TABLE OF CONTENTS

	Page
ACKNOWLEDGMENTS	iii
ABSTRACT (in English)	vi
ABSTRACT (in Thai)	viii
LIST OF TABLES	xiv
LIST OF FIGURES	xv
ABBREVIATIONS AND SYMBOLS	xviii
CHAPTER 1 INTRODUCTION	
1.1 Polymer electrolyte membrane (PEM) fuel cell and its development	1
1.1.1 A basic overview of PEM fuel cell	1
1.1.2 PEM fuel cell membrane development	2
1.1.3 Improvement of PEM fuel cell catalyst	4
1.2 Computational studies in PEM fuel cell materials	6
1.3 Theoretical Methodologies and Simulation Tools	9
1.3.1 Schrödinger equation	10
1.3.2 Born-Oppenheimer approximation	- 11
1.3.3 Molecular orbital theory	12
1.3.4 The LCAO approach and basis sets	14
1.3.5 Hartree-Fock method	16
1.3.6 Density functional theory	18
1.3.7 Molecular mechanics	21

1.3.7.1 Energy function	21
1.3.7.2 Force field parameterization	23
1.3.7.3 COMPASS force field	23
1.3.7.4 Energy minimization	24
1.3.8 Molecular dynamic simulations	25
1.3.8.1 Time average and ensemble average	27
1.3.8.2 Time-integration algorithms	28
1.3.8.3 The Verlet algorithm	29
1.3.8.4 Periodic boundary conditions	31
1.3.9 Properties calculations	32
1.3.9.1 Radial distribution function	32
1.3.9.2 Diffusion efficiency	33
1.3.9.2.1 Mean square displacement (MSD)	33
1.3.9.2.2 Diffusion coefficient	34
1.4 Aims of this research	34
References	35
CHAPTER 2 MD SIMULATIONS OF KRYTOX-SILICA COMPOSITE	
IN NAFION MEMBRANE FOR FUEL CELL APPLICATION AT HIGH	
TEMPERATURE S A T S T A S A T V A	
2.1 Introduction	39
2.2 Methodology	41
2.3 Results and discussion	44

0 4	C 1 ·
2.4	Conclusion
<i>2</i>	Conclusion

References

55 56

CHAPTER 3 SURFACE MODIFICATIONS OF NAFION MEMBRANE BY ARGON ION BEAM BOMBARDMENT AND PLASMA DEPOSITION COATING ON CARBON: MOLECULAR DYNAMICS AND MONTE CARLO STUDIES

3.1 Introduction	60
3.2 Methodology	65
3.3 Results and discussion	70
3.4 Conclusion	79
References	80

CHAPTER 4 PROTON TRANSFER IN WATER AND

IMIDAZOLE SYSTEMS: DFT STUDY

4.1 Introduction	83
4.2 Methodology	86
4.3 Results and discussion	92
4.4 Conclusion	108
References S h t S h e S e h v	e ₁₀₈

CHAPTER 5 CONCLUSION

xii

APPENDICES 1		
APPENDIC A	ATOM TYPES AND FORCE FIELD LIBRARY	115
· 1	FILES OF NAFION SIDE CHAIN FOR	
20	CHAPTER 2	
APPENDIC B	ATOM TYPE AND FORCE FIELD LIBRARY	119
	FILES OF HYDRONIUM ION FOR CHAPTER 2	
APPENDIC C	ATOM TYPE AND FORCE FIELD LIBRARY	121
	FILES OF KRYTOX-SILICA FOR CHAPTER 2	
APPENDIC D	CALCULATION OF KRYTOX-SILICA	131
	STRUCTURE NUMBER FOR 5% WT	
E I	KRYTOX-SILICA IN NAFION SYSTEM FOR	
	CHAPTER 2	
APPENDIX E	PUBLICATIONS AND PRESENTATIONS	132
4	BY AUTHOR	
CURRICULUM VITAR	UNIVE	137

ลิขสิทธิ์มหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

xiii

LIST OF TABLES

Table		Page
2.1	Diffusion coefficients of hydronium ions at different percentages of	45
	water and temperatures	
2.2	RDF of $O(H_3O^+)-O(H_2O)$, $O(SO_3^-)-O(H_2O)$ and $O(SO_3^-)-O(H_3O^+)$	47
	and their integration number	
3.1	Fluctuation of the C-S bonds in bombarded	75
	and unbombarded Nafion side chain	
4.1	Proton diffusion coefficient of water system	97
4.2	Orientation of H ₃ O ⁺ and H ₂ O during proton transfer process	102
4.3	Proton diffusion coefficient of imidazole system	105

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figu	ure	Page
1.1	Fuel cell working diagram	2
1.2	The structure of a Nafion polymer	3
1.3	Most possible structure of Fe-N _X /C	5
1.4	The schematic of molecular dynamics simulation	26
1.5	Periodic boundary conditions in two dimensions	32
2.1	Initial structures of Krytox-silica molecule and charges,	43
	5% wt of Krytox-Silica in Nafion system, and pure Nafion system	
2.2	Diffusion coefficients of H ₃ O ⁺ from MD simulations	48
2.3	RDF graphs of $O(SO_3^-)-O(H_3O^+)$	49
2.4	RDF graphs of $O(SO_3^-)-O(H_2O)$ and $O(H_3O^+)-O(H_2O)$	52
2.5	RDF graphs of the hydrophobic portion and water in 5% of Krytox silica	54
	in Nafion system	
2.6	RDF graphs of H(Silica)-O(H ₃ O ⁺) and H(Silica)-O(H ₂ O)	55
3.1	Most possible structure of Fe-N/C	64
3.2	Structure of Nafion side chain and MD box of Nafion model	65
3.3	Model of Ar ⁺ ion bombardment on Nafion model viewed along XY plane	68
	and YZ plane	e d
3.4	Carbon model	70
3.5	The damage cavity and implanted Ar ⁺ ions within Nafion model obtained	71
	from bombardment with six different values of initial KE of Ar^+ ions in	
	YZ plane and XY plane	

3.6	The depths of implanted Ar ⁺ ions along X-axis of Nafion model obtained	72
	from bombardment of Ar^+ ions with six different values of initial KE	
3.7	The damage cavity and implanted Ar^+ ions within Nafion model after	73
	bombardment with three different Ar^+ ions dose with energy of 1 keV	
	in YZ plane and XY plane	
3.8	Comparison of potentially broken C-S bonds after bombardment and	77
	sulfonate fragment sputtering from experimental data	
3.9	Distribution of iron and nitrogen around carbon within 3.5 Å	78
4.1	Structures of optimized water and H_3O^+ single models with their charges,	88
	optimized imidazole and imidazolium ion single models with their chages,	
	initial structure of proton transfer from H_3O^+ to water and imidazolium ion	
	to imidazole, and torsional angle for analysis of rotational barrier of water	
	and imidazole system	
4.2	Directly proton transfer from H_3O^+ to H_2O and imidazoliun ion	89
	to imidazole which were applied positive and negative values	
	of electric fields	
4.3	Initial structure of water system	90
4.4	Imidazole system: superlattice of imidazole crystal,	91
	imidazole MD box which was applied positive electric filed	
	along Z dimension, and imidazole MD box which was applied	
	negative electric filed along Z dimension	
4.5	Energy barrier of proton hopping between two water molecules;	93

PES at $r_{\text{O-O}}$ profile, and relation of energy barrier and molecular distance

4.6	Rotational barrier of H_3O^+ and H_2O orientation	94
4.7	Electric field effect on proton hopping from H_3O^+ to H_2O	95
4.8	Snapshot of proton transfer in water system which was applied -0.0050 a.u.	98
4.9	Snapshot of proton transfer in water system which was applied +0.0050 a.u.	99
4.10	Trajectory plots of H1 along XZ and YZ planes; applied electric field =	100
	+0.0050 a.u., applied electric field = -0.0050 a.u., and without electric field	
4.11	Energy barrier of proton hopping between two imidazoles;	104
	PES when varied r_{N-N} , and relationship of energy barrier and r_{N-N}	
4.12	Rotational barrier of proton transfer between two imidazoles	104
4.13	Electric field effect on proton hopping between two imidazoles	105
4.14	Snapshot of directly proton transfer in imidazole system which	107
	was applied -0.0050 a.u.	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

xvii

xviii

ABBREVIATIONS AND SYMBOLS

PEMFC	Proton exchange membrane fuel cells
GDLs	Gas diffusion layers
CLs	Catalyst layers
MEA	Membrane-electrode assembly
O ₂	Oxygen gas
H ₂	Hydrogen gas
SO ₃	Sulfonate group
SO₃ [−] H	Sulfunic group
H ₂ O ₂	Hydrogen peroxide
H ₂ O	Water molecule
Ar ⁺	Argon ion
Pt	Platinum
Fe	Iron atom
ORR	Oxygen reduction reaction
Fe-N _X /C	Metal pyridine deposited Fe which has nitrogen atoms as the ligand
Fe-N ₂ /C	Metal pyridine deposited Fe which has nitrogen atoms as the ligand
	and coordination number equal to 2
Fe-N ₄ /C	Metal pyridine deposited Fe which has nitrogen atoms as the ligand
	and coordination number equal to 4
Im	Imidazole
ImH^+	Imidazolium