
CHAPTER 1 

INTRODUCTION 

 

1.1 Polymer electrolyte membrane (PEM) fuel cell and its development 

1.1.1 A basic overview of PEM fuel cell 

Recently, throughout the world, the power generation with environmental 

protection is needed for humanity. Savings in fossil fuels, due to high efficiency of 

energy conversion, low pollution, and low emissions, are required for development of 

this novel energy [1, 2]. 

Fuel cell is an electrochemical engine converter the chemical energy of a fuel as 

hydrogen and an oxidant as oxygen directly to electrical energy. The primaries products 

of this engine are water and electricity, thus, it is environmental friendly. During the 

process, protons are generated and transferred from anode though anode via electrolyte. 

In other words, proton conductivity is one key step controlling fuel cell performance. 

Type of fuel cell is classified by its electrolyte that used. Polymer membrane is used for 

electrolyte of proton exchange membrane fuel cell (PEMFC). It has been approbated as 

the most promising candidates for application of portable power source, stationary power 

source, and transportation engine [1-4]. The basic structure of the PEMFC as shown in 

Figure 1.1 consists of layers of materials which having specific functions. Gases, 

hydrogen (H2) and oxygen (O2) are diffused into the system by gas diffusion layers or 

GDLs. The membrane, the catalyst layers (CLs), and the two electrodes are assembled 
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into a sandwich structure which is called membrane-electrode assembly (MEA). PEMFC 

performance depends on MEA efficiency thus it is a heart of the PEMFC [3, 4]. 

Since interest in PEMFC research and development has intensified, many 

researches of PEMFC efficiency improvement have been incessantly reported. 

Durability, reliability, and cost are mostly considered as particularly significant factors 

determining PEMFC electric production efficiency. Improvement of stabilized membrane 

at high temperature was introduced to improve fuel cell durability and reliability [1-5]. 

To reduce cost, PEMFC with low platinum catalyst loading and alternative catalyst has 

been developed [3-5].  

 

Figure 1.1 Fuel cell working diagram [6] 

 

1.1.2 PEM fuel cell membrane development 

As fuel cell membrane is one of crucial parts influencing fuel cell efficiency, 

numbers of membrane development researches have been studied. Typically, polymer 

membrane of PEMFC is Nafion
®
 produced by DuPont

®
, because of its optimized 
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properties which are high conductivity and thermal durability. It is excellent ionic 

conductivity when well humidified. Working conductivity range of Nafion is 2 - 5×10
−2

 S 

cm
−1

. Its melting point (or loss of cystallinity peaks) is in a range of 207 - 249 °C and 

glass transition temperature is reported at -108 °C by Starkweather [7] and  

Corti et al. [8]. Two main components of Nafion are the main chain consisting of 

fluoroethylene units similar to Teflon and the hydrophilic side chain of perfluoro (4-

methyl-3,6-dioxa-7octene-1sulfonic acid) or “vinyl ether”, as shown in Figure 1.2 [4]. 

The hydrophilic part is made up of randomly attached long pendant chains terminating 

with SO3
−
. This part is important for proton diffusion and fuel cell efficiency [9], and 

lower values of conductivity appear when the number of water per sulfonic group 

(nH2O/SO3H) decrease [10]. Thus, the amount of water which hydrated in Nafion has 

effect on its proton conductivity efficiency.  

 

 

Figure 1.2 The structure of a Nafion polymer [4] 

 

There are several complications of the fuel cell utilization because it must be 

sufficient water content in the polymer electrolyte, otherwise the conductivity will 

decrease. This factor effect on cell operations because the moving protons from the anode 
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to the cathode pull water molecules with them. Furthermore, drying effect of air at high 

temperatures was accounted and the water balance in the electrolyte must be correct 

throughout the cell in such case [1, 10]. From above mentioned problem, many 

researches attempt to improve conducting proton in PEM. By application of composite 

materials e.g. silica or krytox-silica in Nafion [11-15], proton conductivity of these 

modified membranes amends because silica composition works as water-absorbent. 

Moreover, benzimidazole and their derivatives are become potential candidates for water-

free proton conducting membrane [16, 17].  

Increasing of interface area of electrode and catalyst was studied using ion 

bombardment on Nafion surface by Cho et. al. [5, 18].  The idea is that membrane not 

only provides ionic conduction pathways between anode and cathode but also acts as a 

binder for the catalyst particles and these electrodes. Fuel cell performance of treated 

Nafion by bombardment of argon ion beam was found higher than that was not. 

Furthermore, platinum loading onto Nafion surface was saved by this modification [5].   

 

1.1.3 Improvement of PEM fuel cell catalyst  

To consider catalyst improvement, the slow oxygen reduction reaction (ORR) 

kinetics on platinum (Pt) catalysts is among the most limiting factors in fuel cell 

efficiency. Besides, Pt has a high price [19, 20]. Alternative materials are therefore highly 

sought for fuel cell applications. In fuel cell reduction process, one is production of water 

through a four-electron pathway, and the other is production of hydrogen peroxide 
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through a two-electron pathway. The 4 and 2 electron reduction pathways were shown in 

equation (1.1) and (1.2) respectively [20]. 

O2   +  4H
+
   +  4e

–
        2H2O    (1.1) 

O2   +  2H
+
  +  2e

–
          H2O2   (1.2) 

However, the harmful anode material can be gotten if the 2 electron pathway 

occurred in acidic condition of H2O2 product. As Pt catalyzed cathode oxygen reduction 

is not a complete 4 electron reaction [21], therefore, the improvement of ORR catalyst 

should base on (i) high activity, (ii) low cost, and (iii) encouragement of 4 electron 

pathways. In order to reduce the cost of the fuel cell catalysts, two approaches are 

currently very active: exploration of non-noble metal catalysts, and reduction of Pt 

loading. Non-noble metal catalyst, metal pyridine such as Fe-NX/C, deposited Fe which 

has N as the ligand is one of employer [20, 22, 23]. In Fe-NX/C catalytic sites, most 

possible structures of Fe-NX/C are Fe-N4/C and Fe-N2/C as shown in Figure 1.3 [22]. In 

the reduction of Pt loading, plasma sputtering deposition of Pt dope on carbon support 

such as graphite was attempted [3]. 

            

          Fe-N4/C           Fe-N2/C 

Figure 1.3 Most possible structure of Fe-NX/C [22] 
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As fuel cell is alternative energy engine and environmental friendly technology, 

thus it has benefit for humanity. Recently, acquisition of fundamental knowledge is 

talented to develop fuel cell performance. For example, improvement efficiencies of 

membrane and alternative catalyst of ORR, however, these phenomena are not well 

understood, in particular, at atomistic level. The substantially understanding will be 

benefit for further fuel cell development. 

 

1.2 Computational studies in PEM fuel cell materials 

The geometry of Nafion side chain had been investigated by Paddison and 

Zawodzinski [24] through trifluoromethane sulfonic acid fragment (CF3SO3H),  

the di-trifluoromethane ether fragment (CF3OCF3), and the side chain  

(CF3-OCF2CF(CF3) OCF2CF2SO3H). Several rotational potential energy surfaces were 

calculated to assess chain flexibility and proton accessibility. Molecular dynamics 

simulations were performed and the results indicated that although the side chain with 

sulfonate group is rather flexible, the shape of curled up structure obtained from 

optimization is quite stable.  

 Molecular modeling simulation has been used to understand the crucial actions in 

proton transfer process. Elliott et al. [25] studied an atomistic model for PIMs in 

particular Nafion
 
materials. They found that the electrostatic term in the Dreiding II  

force field is responsible for the formation of an apparently phase separated morphology 

which is selectively conductive, favouring the passage of cations. The H3O
+
 mobility is 

shown to be consistent with a jump diffusion model of ion transport in PIMs. There is 
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also evidence for the existence of water in two distinct environments in the simulations: 

both tightly bound to ion exchange groups, and more loosely associated with  

the fluorocarbon matrix. Ab initio molecular dynamics calculations were performed to 

explore the defect structure for proton transport in a triflic acid of perfluorosulfonic acid 

monohydrate crystal [26] by Eikerling et al. [27]. They pointed out that the proton was 

transferred by Zundel ion, forming of one water molecule bond with one H3O
+
.  

In addition, aqueous pore structure and proton dynamics in solvated Nafion membranes 

resulted in characteristic differences in aqueous pore structure was studied by  

Seeliger et al. [28]. These were observed for systems whose water content was varied 

between 5 and 10 molecules per acid group in the polymer. As expected, proton transport 

increases significantly with increasing humidity. Its mechanism is dominated by the 

Grotthus structural diffusion mechanism in accordance with earlier studies in simplified 

pores model. On the simulated time scale, no unambiguous conclusions on the role of 

polymer dynamics for the transport in dry membranes can be drawn. Additionally,  

to observe the water molecules penetrate a silica film through a proton-transfer process 

which is similar to the Grotthuss mechanism, hydrogen hopping was studied by MD 

simulation in Fogarty et al. work [29]. Hydrogen atoms pass through the film by 

associating and dissociating with oxygen atoms within bulk silica, as opposed to 

diffusion of intact water molecules. 

 To concern alternative material aspect, heterocyclic such as imidazole and 

pyrazole are promising in this respect. Their basic nitrogen sites act as strong proton 

acceptors with respect to the sulfonic acid group thus forming protonic charge carriers 
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(C3H3NH2)
+
. Its higher temperature stability and imidazole (pyrazole), a stronger 

Bronstedt base compared to water, was projected to be useful for the application of 

materials as fuel cell electrolyte. Kreuer et al. [30] studied the imidazole and pyrazole-

based proton conducting polymer and liquids. They found that the creation of protonic 

defects and the mobility of protons in these environments were found to be similar to  

the situation in corresponding water containing system. Moreover, Herz et al. [31] 

studied a new fully polymer proton solvents with high proton mobility.  

They prepared two different types of polymer, polystyrene with imidazole terminated 

flexible side chains and benzimidazole covalently bonded to an inorganic SiO2 network 

by a flexible spacer. They found that high proton conductivities of up to 7×10
-4

 S cm
-1

 at 

200°C have been obtained for these polymers in the absence of water and this 

conductivity value corresponding to a high mobility of protonic charge carriers.  

 To simulate surface change from ion bombardment at a high energy range,  

Fekete et al. [32] modeled the effects of ion implantation into Nafion, using  

MC simulation [32]. In this visual study, a selected series of the positive ions with 

energies of 20-320 keV, were used to bombard the target polymer. They found that  

the ion energies of 100-200 keV can affect the outer 0.5-3 m of the surface layer.  

The depth of the implanted ions in Nafion increases as the ion energies increased. 

Additionally, the collisions between ions and polymer moiety can alter the permeability 

of the Nafion membrane. The MD simulation technique can applies for the studies of  

the modification of synthetic and natural polymers by atom/ion bombardment [33-35].  

Végh et al. [33] reported that the MD results by repeated impact in order to mimic  
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higher ion doses can exhibit a formation of a heavily cross-linked and dehydrogenated 

damaged layer of polystyrene model. Also, sputtering yield of carbon after bombardment 

analyzed in terms of the ratio of carbon per Ar
+
 is consistent with the observed 

experiment. Sinnott et. al. [34] studied of the MD simulations of modification of 

poly(methyl methacrylate) or PMMA surface by 1 keV Ar atom bombardment. They 

indicated that the deposition of Ar atoms on PMMA produces chemical changes within 

the PMMA substrate and etches the surface. Another example is that the low energy ion 

bombardment on naked DNA was studied using MD simulations [35]. They proposed  

a useful technique for analysis of bond-breaking occurring in nucleotides. Also, changes 

in bond lengths and visibly distorted structures of bombarded nucleotides were clearly 

observed from the MD results. 

  

1.3 Theoretical Methodologies and Simulation Tools 

 Quantum chemistry is based on quantum mechanical principles, defined by the 

mathematical descriptions of chemistry. A wavefunction obtained by solving of 

Schrödinger equation [36], is the tool of quantum chemistry for describing the properties 

of matter in terms of energies and positions of the nuclei and electrons. However, only 

simple chemical systems can be determined through the purely quantum chemistry terms. 

For complicated systems, the simplification of quantum mechanics, such as Hartree-Fock 

(HF) or density functional theory (DFT), are mostly applied for the convenient 

investigations. 
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1.3.1 Schrödinger equation 

The complete description of a wavefunction can be given through the solution of 

the Schrödinger equation, which describing the atom system. Schrödinger obtained an 

equation by taking the classical time-independent wavefunction equation.  

),,,()],,(),,()8/([ 222 zyxEzyxzyxVmh     (1.3) 

Equation (3) represents the Schrödinger’s time-independent wave equation for a single 

particle of the mass (m) moving in the three-dimensional potential field (V). The left-hand 

side of the equation is called the Hamiltonian operator (H), 

,)8/( 222 VmhH       (1.4) 

which is often written as 

. EH       (1.5) 

The Hamiltonian operator takes into account five contributions to the total energy of the 

system, namely the kinetic energies of the electrons and nuclei, the attraction of the 

electrons to the nuclei and the interelectronic and internuclear repulsions that would be of 

the form 
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where i and j defined to electrons, k and l run over nuclei,  is Plank’s constant divided 

by 2π, me is the mass of the electron, mk is the mass of nucleus, e is the electron charge, Z 

is an atomic number, rab is the distance between particles a and b and 2 is the Laplacian 

operator, which can be defined as 
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1.3.2 Born-Oppenheimer approximation 

The difficulty for solving the Schrödinger equation appears in the many-particle 

molecular systems involving correlated motions of particles. In fact, the nuclei are 

heavier than electrons, thus, the nuclei are moving slowly than the electrons. According 

to this property, the approximation has been made by separating the nuclei and electrons 

motions, called Born-Oppenheimer approximation. 

Based on Born-Oppenheimer approximation, the electronic energies are computed 

by fixing nuclear position. Consequently, the nuclear kinetic energy term is independent, 

and thus, can be neglected. The attractive electron-nuclear potential energy term is 

eliminated and the repulsive nuclear-nuclear potential energy term can be considered to 

be constant. Thus, the electronic Schrödinger equation can be defined as  

),;();()( kielelkielNel qqEqqVH     (1.8) 

where the subscript el refer to the Born-Oppenheimer approximation, elH  includes only 

the first, third and fourth terms on the equation (1.6) as 
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where NV  is the nuclear-nuclear repulsion energy, iq  is the electronic coordinates and kq  

is the nuclear coordinates. The eigenvalue of the electronic Schrödinger equation is called 

the electronic energy ( elE ). Since the term NV  is a constant for a given set of fixed 
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nuclear coordinates, the wavefunction can be solved without the inclusion of NV . In this 

respect, the eigenvalue is called the pure electronic energy. The term NV  can be added to 

this eigenvalue in order to obtain the total electronic and nuclear-nuclear repulsion 

energy. 

 

1.3.3 Molecular orbital theory 

 The molecular orbital theory is a method for determining molecular structure.  

A molecular orbital is a region in which an electron may be found in a molecule.  

The molecular orbital can be described by the wavefunction of the electron in a molecule, 

in particular a spatial distribution (
2

)(ri ) of an electron and energy of up to two 

electrons within it. The complete wavefunction for an electron is consist of a molecular 

orbital and a spin function (α and β), which can be defined as a spin orbital ( )(x ) where 

x indicates both space and spin coordinates. Therefore, a spatial orbital can be formed 

into two different spin orbitals as 


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 For N-electron wavefunction, the Hamiltonian of the simpler system, which 

contained noninteracting electrons, can be defined as 


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where h(i) is the operator that describes the kinetic energy and potential energy of 

electron i. Then, the set of spin orbitals ( )(xj ) have been added to the operator, which 

presented in equation (1.12), 

).()()( ijjij xxih       (1.12) 

Therefore, the wavefunction is a simple product of spin orbital wavefunction for each 

electron as  

).()()(),...,,( 2121 NkjiN

HP xxxxxx     (1.13) 

Thus, the equation (1.5) can be written as 

,HPHP EH      (1.14) 

where E is the sum of the spin orbital energies of each spin orbital in HP , as 

.kjiE        (1.15) 

 Accordingly, a N-electron wavefunction is termed a Hartree product, where  

the electron-one has been described by the spin orbital ( i ), electron-two has been 

described by the spin orbital ( j ), etc. However, this wavefunction does not allow  

the antisymmetry principle.  

 To satisfy correcting the antisymmetry principle, considering a two-electron case 

in order to put electron-one in i  and electron-two in j  as 

).()(),( 212112 xxxx ji

HP      (1.16) 

In the opposite way, putting electron-one in j  and electron-two in i  as  

).()(),( 122121 xxxx ji

HP      (1.17) 
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After that, taking the appropriate linear combination of these two Hartree products,  
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  (1.18) 

where the factor 2
-1/2

 is a normalization factor and the minus sign insures that ),( 21 xx  

is antisymmetric with respect to the interchange of the coordinates of electrons one and 

two. From equation (1.18), the wavefunction disappears if both electrons occupy the 

same spin orbital, i.e., following the Pauli exclusion principle. Moreover, the 

antisymmetric wavefunction can be rewritten in terms of a determinant,  
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which is called a Slater determinant [37]. For an N-electron system, the generalization is  
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where the factor (N!)
-1/2

 is the normalization factor. 

 

1.3.4 The LCAO approach and basis sets 

 The molecular orbitals can be built from the atomic orbitals by using the linear 

combination of atomic orbitals to molecular orbitals (LCAO-MO) method. The relation 

can be written as 
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where iC  are the molecular orbital expansion coefficients, N is the number of atomic 

basis function and the set of N function   is called basis set. 

 The common types of basis function, as also called atomic orbital, used in 

electronic structure calculations are Slater-type orbitals (STOs) [38] and Gaussian-type 

orbitals (GTOs) [39]. 

 For the STOs, they are constructed as 
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where n, l, and ml are the quantum numbers, N is the normalization constant and 
llmY  is  

a spherical harmonic. The exponential dependence on the distance between the nucleus 

and electron mirrors the exact orbitals for the hydrogen atom, where Zeff is the effective 

nuclear charge in which the effective principal quantum number (neff) is related to the true 

principal quantum (n) by the following mapping as  

11:  effnn   22    33   7.34   0.45   2.46 , 

and the value of ρ equal to r/a0, where a0 is Bohr radius. 

 The STOs are usually applied for atomic and diatomic systems, which high 

accuracy, as well as in semi-empirical methods, where all three- and four-center integrals 

are neglected. In density functional methods, exact exchange is not included and the 

coulomb energy is calculated by fitting the density to a set of auxiliary functions. 

However, the STOs do not satisfy in two-electron integral problem. The feasible basis 

function is GTOs, which are function of the form 
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where (xc, yc, zc) are the Cartesian coordinates of the center of the Gaussian function at rc 

, (x1, y1, z1) are the Cartesian coordinates of an electron at r1, i, j and k are non-negative 

integers and α is a positive exponent. The advantage of GTOs is that the product of two 

Gaussians at different centers is equivalent to a single Gaussian function centered at a 

point between the two centers. Therefore, the two-electron integral problem on three and 

four or more different atomic centers can be reduced to integrals over two different 

centers.  

The most important factor for creating the molecular orbital is the set of 

parameters when applied to the basis function, called basis set. The smallest number of 

function possible is a minimum basis set. The improvement of the basis set can be 

achieved by replacing two basis functions into each basis function in the minimal basis 

set, called double zeta (DZ). Accordingly, a triple zeta (TZ) refers to three basis functions 

that are used to represent each of the minimal basis sets. The compromise between the 

DZ and TZ basis sets is called a split valence (SV) basis set, in which each valence 

atomic orbital is represented by two basis functions whereas each core orbital is 

represented by a single basis function. 

 

1.3.5 Hartree-Fock method 

 The important factor in the electronic structure calculations is the electron-

electron repulsions, which must be included in any accurate electronic structure 

treatment. The Hartree-Fock (HF) method treats the electron-electron repulsions in an 
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average way. The HF equation for spin orbital ( a ), which assigning electron 1 to spin 

orbital ( a ), is 

),1()1(1 aaaf        (1.24) 

where a  is the spin orbital energy and 1f  is the Fock operator. The 1f  can be defined 

as  
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where h1 is the core Hamiltonian for electron 1, the sum is over all spin orbital 

zbau ,,,  , Ju is the Coulomb operator and Ku is the exchange operator. The Ju and Ku 

operator can be defined as 
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where j0 is 
0

2

4

e
. 

 The Coulomb operator takes into account the coulombic repulsion and  

the exchange operator represents the modification of this energy that can be ascribed to 

the effect of spin correlation. In equation (1.25), the sum represents the average potential 

energy of electron 1 due to the presence of the other n-1 electrons. Since the Fock 

operator depends on the spin orbitals of all the other n-1 electrons, the HF method must 

already know the solution beforehand, thus, the iterative style of solution has been carried 



18 

 

out and stopping when the solution is self-consistent, as called self-consistent field (SCF). 

The self-consistent is started with a trial set of spin orbitals and used to construct  

the Fock operator. After that, the HF equation is solved to obtain the new set of  

spin orbitals, which are used to construct a revised Fock operator, and so on. The 

calculation is repeated until a convergence criterion is satisfied. 

 In general, the SCF calculation produces the different energy value, depending on 

the basis set. For example, using a minimal basis set yields a total electronic energy E1. 

The energy E1 can be improved by choosing a new basis set like a double zeta basis, i.e., 

to compute the lower energy E2. Moreover, the polarization function can be added into 

the basis set to give the lower energy E3. On the other hand, the expansion of the basis 

set will decrease the total electronic energy. Nevertheless, since the basis sets used in the 

calculations are finite, thus, the energy will approach a limiting value. This limiting 

energy is called a Hartree-Fock limit. The molecular orbitals that correspond to this limit 

are called Hartree-Fock orbitals (HF orbitals) and the determinant is called the HF 

wavefunction. 

 

1.3.6 Density functional theory 

 For the treatment of system containing many atoms and many electrons, the ab 

initio methods are found to be very time-consuming. The density functional theory (DFT) 

is then used as an alternative approach, which takes into account the electron correlation 

using the concept of electron probability density. The energy of an electronic system is 

described in terms of the electron probability (ρ). In many electrons system, the total 
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electron density at a particular point r in space can be denoted as ρ(r). The electronic 

energy (E) is the functional of the electron density, which can be defined as E(ρ). 

 The DFT method considers the pair electrons in the same spatial one-electron 

orbitals. Kohn and Sham suggest that the exact ground-state electronic energy (E) of an 

n-electrons system can be of the form 
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The first term of equation (1.28) describes the kinetic energy of the electron. The second 

term represents the electron-nucleus attraction in which the sum is over all N nuclei with 

index I and atomic number ZI. The third term refers to the Coulumb interaction between 

the total charge distribution at r1 and r2 and the last term is the exchange-correlation 

energy of the system. The one-electron spatial orbitals ( i ; i = 1, 2, …, n) are the Kohn-

Sham (KS) [39] orbital. The exact ground-state electron density can be defined by 
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 The KS orbital can be described by solving the Kohn-Sham [39] equation and the 

one-electron orbital ( )( 1ri ) can be of the form 
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where i are the KS orbital energies and VXC is the exchange-correlation potential, which 

can be derived from the exchange-correlation energy, 
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 Starting with the guess electron density (ρ), a self-consistent fashion is employed 

for calculating the KS equations. By using an appropriate form of the  XCE , the XCV  

can be calculated as the function of r. The set of KS equation is solved in order to obtain 

an initial set of KS orbitals. Then, the set of orbitals is used to compute an improved 

density from equation (1.29). These procedures reach convergence when the density and 

exchange-correlation energy are satisfied. 

 According to the calculation process, the main error of DFT is the approximation 

of  XCE . This function can be separated into an exchange functional and a correlation 

function. In the local density approximation (LDA), the exchange-correlation can be 

defined as 

  ,)()( XCXC drrrE       (1.32) 

where  )(XC r  is the exchange-correlation energy per electron in a homogeneous 

electron gas of constant density.  

To improve the exchange-correlation function, a non-local correction involving 

the gradient of ρ is added to the exchange-correlation energy. The LDA with gradient-

corrections is called the generalized gradient approximation (GGA). The exchange-

correlation functionals have been developed for use in DFT calculations, such as 

mPWPW91, B3LYP, MPW1K, PBE1PBE, BLYP, BP91 and PBE. The name of each 

function refers to the pairing of an exchange function and correlation function.  

For example, the BLYP function is a combination of the gradient-corrected exchange 
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functional, developed by Becke [40,41], and the gradient-corrected correlation functional 

developed by Lee, Yang and Parr [42]. The B3LYP function makes use of Hartree-Fock 

corrections in conjunction with density function correlation and exchange. Nowadays,  

the DFT calculations are widely used for large molecular systems, such as protein.  

 

1.3.7 Molecular mechanics  

The molecular mechanics (MM) or force field method use classical mechanics 

models to predict the energy of a molecule as a function of its conformation.  

The molecule is treated at the atomic level by capture very simple interactions between 

atoms but the electrons are not treated explicitly. A force field function is a rather simple 

model of the interactions within a system with contributions from processes such as  

the stretching of bonds, the opening and closing of angles and rotations about single 

bonds. Even when simple functions (e.g. Hooke's law) are used to describe these 

contributions, the force field can perform quite acceptably. Transferability is a key 

attribute of a force field, for it enables a set of parameters developed and tested on  

a relatively small number of cases to be applied to a much wider range of problems. 

Moreover, parameters developed from data on small molecules can be used to study 

much larger molecules such as polymers. 

 

1.3.7.1 Energy function 

 Many of the energy function or force fields function in use today for 

molecular systems can be interpreted in terms of a relatively simple five component 
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picture of the intra- and intermolecular forces within the system. Energetic penalties are 

associated with the deviation of bonds and angles away from their 'reference' or 

'equilibrium' values. One functional form of a simple force field that can be used to 

model single molecules or assemblies of atoms and/or molecules is 

  elecvdwdiheanglebondsTotal EEEEEE     (1.33) 

Where TotalE  is the total energy of a system, bondsE  is the interaction between two atoms 

directly bonded to each other, angleE  is the interaction between three connected atoms, 

diheE  is the energies associated with dihedral angles, vdwE  is the balance of the attractive 

at long range (due to London, Dispersion forces), but are strongly repulsive at short range 

and elecE  is the electrostatics interaction. Each function in Equation (1.33) is defined as  

the following: 
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Where  kkkb ,,  are the force constants of bond stretching, bending and dihedral, 

respectively. The  ,, oob symbols are the reference values of the bond, angle and 

dihedral angle, respectively.  

 More sophisticated force fields may have additional terms as cross terms, but they 

invariably contain these five components. An attractive feature of this representation is 

that the various terms can be ascribed to changes in specific internal coordinates such as 

bond lengths, angles, rotation of bonds or movements of atoms relative to each other.  

 

1.3.7.2 Force field parameterization 

Force field parameterization is quite difficult and computationally 

intensive. A set of parameters of a force field function has to fit to structures (and 

properties) for a training set of molecules. The ab initio data at minima and distorted 

geometries or experimental values of the selected molecules can be used for trial and 

error fit. The quality and reliability of the fitted parameters for a force filed function have 

to check and test before use or apply for other systems.  

 

1.3.7.3 COMPASS force field 

The COMPASS force field, a powerful force field that supports atomistic 

simulations of polymers, was used for all calculations [43,44]. The potentials function of 

COMPASS force field was shown in equation 1.39 [44].  The functions are divided into 

two categories, bonded and nonbonded terms. Bond (b), angle (), torsion angle (), and 

the cross-coupling terms include combinations of two or three internal coordinates are 
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represented for bonded term. The LJ-9-6 function used for the van der Waals (vdW) term 

and a Coulombic function used for an electrostatic interaction are represented for 

nonbonded interaction term. 

 

(1.39) 

1.3.7.4 Energy minimization 

Optimization is a general term for finding stationary points of a function. 

In the majority of cases, the desired stationary point is a minimum (points where the first 

derivative is zero & all the 2
nd

 derivatives are positive). In some cases, the desired point 

is a first-order saddle point (the 2
nd

 derivative is negative in one, and positive in all other, 

directions. Optimization to minima is also referred to as energy minimization in which it 

depends on computational method you use. It is a series of iterations (process is repeated) 

performed on the molecule until the energy of the molecule has reached a minimum. All 

commonly used methods assume that at least the 1
st
 derivative of the function with 

respect to all variables, the gradient (g), can be calculated analytically. There are mostly 
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used techniques in energy minimization that are steepest descent (SD), conjugated 

gradient (CG) and Newton-Raphson method. 

 

1.3.8 Molecular dynamic simulations 

 In terms of computation simulations, the molecular dynamics (MD) technique is 

well-known. This technique is widely used for studying various molecular systems. MD 

simulation provides the time dependent behavior of a molecular system. The MD 

simulation starts with reading in the initial configuration, such as coordinates, velocities, 

accelerations and forces. The initial configuration can be obtained from random 

configurations or a lattice. One of the essential conditions of the simulation is that there 

are no explicitly time-dependent or velocity dependent forces that shall act on the system. 

In practice, the trajectories cannot be directly obtained from Newton’s equation. 

Therefore, the time integration algorithm will be used to obtain the knowledge of 

positions, velocities and accelerations of two successive time steps. The energy of the 

system can be calculated using molecular mechanics (MM) or quantum mechanics (QM) 

methods. The force on each atom can be obtained from the derivative of the energy with 

respect to the change in the atom’s position. The particles will be moved by their new 

force to the new configurations. This process will be repeated until the system reaches 

equilibrium. Then, the coordinates, velocities, accelerations, forces and so on of all 

particles will be collected for further structural and dynamical property calculations. In 

most cases, only positions and velocities are usually stored since most important 
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properties can be obtained from these two quantities. The schematic of molecular 

dynamics simulation is shown in Figure 1.4 

 

Figure 1.4 The schematic of molecular dynamics simulation 

 1.3.8.1 Time average and ensemble average 
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The properties of the system will depend upon the positions and  

the momenta of N particles that comprise the system. The value of the property A can 

thus be written as  

)),(r),(p( ttA NN     (1.40) 

where )(p tN  and )(r tN  represent the N momenta and positions, respectively. The value 

of property A is the average of the A over the time of the measurement, known as a time 

average. In principle, if the time measurement reach infinity, the value of the property A 

is then the true value, 
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ave dtttAA    (1.41) 

 In practice, the treatment for system consisting of a large number of atoms or 

molecules is not feasible, even the determination of an initial configuration of the system. 

Boltzmann and Gibbs developed statistical mechanics, known as ensemble. The ensemble 

is a single system evolving in time that contains a large number of mental copies of a 

system, considered all at once, each of which represents a possible state of the real 

system. The time average is then replaced by an ensemble average as 

.)r,r()r,p(rp NNNNNN AddA      (1.42) 

The angle bracket (< >) indicates an ensemble average or expectation value, i.e., the 

average value of the property A over all replications of the ensemble generated by the 

simulation. Different macroscopic environmental constraints lead to different types of 

ensembles. In general, the ensemble is employed with constraints, such as constant 

number of particles (N), volume (V), energy (E), temperature (T), chemical potential (μ), 
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pressure (P) and so on. For example, the microcanonical ensemble (NVE) fixes the 

number of particles (N), the volume (V) and the energy (E) of the system. The 

equilibrium states of NVE ensemble characterize the entropy. Another example is the 

canonical ensemble (NVT), which fixes the number of particles (N), the volume (V) and 

the temperature (T). The thermodynamic property derived from the NVT ensemble is 

Helmholtz free energy. Other ensembles include the grand canonical ensemble (μVT), 

which fixes the chemical potential (μ), the volume of the system (V) and the temperature 

(T). The pressure×volume (PV) quantity can be obtained from this ensemble.  

 

 1.3.8.2 Time-integration algorithms 

In general, there are many algorithms for integrating the equations of 

motion, most of which are based on finite difference method. By this method, the 

integration is broken down into many small stages, each separated in time by a fixed time 

interval t . The total force on each particle in the system at time t is calculated as the 

vector sum of its interactions with other particles. Then, the positions and velocities at a 

time t are used to calculate the positions and velocities at a time tt  . Then, the new 

positions and velocities have been calculated at time tt  2 , and so on.  

 All algorithms assume that the positions and dynamic properties can be 

approximated as Taylor series expansion, 
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,)(c
2

1
)(b)(a)(a 2  ttttttt      (1.45) 

.)(c)(b)(b  ttttt        (1.46) 

The first derivative of the position (r) with respect to time is the velocity (v), the second 

derivative is the acceleration (a) and the third derivative is b, and so on. The widely used 

methods for integrating the equation of motion in molecular dynamic simulation are the 

Verlet algorithm [45] and Predictor-corrector algorithm [46]. 

 

 1.3.8.3 The Verlet algorithm 

  The Verlet algorithm uses the positions and accelerations at time t and 

positions from the previous step, )(r tt  , to calculate the new position at tt  , 

)(r tt  . The following relationships between these quantities and the velocities at time t 

would be of the form 

,)(a
2

1
)(v)(r)(r 2  ttttttt    (1.47) 

.)(a
2

1
)(v)(r)(r 2  ttttttt    (1.48) 

Combining these two equations gives 

.)(a)(r)(r2)(r 2  ttttttt    (1.49) 

In this respect, the velocities of the Verlet algorithm do not explicitly appear in the 

equations. However, the velocities can be calculated in many ways such as dividing the 

difference in positions at time tt   and tt   by t2 as 

  .2/)r(r)(r)(v ttttt      (1.50) 
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Alternatively, the velocities can be obtained at the half-step ( tt 
2

1
) as 

  ./)(r)(r)
2

1
(v tttttt     (1.51) 

 The deficiency of Verlet algorithm is the difficulty in calculating the velocities, 

since these quantities cannot be obtained until the positions are computed at the next step. 

On the other hand, it is not a self-starting algorithm. For example, at t = 0 there is only 

one set of positions and it needs to know positions at tt  , which can be obtained by 

the Taylor series as 

).0(v)0(v)0(r)(r ttt     (1.52) 

 The Verlet algorithm has been developed to the leap-frog algorithm  [47], in 

which the positions and velocities can be written in the forms of 
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 The leap-frog algorithm starts with the velocities )
2

1
(v tt   that calculated from 

the velocities at time tt 
2

1
and the accelerations at time t. Then, the positions )(r tt   

are computed by the velocities that calculated together with the position at time t, r(t). 

The velocities at time t can be calculated from 
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In this respect, the velocities leap-frog over the positions to give their values at tt 
2

1
 

(hence the name). Then, the positions leap-frog over the velocities to give their new 

values at tt  , ready for the velocities at tt 
2

3
 and so on. 

 With regard to the leap-frog method, however, some deficiencies are still remain, 

i.e., this algorithm cannot calculate the positions and velocities at the same time.  

On the other hand, the kinetic energy contribution cannot be calculated and included into 

the total energy at the same time (unlike for the calculations of positions, velocities and 

accelerations). An alternative approach is to use the velocity Verlet method [48] in which 

the relationship between the positions and velocities can be expressed as 

),(a
2

1
)(v)(r)(r 2 ttttttt     (1.56) 

 )(a)(a
2

1
)(v)(v ttttttt  .  (1.57) 

 

 1.3.8.4 Periodic Boundary Conditions 

One of the common problems found in computer simulations is the 

boundary effects or surface effects. This problem can be solved by using periodic 

boundary conditions. By this scheme, particles in the box are replicated in all directions 

to give a periodic array (see Figure 1.5). 
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Figure 1.5 Periodic boundary conditions in two dimensions 

  

 The main point of periodic boundary conditions is the coordinates of the particles 

in the image boxes can be computed by adding or subtracting integral multiples of the 

box sides. If a particle leaves the box during the simulation, it is replaced by an image 

particle that enters from the opposite side in the same time, as illustrated in Figure 1.5. 

Therefore, the number of particles within the central box remains constant.  

 

1.3.9 Properties calculations 

1.3.9.1 Radial distribution function (RDF) 

The interaction at the molecular level was investigated via the radial 

distribution function or RDF. The normalized RDF (gAB(r)) is defined here as  

the spherically averaged distribution of inter-atomic vector lengths between two species 

A and B, totaling NA and NB in a unit cell of volume v  : 
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where NAB(r) is the normalized RDF [25,31]. The cut-off radius was set to the linear 

dimensions of the unit cell in order to exclude self-terms. 

 

1.3.9.2 Diffusion efficiency 

1.3.9.2.1 Mean square displacement (MSD) 

  The diffusion of the atomic species was examined by calculating  

a self-diffusion coefficient from their mean-squared displacement (MSD) during  

the course of a simulation. This formulation is known as the Green-Kubo formulas, the 

results of linear response theory in statistical mechanics. To illustrate the main features of  

the Green-Kubo formalism we will treat explicitly the most straightforward case, that of 

diffusion. The MSD can be calculated by following equation 

                                        
2

)0()( RtRMSD                                           (1.59) 

where t is time at that calculating. R(t) and R(0) are the position at that time and  

the initial position by sequence [25,31]. 

 

 

 

1.3.9.2.2 Diffusion coefficient 

 The representative of particles translational mobility was analyzed in term 

of the diffusion coefficient (D). It can be calculated from the long time behavior of the 

MSD of the atom using the Einstein relation as equation  
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where  2)0()( RtR   and t  are MSD term and time respectively [25,31]. 

 

1.4 Aims of this research 

 To understand the interaction and microscopic properties of polymer electrolyte 

fuel cell and catalyst modifications, adding of Krytox silica composite materials in 

Nafion membrane, ion bombardments on Nafion membrane, nitrogen and iron plasmas 

sputtering on carbon, and application of imidazole-based water-free proton conducting 

polymer, using by molecular simulations.  
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