TABLE OF CONTENTS

	Page
ACKNOWELEDGEMENTS	iii
ABSTRACT IN ENGLISH	iv
ABSTRACT IN THAI	vi
TABLE OF CONTENTS	viii
LIST OF TABLES	xiii
LIST OF FIGURES	xvi
ABBREVATIONS AND SYMBOLS	XX
CHAPTER 1 INTRODUCTION	
1.1 Rice	1
1.1.1 Morphology	2
1.1.2 Aromatic rice	10
1.22-Acetyl-1- pyrroline (2AP)	11
1.3 Extraction methods for aromatic rice volatiles	14
1.4 Headspace–Gas ChromatographicTechnique (HS-GC)	18
1.4.1 Headspace (HS)	18
1.4.1.1 Theory of Headspace Analysis	¹⁹ Versit
1.4.1.2 Static Headspace (SHS)	23
1.7.2 Oas Chromatography (OC)	20

1.4.2.1 Instrumental components of GC	29
1.4.2.1.1 Carrier gas	29
1.4.2.1.2 Sample injection port	29
1.4.2.1.3 Columns	30
1.4.2.1.4 Detectors	31
1.5 Aims and scope of this research	35
CHAPTER 2 EXPERIMENTAL	
2.1 Apparatus and Chemicals	36
2.1.1 Apparatus	36
2.1.2 Chemicals	36
2.2 Rice leaves samples	37
2.3 Synthesis of 2-acetyl-1-pyrroline	38
2.3.1 Hydrogenation reaction	38
2.3.2 Oxidation reaction	39
2.4 Sample preparation	40
2.5 Pre-optimization conditions of SHS-GC/NPD	42
2.6 Selection of rice leaves at different ages	43
2.7 Optimization of amount of rice leaf sample	43
2.8 Optimization of concentration of internal standard solution	43
2.9 Optimization of automated headspace sampler parameters (SH	IS) 44
2.9.1 Optimization of temperature of headspace oven,	
transfer line and sample loop	44

2.9.2 Optimization of vial equilibration time	44	
2.9.3 Optimization of pressurizing time	45	
2.9.4 Optimization of loop filling time	45	
2.9.5 Optimization of loop equilibration time	46	
2.9.6 Optimization of injection time	46	
2.10 Optimization of flow rate of GC/NPD	47	
2.11 Percentage of extraction procedure		
2.12 Calibration procedure	49	
2.13 Validation of the developed SHS-GC/NPD method	49	
2.13.1 Limit of Detection (LOD)	50	
2.13.2 Limit of Quantitation (LOQ)	50	
2.13.3 Repeatability	51	
2.13.4 Reproducibility	51	
2.14 Application of the developed method (SHS-GC/NPD) to determination		
of 2AP concentration in leaves of different rice varieties	52	

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

CHAPTER 3 RESULTS AND DISCUSSION

3.1 Synthesis of 2AP	54
3.2 Relative content of 2AP in rice leaves at different ages	58
3.3 Optimization of parameters for sample preparation	60
3.3.1 Effect of amount of rice leaf sample	60
3.3.2 Effect of concentration of internal standard solution	63
3.4 Optimization of static headspace autosampler parameters (SHS)	65
3.4.1 Effect of temperature of headspace oven and vial equilibration time	65
3.4.1.1 Oven temperature at 90 °C	65
3.4.1.2 Oven temperature at 100 °C	67
3.4.1.3 Oven temperature at 110 °C	69
3.4.1.4 Oven temperature at 120 °C	71
3.4.1.5 Oven temperature at 130 °C	73
3.4.2 Effect of pressurizing time	77
3.4.3 Effect of loop fillingtime	79
3.4.4 Effect of loop equilibration time	81
3.4.5 Effect of injection time	83
3.5 Effect of gas flow rate on GC/NPD	86
3.6 Percentage of extraction of 2AP from rice leaves by SHS-GC/NPD	89
3.7 Calibration curve	91
3.8 Validation of the developed SHS-GC/NPD method	92
3.8.1 Limit of Detection (LOD)	92
3.8.2 Limit of Quantitation (LOQ)	93
3.8.3 Repeatability (Intraday)	94

3.8.4 Reproducibility(Interday)	9
3.9 Application of the developed SHS-GC/NPD method for determina	ation
of 2AP in grains and leaves of some Thai rice varieties	
CHAPTER 4 CONCLUSIONS	
REFERENCES	
APPENDIX	
VITA	

ลื่อสิทธิมหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table	Pag
1.1 Detectors in GC system	34
2.1 Pre-optimization conditions of SHS-GC/NPD	42
2.2 The optimum condition of SHS-GC/NPD for the analysis of 2AP	
in rice leaves	48
2.3 The optimum conditions of SHS-GC/NPD for analysis 2AP	
in rice leaves sample	52
2.4 The optimum conditions of SHS-GC/NPD for analysis 2AP	
in rice grain sample	53
3.1 Quantitative data was obtained by SHS-GC/NPD of 2AP in KDML 105	
rice leaves at different ages and rice grain	59
3.2 Quantitative data of 2AP in KDML 105 rice leaves at different amounts	
of leaf sample obtained by SHS-GC/NPD	61
3.3 Quantitative data of peak area ratios of 2AP/2,6-DMP at oven temperature	
90 °C and varied equilibration times at 1, 7, 10, 14, 21 and 28 min	
obtained by SHS-GC/NPD	66
3.4 Quantitative data of peak area ratios of 2AP/2,6-DMP at oven temperature	
100°C and varied equilibration times at 1, 5, 10, 15 and 20 min	
obtained from SHS-GC/NPD	68

3.5	Quantitative data of peak area ratios of 2AP/2,6-DMP at oven temperature	
	110°C and varied equilibration times at 1, 3, 5, 7, 9, 11 and 13 min	
	obtained from SHS-GC/NPD	70
3.6	Quantitative data of peak area ratios of 2AP/2,6-DMP at oven temperature	
	120°C and varied equilibration times at1, 2, 3, 4, 5, 6 and 7 min	
	obtained from SHS-GC/NPD	72
3.7	Quantitative data of peak area ratios of 2AP/2,6-DMP at oven temperature	
	130°C and varied equilibration times at1, 2, 3, 4 and 5 min	
	obtained from SHS-GC/NPD	74
3.8	Quantitative data of peak area ratios of 2AP/2,6-DMP at different	
	pressurization times obtained from SHS-GC/NPD	77
3.9	Quantitative data of peak area ratios of 2AP/2,6-DMP at different	
	loop fillingtimesobtained from SHS-GC/NPD	80
3.10	Quantitative data of peak area ratios of 2AP/2,6-DMP at different	
	loop equilibration times obtained from SHS-GC/NPD	82
3.11	Quantitative data of peak area ratios of 2AP/2,6-DMP at different	
	injection times obtained from SHS-GC/NPD	84
3.12	2 The optimum condition of SHS for analysis of the rice leaves sample	86
3.13	³ The optimum conditions of SHS-GC/NPD for analysis the rice leaf samples	88
3.14	Quantitative data and percentage of extraction was obtained by	
	SHS-GC/NPD of 2AP in KDML 105 rice leaves using	
	multiple headspace extraction (MHE)	89

3.15 Quantitative data obtained by SHS-GC/NPD of 2AP in KDML 105		
	rice leaves analysed 10 replication within 1 day	95
3.16	Quantitative data obtained by SHS-GC/NPD analysis of 2AP in	
	KDML 105 rice leaves once a day for 5 times in 5 days	97
3.17	Quantitative data of 2AP concentrations in rice leaf samples of some	
	Thai rice varieties obtained by SHS-GC/NPD	100
3.18	Quantitative data of 2AP concentrations in rice grain samples of some	
	Thai rice varieties obtained by SHS-GC/NPD	101

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

2
4
5
5
6
7
7
8
9
9
10
12
19
24
25
26
26
27
28
30

1.21 A diagram of NPD detector 33 Scheme for hydrogenation reaction of 2AP synthesis 39 2.1 Scheme for oxidation reaction of 2AP synthesis 40 2.2 Scheme for sample preparation of each extraction method 2.3 41 3.1 GC-MS chromatogram (A) and mass spectrum (B) of the reactant, 2-acetylpyrrole 55 3.2 GC-MS chromatogram (A) and mass spectrum (B) of the hydrogenation product, 2-(1-hydroxyethyl)pyrrolidine 56 3.3 GC-MS chromatogram (A) and mass spectrum (B) of the oxidation product, 2AP 57 Peak areas of 2AP in KDML 105 rice leaves at different ages and rice grains 58 3.4 Peak areas of 2AP in KDML 105 rice leaves at different amounts of sample 63 3.5 3.6 GC chromatograms of the headspace volatiles in KDML 105 rice leaves with added 2,6-DMP: (A) none, (B) 100 ppm, (C) 250 ppm and (D)500 ppm 64 3.7 Effect of equilibration times on peak area ratio of 2AP/2,6-DMP obtained at oven temperature at 90 °C 67 3.8 Effect of equilibration times on peak area ratio of 2AP/2,6-DMP obtained at oven temperature at 100 °C 69 3.9 Effect of equilibration times on peak area ratio of 2AP/2,6-DMP obtained at oven temperature at 110 °C 3.10 Effect of equilibration times on peak area ratio of 2AP/2,6-DMP obtained at oven temperature at 120 °C 3.11 Effect of equilibration times on peak area ratio of 2AP/2,6-DMP obtained at oven temperature 130 °C 75

3.12 Effect of oven temperatures and equilibration times on peak area ratio	
of 2AP/2,6-DMP	76
3.13 Effect of pressurization time on peak area ratio of 2AP/2,6-DMP	78
3.14 Effect of loop fill time on peak area ratio of 2AP/2,6-DMP	81
3.15 Effect of loop equilibration time on peak area ratio of 2AP/2,6-DMP	83
3.16 Effect of injection time on peak area ratio of 2AP/2,6-DMP	85
3.17 GC chromatograms of KDML10 rice leaf sample show the effect	
of gas flow rate of GC carrier gas that was varied in the range	
of 3 to 11 °C/min with 1 °C increment (A-I)	87
3.18 The decrease in percentages of extraction of 2AP from KDML 105	
rice leaves by 5 times headspace extraction	90
3.19 Calibration graph of 2AP obtained by using SHS-GC/NPD	91
3.20 SHS-GC/NPD chromatograms obtained by adding 1000 ppm of 2AP	
standard solution into headspace vial containing 0.2000 g of the	
non aromatic rice (cv. Supanburi 2) at 8.0, 6.0, 4.0, 2.0, 0.2 and 0.1 μ l	93
3.21 SHS-GC/NPD chromatograms obtained by varying the amounts of	
KDML105 rice leaf sample at 0.3, 0.2, 0.1, 0.08, 0.06, 0.04, 0.02, 0.01	
and 0.008 g	94
3.22 Peak area ratios of 2AP/2,6-DMP in KDML105 rice leaves	
obtained by 10 replication of SHS-GC/NPD analysis within 1 day	96
3.23 Peak area ratios of 2AP/2,6-DMP in KDML105 rice leaves	
obtained by 5 replications of SHS-GC/NPD analysis within 5 days	98 S

some Thai rice varieties

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

101

ABBREVIATIONS AND SYMBOLS

°C	degree Celsius
%	percent
µg/g	micro gram per gram
μL	micro litter
μm	micrometer
2AP	2-acetyl-1-pyrroline
2,6-DMP	2,6-dimethylpyrridine
g	gram
GC	gas chromatography
GC-MS	gas chromatograph – mass spectrometer
H_2	Hydrogen gas
Не	Helium gas
I.D.	inner diameter
i.e.	id est
KDML105	KhaoDawk Mali 105
m	meter
m/z	mass-to-charge ratio
MHE	multiple headspace extraction
min	minute
mm	millimeter
MS	mass spectrometer

N ₂	Nitrogen gas
NMR	nuclear magnetic resonance spectroscopy
NPD	nitrogen-phosphorus detector
ppm	part per million
PTFE	polytetrafluoroethylene
RSD	relative standard deviation
SD	standard deviation
SHS	static headspace auto sampler

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved