TABLE OF CONTENTS	
	Page
ACKNOWLEDGEMENTS	S iii
ABSTRACT (ENGLISH)	iv
ABSTRACT (THAI)	v
TABLE OF CONTENTS	vi
LIST OF TABLES	X
LIST OF FIGURES	xii
ABBREVIATIONS AND SYMBOLS	xiii
CHAPTER 1 INTRODUCTION	
1.1 Overview	1
1.2 Antioxidant and its important	2
1.3 Method for estimation of antioxidant	
1.3.1 Chromatographic methods	4
1.3.2 Methods based on the neutralization of free radical	8
1.3.3 Spectrophotometric methods	Rein
1.3.4 Electroanalytical methods	15
1.3.5 Flow analysis methods	18
1.4 Research objectives	23

2.1 Chemicals	24
2.1 Chemicals	24
2.2 Materials and instruments	25
2.3 Software	25
2.4 Preparation of standard solution and reagents	
2.4.1 Working standard solution of ascorbic acid	25
2.4.2 Reagents solution	
2.4.2.1 Potassium iodate solution in hydrochloric acid solution	5 26
2.4.2.2 Potassium iodide solution	26
2.5 Preparation of electrode	26
2.6 Manifold of flow injection amperometric method	26
using triiodide as a reagent for estimation of antioxidant activity	
2.7 Optimization of flow injection amperometric method	
using triiodide as a reagent	
2.7.1 Concentration of iodate	28
2.7.2 Concentration of potassium iodide	28
2.7.3 Concentration of hydrochloric acid	29
2.7.4 Total flow rate	30
2.8 Analytical characteristics of the procedure	
2.8.1 Calibration curves and limit of quantitative	30
2.8.2 Precision study	31
2.8.3 Recovery study	31
2.8.4 Interferences study	32

2.9 Sample analysis				
	20	Sampl	a ana	Trois

2.7 Sample analysis	
2.9.1 Preparation of sample	32
2.9.2 Precision study of sample extraction method	32
2.9.3 Comparision with FI – ferrous tartrate method	32
2.9.4 Comparision with FI – colorimetric method based	33
on FRAP reaction method	
2.9.5 Application of the method to real samples	33
CHAPTER 3 RESULTS AND DISSCUSSION	
3.1 Optimization of flow injection amperometric method using triio	dide
as a reagent	
3.1.1Concentration of iodate	36
3.1.2 Concentration of potassium iodide	37
3.1.3 Concentration of hydrochloric acid	37
3.1.4 Total flow rate	38
3.1.5 Summary of the selected conditions	39
3.2 Analytical characteristics of the procedure	
3.2.1 Calibration curves and limit of quantitative	40
3.2.2 Precision study	41
3.2.3 Recovery study	43
3.2.4 Interferences study	45
3.3 Sample analysis and comparison to other methods	48 15 11 1
A CHAPTER 4 CONCLUSION	erved

REFERENCES

APPENDICES		
on analysis	63	
ic method	65	
artrate method	68	
netric method based on FRAP reaction	70	
some antioxidant compounds	71	
	ion analysis ic method artrate method netric method based on FRAP reaction f some antioxidant compounds	

THE RELEVANCY OF THE RESEARCH WORK TO THAILAND CURRICULUM VITAE

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

57

75

76

LIST OF TABLES

Table		Page
1.1	Summary of some chromatographic methods for the	5
	determination of antioxidant	
1.2	Summary of some methods based on the neutralization of free	3 10
	radical	
1.3	The summary of some spectrophotometric methods for the	13
	estimation of antioxidant activity	
1.4	The summary of some electrochemical methods for the	16
	estimation of antioxidant activity	
1.5	Some analytical methods based on with the flow injection system	19
	for estimation of antioxidant	
2.1	The conditions for the study of effect of potassium iodate	28
	concentation	
2.2	The conditions for the study of effect of potassium iodide	29
	concentation	
2.3	The conditions for the study of effect of hydrochloric	29
	concentration	
2.4	The conditions for the study of effect of total flow rate	30
3.1	The optimum condition of FI-amperometric method for	39
	estimation of antioxidant activity	
3.2	The precision of the system at two concentration of ascorbic acid	42
3.3	The precision study of the sample preparation method	43

3.4	The recovery percentages obtained by spiking ascorbic acid at	44
	10-40 ppm into sample	
3.5	Comparisons content of antioxidant between calculated from	45
	standard addition graph and calibration graph	
3.6	Summary of the percentage of recovery at various ratio of	46
	interference to ascorbic acid	
3.7	Antioxidant content in some tea infusion samples	49
3.8	Antioxidant content in some tea infusion samples	52

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure		Page
1.1	DPPH and ABTS structure	9
2.1	Manifold for the Estimation of Antioxidant Activity	27
3.1	Effect of potassium iodate concentration on sensitivity of	36
	the method	
3.2	Effect of potassium iodide concentration on sensitivity of	37
	the method	
3.3	Effect of hydrochloric acid concentration on sensitivity of	38
	the method	
3.4	Effect of total flow rate on sensitivity of the method	39
3.5	FIAgram for the estimation of antioxidant activity by	40
	FI-amperometric method.	
3.6	Calibration graph for the estimation of antioxidant activity by	41
	FI-amperometric method	
3.7	Correlation graph of antioxidant contents obtained by the	51
	proposed method and FI-ferrous tartrate method	
3.8	Correlation graph of antioxidant contents by the proposed method	54
	and FI – colorimetric method based on FRAP reaction	

ABBREVIATIONS AND SYMBOLS

AA	ascorbic acid
cm	centimeter
FC	electrochemical flow cell
FIA, FI	flow injection analysis
g	gram
GC	gas chromatography
GCE	glassy carbon working electrode
h^{-1}	per hour
HPLC	high performance liquid chromatography
L	liter
LC	liquid chromatography
μΜ	micro molarity
mL	milliliter
mL.min ⁻¹	milliliter per minute
M	Molarity Chiang Mai University
MS	mass spectrometry

part per million ppm personal computer PC reference electrode RE RSD relative standard deviation percentage relative standard deviation %RSD standard deviation SD V voltage working electrode WE

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved