-CT-CT-F	1	0.156	0.000	3.000	same as X -c3-c3-X
F -CT-CT-CT	1	0.156	0.000	3.000	same as X -c3-c3-X
CT-CT-CT-OS	1	0.156	0.000	3.000	same as X -c3-c3-X
CT-CT-OS-CT	g	0.383	0.000	3.000	same as X -c3-os-X
F-CT-CT-OS	1	0.156	0.000	3.000	same as X -c3-c3-X
CT-OS-CT-F	1	0.383	0.000	3.000	same as X -c3-os-X
CT-OS-CT-C	1	0.383	0.000	3.000	same as X -c3-os-X

OS-CT-C -O	1	0.000	180.000	2.000	same as X -c -c3-X
OS-CT-C -N	1	0.000	180.000	2.000	same as X -c -c3-X
СТ-С -N -Н	1	2.500	180.000	2.000	same as X -c -n -X
CT-C -N -CT	1	2.500	180.000	2.000	same as X -c -n -X
CT-CT-C -O	1	0.000	180.000	2.000	same as X -c -c3-X
CT-CT-C -N	1	0.000	180.000	2.000	same as X -c -c3-X
F-CT-CT-C	1	0.156	0.000	3.000	same as X -c3-c3-X
F -CT-C -O	1	0.000	180.000	2.000	same as X -c -c3-X
F-CT-C-N	1	0.000	180.000	2.000	same as X -c -c3-X
C -N -CT-H1	1	0.000	0.000	2.000	same as X -c3-n -X
C -N -CT-CT	1	0.000	0.000	2.000	same as X -c3-n -X
О-С-N-Н	1	2.500	180.000	2.000	same as X -c -n -X
0 -C -N -CT	1	2.500	180.000	2.000	same as X -c -n -X
N -CT-CT-HC	1	0.156	0.000	3.000	same as X -c3-c3-X
N -CT-CT-CT	1	0.156	0.000	3.000	same as X -c3-c3-X
H -N -CT-H1	1	0.000	0.000	2.000	same as X -c3-n -X
H -N -CT-CT	1	0.000	0.000	2.000	same as X -c3-n -X
CT-CT-CT-Si	1	2.000	0.000	3.000	ATTN, need revision
СТ-СТ-СТ-НС	1	0.156	0.000	3.000	same as X -c3-c3-X
Н1-СТ-СТ-НС	1	0.156	0.000	3.000	same as X -c3-c3-X
H1-CT-CT-CT	1	0.156	0.000	3.000	same as X -c3-c3-X
CT-CT-Si-OH	1	-0.200	0.000	3.000	ATTN, need revision
CT-CT-Si-OS	1	-0.200	0.000	3.000	ATTN, need revision
HC-CT-CT-Si	1	2.000	0.000	3.000	ATTN, need revision

HC-CT-CT-HC	1	0.156	0.000	3.000	same as X -c3-c3-X
CT-Si-OH-HO	1	0.667	0.000	3.000	ATTN, need revision
CT-Si-OS-Si	1	0.800	0.000	3.000	ATTN, need revision
Si-OS-Si-OH	1	0.600	0.000	3.000	ATTN, need revision
Si-OS-Si-OS	01	0.600	0.000	3.000	ATTN, need revision
OH-Si-CT-HC	1	-0.200	0.000	3.000	ATTN, need revision
OH-Si-OH-HO	1	0.667	0.000	3.000	ATTN, need revision
HO-OH-Si-OS	1	0.667	0.000	3.000	ATTN, need revision
OS-Si-CT-HC	1	-0.200	0.000	3.000	ATTN, need revision
IMPROPER					

CT-N -C -O	1.1	180.0	2.0	Using default value
С -СТ-N -Н	1.1	180.0	2.0	Using default value

NONBON

F	1.7500 0.0610	same as f
СТ	1.9080 0.1094	same as c3
OS	1.6837 0.1700	same as os
С	1.9080 0.0860	same as c
origi	1.6612 0.2100	same as o S Mail University
Ν	1.8240 0.1700	same as n r e s e r v e d
Н	0.6000 0.0157	same as hn
H1	1.4870 0.0157	same as hc
HC	1.4870 0.0157	same as hc

ລິບສິກສົມหາວົກຍາລັຍເຮີຍວໃหມ່ Copyright[©] by Chiang Mai University All rights reserved

APPENDIC D

CALCULATION OF KRYTOX-SILICA STRUCTURE

NUMBER FOR 5% WT KRYTOX-SILICA

IN NAFION SYSTEM FOR CHAPTER 2

Molecular weigh of Krytox-Silic model

 $(CF_3(CF_2)_2OCF(CF)_3CONH(CH_2)_2Si(OH)_2(OSi(OH)_2)_4OSi(OH)_3$

839.6 g/mol $\frac{839.6g\,/\,mol}{6.62\times10^{23}\,molecule/\,mol}$ 839.6g Thus 6.62×10^{23} molecule 5 Krytox - Silica(g)5% wt of Krytox-Silica 100 Nafion(g)839.6 6.62×10^{23} 5 When add 1 Krytox-Silica molecule 100 Nafion(g 1100 g/mol Molecular weigh of Nafion 1100g/mol 6.62×10^{23} molecules / mol 1100g 6.62×10^{23} molecules 839.6×100 $6.62 \times 10^{23} \times 5$ \therefore Nation *Nation*(g) = 1100g 6.62×10^{23} molecules ≈ 15 molecules

Because of 1 Nafion molecule has 1 SO_3^- group thus equal to 15 Nafion molecules. Hence, this system has 1 Krytox-Silica and 15 Nafion molecules.

APPENDIC E

PUBLICATIONS AND PRESENTATIONS

BY AUTHOR

Publications:

- Nimmanpipug, Chirachanchai, S.: 1. Yana, **J**.; P.; Gosalawit, R.: Dokmaisrijan, S.; Vilaithong, Vannarat, S.; T.; Lee, V.S.; "Molecular Dynamics Simulations of Krytox-Silica-Nafion Composite for high temperature fuel cell electrolyte membranes" Polymer 2010, 51, 4632-4638. (impact factor = 3.828 source : Journal Citation Reports, 2010)
- Yana, J.; Lee, V. S.; Nimmanpipug, P.; Aukkaravittayapun, S.; Vilaithong, T. "Dry and Wet Molecular Dynamics Simulations of Nafion[®] Polymer Electrolyte Fuel Cell Membrane" *Journal of Solid Mechanics and Materials Engineering* 2007, 1, 556-563. (impact factor = 0.343 source : Journal Citation Reports, 2005)
- Yana, J.; Lee, V.S.; Rattanachai, Y.; Songsiriritthigul, P.; Medhisuwakul, M.;
 Vannarat, S.; Dokmaisrijan, S.; Vilaithong, T.; Nimmanpipug, P.;
 "Computational and Experimental Study of Low Energy Ar⁺ Bombardment on Nafion" *Surface and Coatings Technology* 2012, (Accepted)

Presentations:

- Yana, J.; Lee V. S.; Vannarat, S.; Dokmaisrijan, S.; Medhisuwakul, M.; Vilaithong, T.; Nimmanpipug, P. "Molecular Simulations of Ion Sputter Coating on Nafion and Carbon Models as Alternative Catalyst in PEMFC Application" The Pure and Applied Chemistry Conference 2012 (PACCON2012), Chiang Mai University, Chiang Mai, Thailand, January 11-13, 2012. (Poster presentation)
- Yana, J.; Lee V. S. ; Vannarat, S.; Dokmaisrijan, S.; Medhisuwakul, M.; Vilaithong, T.; Nimmanpipug, P. "Molecular Simulations of Ion Bombardment and Plasma Sputter Coating for Fuel Cell Application" 15th International Annual Symposium on Computational Science and Engineering (ANSCSE15), Bangkok University, Bangkok, Thailand, March 29 – May 2, 2011. (Oral presentation)
- 3. Yana, J.; Lee V. S. ; Vannarat, S.; Dokmaisrijan, S.; Medhisuwakul, M.; Vilaithong, T.; Nimmanpipug, P. "Molecular Simulations of Ion Sputter Coating on Nafion and Carbon Models as Alternative Catalyst in PEMFC Application", PERCH Congress VI, 4-7 May 2011, Jomtien Palm Beach Resort Pattaya, Thailand. (Oral presentation)
- 4. Yana, J.; Lee V. S. ; Songsiriritthigul, P.; Medhisuwakul, M.; Vannarat, S.; Dokmaisrijan, S.; Vilaithong, T.; Nimmanpipug, P. "Molecular Dynamics Simulation of Nafion Surface Modification by Ar⁺ Beam Bombardment" 1st International Conference on Computation for Science and Technology (ICCST-I), Chiang Mai, Thailand, August 4-6, 2010. (Oral presentation)

- Yana, J.; Lee V. S. ; Vannarat, S.; Dokmaisrijan, S.; Medhisuwakul, M.; Vilaithong, T.; Nimmanpipug, P. "MD Simulation of Nafion Surface Modification by Ar⁺ Bombardment" 14th International Annual Symposium on Computational Science and Engineering (ANSCSE14), Mae Fah Luang University, Chiangrai, Thailand, March 23-26, 2010. (Oral presentation)
- 6. Yana, J.; Lee V. S.; Dokmaisrijan, S.; Songsiriritthigul, P.; Medhisuwakul, M.; Vannarat, S.; Vilaithong, T.; Nimmanpipug, P. "Theoretical Study of Effect of Ar⁺ Bombardment on Nafion Side Chain" 14th International Annual Symposium on Computational Science and Engineering (ANSCSE13), Kasetsart University, Bangkok, Thailand, March 25-27, 2009. (Oral presentation)
- Yana, J.; Lee V. S.; Songsiriritthigul, P.; Medhisuwakul, M.; Vannarat, S.; Vilaithong, T.; Nimmanpipug, P. "Molecular Dynamics Simulations of Ion Bombardment on Nafion Side Chain Cluster Model" The Pure and Applied Chemistry Conference 2009 (PACCON2009), Naresuan University, Phitsanulok, Thailand, Jan 14-16, 2009. (Oral presentation)
- Yana, J.; Nimmanpipug, P.; Chirachanchai, S.; Aukkaravittayapun, S.; Vilaithong, T.; Kungwan , N.; Lee, V. S. "Molecular Dynamic Simulations of Krytox-Silica-Nafion Polymer Composite Based Modification of Polymer Electrolyte Fuel Cell Membrane at High Temperature" The Pure and Applied Chemistry Conference 2008 Bangkok, Thailand, Jan 30- Feb 1, 2008. (Poster presentation)

- Yana, J.; Nimmanpipug, P.; Dokmaisrijan, S.; Aukkaravittayapun, S.; Lee, V. S. "Molecular Dynamic Simulations Study on the Role of Water Effecting the Proton Diffusion in Nafion[®] Fuel Cell Membrane", PERCH Congress V, 6-9 May 2007, Jomtien Palm Beach Resort Pattaya, Thailand. (Poster presentation)
- Yana, J.; Nimmanpipug, P.; Dokmaisrijan, S.; Aukkaravittayapun, S.; Lee, V. S. "Molecular Dynamic Simulations of Water Effecting on Proton Diffusion in Nafion[®] Polymer Electrolyte Fuel Cell Membrane", 3rd Colloquium on Postgraduate Research National Postgraduate Colloquium on Materials, Minerals and Polymers 2007 (MAMIP2007), Vistana Hotel, Penang, Malaysia, April 10-11, 2007. (Poster presentation)
- 11. Yana, J.; Lee, V. S.; Nimmanpipug, P.; Aukkaravittayapun, S.; Vilaithong, T. "Molecular Dynamic Simulations of Krytox-Silica-Nafion[®] Composite in an Aqueous System", NSTDA Annual Conference Science and Technology for National Productivity and Happiness (NAC2007), Thailand science park, Bangkok, Thailand, March 28-30, 2007. (Poster presentation)
- 12. Lee, V.S.; Yana, J.; Nimmanpipug, P.; Jitonnom, J.; Komhoi, P. "Atomistic Simulation and Molecular Dynamics for Polyoxyethylene / Polyethylenimine Blends" Asian Workshop on Polymer Processing (AWPP) 2006, Bangkok, Thailand, December 6-8, 2006.
- 13. Yana, J.; Nimmanpipug, P.; Dokmaisrijan, S.; Aukkaravittayapun, S.; Lee, V. S. "Dry and Wet Molecular Dynamics Simulations of Nafion[®] Polymer Electrolyte Fuel Cell Membrane", Asian Symposium on Materials and Processing 2006 (ASMP2006), Sofitel Central Plaza, Bangkok, Thailand, November 9-10, 2006. (Oral presentation)

- 14. Yana, J.; Nimmanpipug, P; Lee, V. S. "Molecular Dynamics Simulations of Nafion[®] Polymer Electrolyte Membrane Fuel Cell in Proton, Hydronium and Water System", Proceeding of the 10th Annual National Symposium on Computational Science Engineering (ANSCSE10), Chiang Mai University, Thailand, March 22-24, 2006. (Oral presentation)
- 15. Yana, J.; Nimmanpipug, P; Lee, V. S. "Proton Transfer Modeling of Nafion[®] polymer membrane electrolyte side chain", 31st Congress Sci. Tech. Thailand, Suranaree University of Technology, Nakhon Ratchasima, October 18-20,2005. (Oral presentation)
- 16. Yana, J.; Nimmanpipug, P; Lee, V. S. "Molecular Dynamics Simulations of Nafion[®] Pendant Chain in Fuel Cell Membrane", Proceeding of the 9th Annual National Symposium on Computational Science Engineering (ANSCSE9), Mahidol University, Thailand, Mahidol University, Thailand, Mahidol University, Thailand, March 23-25, 2005,391-396.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

CURRICULUM VITAE

Name	Miss Janchai Yana			
Date of Birth	3 th March1983			
Education	1. High School, Yupparaj Wittayalai School, Chiang Mai,			
	Thailand (1997-2000)			
	2. B.Sc. (Chemistry), Chiang Mai University,			
	Chiang Mai, Thailand (2001-2004)			
	3. M.Sc. (Chemistry), Chiang Mai University			
	Chiang Mai, Thailand (2005-2007)			
Scholarship	Thailand Graduate Institute of Science and Technology (TGIST)			
	(2005-2012)			
	Center for Innovation in Chemistry: Postgraduate Education			
	and Research Program in Chemistry (PERCH-CIC)			
	(2006-2012)			
Experience	Exchange student at Toyota Technological Institute, Japan			
	(June, 2011- September, 2011)			

Copyright[©] by Chiang Mai University A I I rights reserved