TABLE OF CONTENTS

	Page
0101013	
Acknowledgements	iii
Abstract (English)	V
Abstract (Thai)	vii
Table of Contents	ix
List of Tables	xiv
List of Figures	xviii
Abbreviations and Symbols	xxii
Chapter 1 Introduction	
1.1 Statement of problems	1
1.2 Literature reviews	3
1.2.1 Background and related studies	3
1.2.1.1 Terminalia chebula Retzius	3
1.2.1.2 Terminalia bellerica	7
1.2.1.3 Etlingera elatior (Jack) R.M. Smith	9
1.2.1.4 Rosa damascena	12
1.2.1.5 <i>Rafflesia kerrii</i> Meijer	14
1.2.1.3 Raylesta kerra Weiger	17
1.2.3 Cytotoxicity assay	$e_{18}O$
1.2.3.1 MTT assay	18
1.2.3.2 XTT assay	19

	Page
1.2.3.3 Sulforhodamine B (SRB) assay	20
1.2.3.4 Dye exclusion assay	21
1.2.3.5 Dye inclusion assay	21
1.2.4. Mutagenicity assay by Ames test	22
1.2.5 Antimutagenicity assay	23
1.2.6 Tyrosinase activity in melanogenesis mechanium	25
1.2.7 Morphological changes of UV treated cell lines	27
1.3 Research Objectives	28
Chapter 2 Materials and Methods	
2.1 Materials	29
2.1.1 Chemicals	29
2.1.2 Instruments	31
2.1.3 Microorganisms	32
2.1.4 Cell cultures	33
2.1.5 Plant Extracts	34
2.2 Methods	34
2.2.1 Preparation of the plant extracts 2.2.2 Characterization of plant extracts	34
2.2.2 Characterization of plant extracts	35
2.2.3 Determination of total phenolic content by using	e ₃₅ 0
Folin-Ciocalteu method	
2.2.4 Cytotoxicity assay	35

	Page
2.2.4.1 Cytotoxicity of the plant extracts in mouse fibroblast	35
cell lines by MTT assay	
2.2.4.2 Cytotoxicity of the plant extracts in mouse fibroblast	37
cell lines by Dye exclusion method	
2.2.5 Genotoxicity assay	37
2.2.6 Antimutagenicity assay	39
2.2.7 Investigation of antityrosinase activities in plant extracts	40
2.2.8 Determination of UVA induced morphological changes	41
2.2.9 Determination of UVB induced morphological changes	42
Chapter 3 Results	
3.1 Physical properties of the plant extracts	43
3.2 Characterization of plant extracts by Spectroscopy	44
3.2.1 Characterization of plant extracts by Ultraviolet-visible	45
spectrophotometer (UV-visible spectrophotometer)	
3.2.2 Characterization of plant extracts by Infrared spectroscopy (IR)	48
3.2.3 Characterization of plant extracts by nuclear magnetic	56
resonance (NMR) 3.3 Determination of total phenolic content in plant extracts	Sit y 61
3.4 Cytotoxicity of the plant extracts	e ₆₃ (
3.4.1 Cytotoxicity of the plant extracts in normal and melanoma	63
mouse fibroblast cell lines using MTT assay	

	Page
3.4.2 Cytotoxicity of the plant extracts in normal and melanoma	65
mouse fibroblast cell lines by Dye exclusion method	
3.5 Mutagenicity of plant extracts	67
3.6 Antimutagenicity of plant extracts	73
3.7 Antityrosinase activity of the plant extracts	88
3.8 Morphological changes of normal and melanoma mouse fibroblast	90
cell lines after induced by UVA radiation 3.9 Morphological changes of normal and melanoma mouse fibroblast	102
cell lines after induced by UVB radiation	
Chapter 4 Discussions & Conclusions	
4.1 Discussions	112
4.2 Conclusions	123
References	126
Appendices	139
Appendix A	140
Appendix B	146
Appendix C Appendix D by Chiang Mai Univer	163
**	171
Appendix E g h t s r e s e r V	e_{173}
Appendix F	175
Appendix G	177

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่

Copyright[©] by Chiang Mai University All rights reserved

TABLE OF TABLES

		Page
Tab	ole 010101	
1.1	The genotype of the Samonella strains which were used in Ames test	23
2.1	Genotypes of the mutant bacterial S. typhimurium strains	33
	TA98 and TA100	
2.2	List of plants, parts and solvent used for study	34
3.1	Physical appearance of the plant extracts	44
3.2	The total phenolic content (TPCs) of the five plant extracts after	62
3	examined by Folin-Ciocalteu method	
3.3	Cytotoxicity of plant extracts on normal mouse fibroblast L929 and	64
\mathbb{N}	melanoma fibroblast B16F10 cell lines expressed as 50% cytotoxicity	
	dose (CD ₅₀) values which were obtained in MTT assay for 48 h	
3.4	Cytotoxicity of plant extracts on normal mouse fibroblast L929 and	66
	melanoma fibroblast B16F10 cell lines expressed as 50% cytotoxicty	
	dose (CD ₅₀) values which were obtained in dye exclusion for 24 h	
3.5	Mutagenicity of 70% hydroglycol extract of <i>T. chebula</i> Retz. at	68
Ĝ	concentrations between 0.088 and 87.34 mg/0.1 ml in S. typhimurium	Hl
31 /	TA98 and TA100 strains	city
3.6	Mutagenicity of 70% hydroglycol extract of <i>T. bellerica</i> at	69
	concentrations between 0.088 and 87.34 mg/0.1 ml in S. typhimurium	e c
	TA98 and TA100 strains	

TABLE OF TABLES (continued)

		Page
Tabl	le - 10101 S	
3.7	Mutagenicity of 50% hydroglycol extract of E. elatior (Jack) R.M.	70
	Smith at concentrations between 0.088 and 87.34 mg/0.1 ml in	
	S. typhimurium TA98 and TA100 strains	
3.8	Mutagenicity of 50% hydroglycol extract of R. damascena at	71
	concentrations between 0.088 and 87.34 mg/0.1 ml in S. typhimurium	
N	TA98 and TA100 strains	
3.97	Mutagenicity of 50% hydroglycol extract of R. kerrii Meijer at	72
	concentrations between 0.088 and 87.34 mg/0.1 ml in S. typhimurium	
\ \\	TA98 and TA100 strains	
3.10	Inhibition of mutagenicity by T. chebula Retz. in S. typhimurium	74
	TA98 assay system	
3.11	Inhibition of mutagenicity by T. chebula Retz. in S. typhimurium	75
	TA100 assay system	
3.12	Inhibition of mutagenicity by <i>T. bellerica</i> in <i>S. typhimurium</i> TA98	76
a	assay system 1990898888	Hl
3.13	Inhibition of mutagenicity by T. bellerica in S. typhimurium TA100	77
Jy i	assay system	SILY
3.14	Inhibition of mutagenicity by E. elatior (Jack) R.M. Smith in	e ₇₉ C
	S. typhimurium TA98 assay system	
3.15	Inhibition of mutagenicity by E. elatior (Jack) R.M. Smith in	80
	S. typhimurium TA100 assay system	

TABLE OF TABLES (continued)

		Page
Tabl	e 0101013	
3.16	Inhibition of mutagenicity by R. damascena in S. typhimurium	81
	TA98 assay system	
3.17	Inhibition of mutagenicity by R. damascena in S. typhimurium	82
//	TA100 assay system	
3.18	Inhibition of mutagenicity by R. kerrii Meijer in S. typhimurium	83
No.	TA98 assay system	
3.19	Inhibition of mutagenicity by R. kerrii Meijer in S. typhimurium	84
	TA100 assay system	
3.20	50% inhibition of mutagenicity (IC ₅₀) by five plant extracts on both	87
	S. tyhimurium strains in presence of metabolic activation	
3.21	50% inhibition of mutagenicity (IC ₅₀) by five plant extracts on both	87
	S. tyhimurium strains in absence of metabolic activation	
3.22	Tyrosinase inhibitory activity of the five plant extracts on mushroom	89
	tyrosinase	
3.23	The morphological changes of normal mouse fibroblast L929 and	101
31/1	mouse melanoma B16F10 cell lines after exposured to UVA and	city
Jyi	treated with the five plant extracts at different concentration	SILY
3.24	The morphological changes of normal mouse fibroblast L929 and	e ₁₁ C
	mouse melanoma B16F10 cell lines after exposured to UVA and	
	treated with the five plant extracts at different concentration	

TABLE OF TABLES (continued)

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

TABLE OF FIGURES

		Page
Figu	re 0.10101.3	
1.1	The fruit of Terminalia chebula Retzius	3
1.2	Chemical structure of chebulagic acid	5
1.3	Chemical structure of 1,2,3,4,6-penta- <i>O</i> -galloyl-β-D-	6
$/\!/$	glucose (PGG)	
1.4	The fruit of Terminalia bellerica	7
1.5	Chemical structure of cannogenol 3- <i>O</i> -β-D-galactopyranosyl-	8
5	$(1\rightarrow 4)$ -O-α-L-rhamnopyranoside from the seed of T. bellerica	
1.6	Etlingera elatior (Jack) R.M. Smith	10
1.7	Rose damascena	13
1.8	Rafflesia kerrii Meijer	15
1.9	Chemical structure of four hydrolysable tannins 1,2,4,6-tetra-	16
	O-galloyl-β-D-glucopyranoside, 1,2,6-tri-O-galloyl-β-D-	
	glucopyranoside, 1,4,6-tri-O-galloyl-β-D-glucopyrano side and	
	1,2,4-tri- <i>O</i> -galloyl-β-D-glucopyranoside and one phenylpropanoid	
a	glucoside	HŁ
1.10	Stucture of phenol (A), phenolic acid (B), flavonoids (C)	17
1.11	MTT reduction in live cells by mitochondrial reductase results	19
	in the Formation of insoluble formazan	e 0
1.12	Structures of XTT and Formazan	20
1.13	Structure of sulforhodamine B	21
1.14	Eumelanins and pheomelanins biosynthesis pathway	25

TABLE OF FIGURES (continued)

		Page
Figu	are a 10101	
3.1	Color of the extracts: T. chebula Retz. (MB), T. bellerica (BM),	44
	E. elatior (Jack) R.M. Smith (EE), R. damascena (DR) and	
	R. kerrii Meijer (RM)	
3.2	UV-Visible spectrum of <i>T. chebula</i> Retz. (A), <i>T. bellerica</i> (B),	45
	E elatior (Jack) R.M. Smith (C), R. damascena (D) and	
S	R. kerrii Meijer (E) at wavelength between 200 and 500 nm	
3.3	IR spectrum of T. chebula Retz. (A), T. bellerica (B), E. elatior (Jack)	51
	R.M. Smith (C), R. damascena (D) and R. kerrii Meijer (E)	
3.4	¹ HNMR spectrum of hydroglycol (A), <i>T. chebula</i> Retz. (B),	58
	T. bellerica (C), E. elatior (Jack) R.M. Smith (D), R. damascena (E)	
	and R. kerrii Meijer (F)	
3.5	Comparison of the total phenolic content of the five plants	62
	extracts at mg GAE/g of wet weight which were estimated	
	as gallic acid equivalents	
3.6	50% cytotoxicity dose (CD ₅₀) of the extracts for mouse normal	64
31/	skin fibroblast L929 and mouse melanoma fibroblast B16F10	city
Jy	right by Chiang Mai Universell lines by MTT assay	SILY
3.7	50% cytotoxicity dose (CD_{50}) of the extracts for mouse normal	e_{66}
	skin fibroblast L929 and melanoma skin fibroblast B16F10	
	cell lines by dye exclusion	

TABLE OF FIGURES (continued)

		Page
Figu	re	
3.8	Antimutagenic activity of five plant extracts in both S. typhimurim	85
	after treated with 2-AA and AF-2 in the presence and absence of	
	metabolic activation	
3.9	Tyrosinase inhibitory activity and 50% inhibitory concentration	89
	values of the plant extracts (IC ₅₀) on mushroom tyrosinase	
3.10	Morphology of normal mouse fibroblast L929 and mouse melanoma	93
3	B16F10 cell lines after induced by UVA radiation and then treated	
	with <i>T. chebula</i> Retz. extract at the concentration of CD _{3.13} , CD _{6.25}	
\mathbb{N}	and CD _{12.5}	
3.11	Morphology of normal mouse fibroblast L929 and mouse melanoma	94
	B16F10 cell lines after induced by UVA radiation and treated with	
	<i>T. bellerica</i> extract at the concentrations of $CD_{3.13}$, $CD_{6.25}$ and $CD_{12.5}$	
3.12	Morphology of normal mouse fibroblast L929 and mouse melanoma	97
	B16F10 cell lines after induced by UVA radiation and treated with	
a	E. elatior (Jack) R.M. Smith extract at the concentrations of CD _{3.13} ,	Hl
31/1	CD _{6.25} and CD _{12.5}	city
3.13	Morphology of normal mouse fibroblast L929 and mouse melanoma	98
	B16F10 cell lines after induced by UVA radiation and treated with	e c
	<i>R. damascena</i> extract at the concentrations of $CD_{3,13}$, $CD_{6,25}$ and $CD_{12,5}$	

TABLE OF FIGURES (continued)

		Page
Figu	re	
3.14	Morphology of normal mouse fibroblast L929 and mouse melanoma	99
	B16F10 cell lines after induced by UVA radiation and treated with	
	R. kerrii Meijer extract at the concentrations of CD _{3.13} , CD _{6.25} and	
$/\!/$	CD _{12.5}	
3.15	Morphology of normal mouse fibroblast L929 and mouse melanoma	104
2	B16F10 cell lines after induced by UVB radiation and then treated	
3	with <i>T. chebula</i> Retz. extract at the concentration of CD _{3.13} , CD _{6.25}	
	and CD _{12.5}	
3.16	Morphology of normal mouse fibroblast L929 and mouse melanoma	105
	B16F10 cell lines after induced by UVB radiation and treated with	
	<i>T. bellerica</i> extract at the concentrations of $CD_{3.13}$, $CD_{6.25}$ and $CD_{12.5}$	
3.17	Morphology of normal mouse fibroblast L929 and mouse melanoma	107
	B16F10 cell lines after induced by UVB radiation and treated with	
	E. elatior (Jack) R.M. Smith extract at the concentrations of CD _{3.13} ,	
a	CD _{6.25} and CD _{12.5}	Hl
3.18	Morphology of normal mouse fibroblast L929 and mouse melanoma	108
Jy i	B16F10 cell lines after induced by UVB radiation and treated with	SILY
ı	<i>R. damascena</i> extract at the concentrations of $CD_{3.13}$, $CD_{6.25}$ and $CD_{12.5}$	e (
3.19	Morphology of normal mouse fibroblast L929 and mouse melanoma	109
	B16F10 cell lines after induced by UVB radiation and treated with	
	<i>R. kerrii</i> Meijer extract at the concentrations of $CD_{3.13}$, $CD_{6.25}$ and $CD_{12.5}$	

ABBREVIATIONS AND SYMBOLS

	°C	degree Celcius
	% VAIRING	percentage
	500	chemical shift (ppm)
9	μΙ	microliter
	μM	micromolar
	μg	microgram
	CD ₅₀	50% cytotoxic dose
	cm	centimeter
	g	gram
	GAE	galic acid equivalent
	hr	hour
	Hz	hertz
	IC ₅₀	50% inhibitory concentration
	IR	infrared radiation
	IU	units of enzyme
avans	ับหาวิทยาส	joule 1880 MU
Copyright	M	Mai University molar
All r	ights r	milligram e r v e d
	mJ	millijoule
	ml	milliliter
	min	minute

mM	millimolar
MTT	3-(4,5-dimethylthiazol-2-yl)-2,5-
	diphenyltetrazolium bromide
NADH NADH	nicotinamide adenine
90	dinucleotide
NADPH	nicotinamide adenine
	dinucleotidephosphate
nm	nanometer
NMR	nuclear magnetic resonance
sec sec	second
SRB	sulforhodamine B
TPC	total phenolic content
UV	Ultraviolet
UV A	Ultraviolet A
UV B	Ultraviolet B
UVC	Ultraviolet C
V	wave number (cm ⁻¹)
ลิสสิทธิ์งงเหาวิทย	volume by volume
$V_{ m max}$	maximum initial velocity
Copyrightw by Chi	ang Mai University
All rwyghts	weight by volume
XTT	2,3-bis-(2-methoxy-4-nitro-5-
	sulfophenyl)-2H-tetrazolium-5-
	carboxanilide