TABLE OF CONTENTS

	Page
Acknowledgement	iii
Abstract (English)	v
Abstract (Thai)	vii
Table of Contents	ix
List of Tables	xiv
List of Figures	XV
List of Schemes	xviii
Abbreviations and Symbols	XX
CHARPTER I INTRODUCTION	
1.1 Statement of the problem	
1.1.1. Malaria	1
1.1.2 Cancers	2
1.2 Research Objectives	5
1.3 Usefulness of the research	5
1.4 Scope of the study	5
CHARPTER II LITERATURE REVIEWS	
2.1 General knowledge about malaria	6
2.2 Life Cycle of the Malaria Parasites	
2.3 Treatment of malaria	⁹ versitv
2.3.1 Quinine and related compound	9
2.3.2 Antifolate combination drugs	r11 V e (

2.3.3	Artemisinin compounds and its derivatives	13
2.4	Artemisinin	13
2.5	Mechanism of action of artemisinin	15
2.6	Artemisinin and its derivatives as antimalarial agents	17
2.7	General knowledge about cancer	21
2.8	Treatment of cancer	22
2.9	Artemisinin and its derivatives as anticancer agents	23
2.10	Peptide Nucleic Acid	34
2.11	Other oligopeptides and their biological activities	38
СНАР	PTER III EXPERIMENT	
3.1	Chemicals	43
3.1.1	Chemicals for organic synthesis	43
3.1.2	Chemicals for biological testing	44
3.1.3	Cell lines	45
3.2	Modification of artemisinin derivatives at C-10	45
3.2.1	Preparation of Dihydroartemisinin 10α-Benzoate	45
3.2.2	Preparation of 10β-Allyldeoxoartemisinin	47
3.2.3	Preparation of 10β-Carboxylalkyldeoxoartemisinin	48
3.3	Synthesis of Fmoc-aeg-deoxoartemisinin-tBu oligomers	49
3.3.1	Fmoc-aeg-deoxoartemisinin-tBu monomer	49
3.3.2	Fmoc-aeg-deoxoartemisinin-tBu dimer	51
3.3.3	Fmoc-aeg-deoxoartemisinin- <i>t</i> Bu trimer	54
3.3.4	Fmoc-aeg-deoxoartemisinin- <i>t</i> Bu tetramer	57

3.4	Fmoc-lys(Boc)-aeg-deoxoartemisinin-tBu oligomers	60
3.4.1	Fmoc-lys(Boc)-aeg-deoxoartemisinin-tBu monomer	60
3.4.2	Fmoc-lys(Boc)-aeg-deoxoartemisinin-tBu dimer	63
3.4.3	Fmoc-lys(Boc)-aeg-deoxoartemisinin-tBu trimer	65
3.4.4	Fmoc-lys(Boc)-aeg-deoxoartemisinin-tBu tetramer	68
3.5	Fmoc-lys-aeg-deoxoartemisinin-tBu oligomers	71
3.5.1	Fmoc-lys-aeg-deoxoartemisinin-tBu monomer	71
3.5.2	Fmoc-lys-aeg-deoxoartemisinin-tBu dimer	72
3.5.3	Fmoc-lys-aeg-deoxoartemisinin-tBu trimer	74
3.5.4	Fmoc-lys-aeg-deoxoartemisinin-tBu tetramer	75
3.6	lys-aeg-deoxoartemisinin-tBu oligomers.	76
3.6.1	lys-aeg-deoxoartemisinin-tBu monomer	76
3.6.2	lys-aeg-deoxoartemisinin-tBu dimer	78
3.7	Cyclization of NH ₂ -aeg-deoxoartemisinin-OH oligomers	80
3.7.1	Cyclization of NH ₂ -aeg-deoxoartemisinin-OH dimer	80
3.7.2	Cyclization of NH ₂ -aeg-deoxoartemisinin-OH trimer	82
3.7.3	Cyclization of NH ₂ -aeg-deoxoartemisinin-OH tetramer	86
3.8	Bioactivity study	90
3.8.1	Antimalarial activity	90
3.8.2	Anticancer activity	91

rights reserved

CHARPTER IV RESULTS & DISCUSSION

·	4.1	Synthesis of Fmoc-aeg-deoxoartemisinin-tBu oligomers	94
	4.1.1	Preparation of 10β-Carboxylalkyldeoxoartemisinin	96
	4.1.2	Synthesis of Fmoc-aeg-deoxoartemisinin-tBu monomer	99
2	4.2	Synthesis of Fmoc-aeg-deoxoartemisinin-tBu oligomers	100
	4.2.1	Synthesis of Fmoc-aeg-deoxoartemisinin-tBu dimer	101
	4.2.2	Synthesis of Fmoc-aeg-deoxoartemisinin-tBu trimer	102
2	4.2.3	Synthesis of Fmoc-aeg-deoxoartemisinin-tBu tetramer	103
) A	4.3	Synthesis of Lysine-aeg-deoxoartemisinin-tBu oligomers	104
	4.3.1	Synthesis of Fmoc-lys(Boc)- aeg-deoxoartemisinin-tBu	105
		monomer	
		4.3.1.1 Synthesis of Fmoc-lys-aeg-deoxoartemisinin-tBu	106
		monomer	
		4.3.1.2 Synthesis of lys-aeg-deoxoartemisinin-tBu monomer	108
	4.3.2	Synthesis of Fmoc-lys(Boc)-aeg-deoxoartemisinin-tBu dimer	109
		4.3.2.1 Synthesis of Fmoc-lys-aeg-deoxoartemisinin-tBu	110
		dimer	
		4.3.2.2 Synthesis of lys-aeg-deoxoartemisinin-tBu dimer	112
	4.3.3	Synthesis of Fmoc-lys(Boc)-aeg-deoxoartemisinin-tBu trimer	114
		4.3.3.1 Synthesis of Fmoc-lys-aeg-deoxoartemisinin-tBu	115
		t ^C trimer V Chiang Mai Un	
- 6	4.3.4	Synthesis of Fmoc-lys(Boc)-aeg-deoxoartemisinin-tBu	116
		tetramer IIS I E S E I	

	4.3.4.1 Synthesis of Fmoc-lys-aeg-deoxoartemisinin-tBu	118
	tetramer	
4.4	Cyclization of NH ₂ -aeg-deoxoartemisinin-OH oligomers	119
4.4.1	Cyclization of NH ₂ -aeg-deoxoartemisinin-OH dimer	121
4.4.2	Cyclization of NH ₂ -aeg-deoxoartemisinin-OH trimer	122
4.4.3	Cyclization of NH ₂ -aeg-deoxoartemisinin-OH tetramer	123
4.5	Antimalarial Assessment of new deoxoartemisinin derivatives	124
4.6	Anticancer activities	126
4.6.1	The cytotoxicity against normal cell line (L929)	128
4.6.2	The cytotoxicity against colon cancer cell line (HT-29)	131
4.6.3	The cytotoxicity against colon cancer cell line (Caco-2)	136
4.6.4	The cytotoxicity against lung cancer cell line (A549)	140
4.6.5	The cytotoxicity against skin cancer cell line (B16F10)	144
CHA	RPTER V Conclusion	148
REFI	ERENCE	152
APPE	ENDICES	160
APPH	ENDIX I STRUCTURE	161
APPH	ENDIX II MASS SPECTRA	167
APPH	ENDIX III IR SPECTRA	186
APPH	ENDIX IV NMR SPECTRA	205
CUR	RICULUM VITAE Chiang Mai	219 Jniversi

LIST OF TABLES

TAB	LES	Page
2.1	Antisense activities of PNA containing Lys.	37
4.1	In vitro antimalarial activity of all compounds against K1	125
	strains of <i>Plasmodium falciparum</i> .	
4.2	In vitro anticancer activity of deoxoartemisinin derivatives	127
	against L929 cell line.	
4.3	In vitro anticancer activity of deoxoartemisinin derivatives	130
	against HT-29 cell line.	
4.4	In vitro anticancer activity of deoxoartemisinin derivatives	135
	against Caco-2 cell line.	
4.5	In vitro anticancer activity of deoxoartemisinin derivatives	139
	against A549 cell line.	
4.6	In vitro anticancer activity of deoxoartemisinin derivatives	143
	against B16F10 cell line.	
4.7	Summary table of cytotoxicity values of deoxoartemisinin	147
	derivatives toward various cancer cell line.	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

FIGU	FIGURES Page		
1.1	Chemical structure of antimalarial drugs : quinine (1),	1	
	chloroquine (2), pyrimathamine (3) and mefloquine (4).		
1.2	Chemical structure of anticancer drugs.	3	
1.3	Chemical structure of quinghaosu (QHS, artemisinin).	4	
2.1	Female Anopheles mosquito (Anopheleis ssp.).	7	
2.2	Life cycle of the Malaria parasites.	8	
2.3	Structure of Chloroquine, Mefloquine and Primaquine.	9	
2.4	Mode of action of chloroquine.	10	
2.5	The structure of anti-malarial drugs.	12	
2.6	The structure of artemisinin derivatives.	15	
2.7	Propose mechanism of action of artemisinins.	17	
2.8	Structure of acetal and non acetal (C-C) type prodrugs of	18	
	artemisinin.		
2.9	Structure of artemisinin water soluble derivatives.	19	
2.10	Structure of (+)-deoxoartemisitene (34), artemisinic acid (35)	20	
	and its novel C-11 derivatives with non-acetal at C-12 (36-39).		
2.11	Chemical structure of deoxoartelinic acid (40).	21	
2.12	Cells divide and grow uncontrollably, forming malignant	22	
	tumors. by Chiang Mai Ui		
2.13	Chemical structure of artemisinin-related analogs 41a,b, 42 and	24	
	$\mathbf{A}_{\mathbf{A}_{\mathbf{A}_{\mathbf{A}}}} \mathbf{X} \mathbf{\Pi} \mathbf{\Gamma} \mathbf{X} \mathbf{X} \mathbf{\Gamma} \mathbf{U} \mathbf{X} \mathbf{U}$		

2.14	Chemical structure of dihydroartemisinin containing cyano 25	
	and aryl group.	
2.15	Artemisinin derivatives with amide bearing linear alkyl carbon	26
	chains.	
2.16	Structure of artemisinin and selected derivatives.	27
2.17	C-16 derived artemisinin monomers, dimers, trimers and	28
	tetramers.	
2.18	C-10 non-acetal type derivatives of deoxoartemisinin as	29
	monomers (65), (66), dimers (67, 68a,b) and one trimer (69).	
2.19	A new series of non-acetal C-10 carba trioxane analogues of	30
	dimers (70a-70c, 71a, 71b, 72a-72c, 73a, 73b).	
2.20	The new series of hydrolytically stable, C-10 non acetal	31
	dimer (74-79).	
2.21	The C-10 carba artemisinin dimers with amide (80),	32
	carbonate (81a), urea (81b) and 4,4'- bipiperidine-linker (82)	
	and phosphonate-linked dimer (83).	
2.22	N^{1} -, N^{4} - and N^{8} - artemisinin-spermidine conjugated 84-89	33
2.23	Comparison structure of PNA and DNA.	35
2.24	Synthetic pathway of Fmoc-Py-tBu (92), Fmoc-Ac-tBu (91)	35
	and bisintercalator 94.	

2.25	(a) Effect of the number of N-terminal lysine residues on the	36
	reduction of CD40 expression in mouse BCL1 cells.	
	(b) Effect of both C and N terminally conjugated L-lysine	
	peptides on the inhibition of CD40 expression.	
2.26	Structure of Fmoc-amino acid amides.	39
2.27	Structure of Fmoc-acetate dipeptides (117-119), Fmoc-alcohol	40
	dipeptides (114-116) and Fmoc-benzoate dipeptides (120-123).	
2.28	Chemical structures of cyclo (Phe-Pro) (124).	41
4.1	LD ₅₀ values of monomer (132 , 141 , 148) and dimer (134 , 143 ,	129
	149) compound against normal cancer cell.	
4.2	Comparison of the cytotoxicities of monomer (132, 141, 148,	132
	152) and dimer (134, 143, 149, 154) tested on HT-29 cancer cell.	
4.3	Comparison of the cytotoxicities of Fmoc-lys-aeg-artemisinin-	133
	<i>t</i> Bu oligomers tested on HT-29 cancer cell.	
4.4	Comparison of the cytotoxicities of monomer series and dimer	137
	series tested on Caco-2 cancer cell.	
4.5	Comparison of the cytotoxicities of monomer 132, 141, 148, 152	141
	dimer 134, 143, 149, 154 tested on A549 cancer cell.	
4.6	Comparision of the cytotoxicities of monomer series 132,141	145
	and 148 and dimer series 134, 143 and 148 tested on B16F10	
	ter cell. by Chiang Mai Un	

LIST OF SCHEMES

SCH	EMES	Page
4.1	Retrosynthesis of Fmoc-aeg-deoxoartemisinin-tBu oligomers.	95
4.2	Synthesis of dihydroartemisinin 10α-benzoate. (129)	96
4.3	Synthesis of 10β -allyldeoxoartemisinin. (130)	97
4.4	Synthesis of 10β-carboxylalkyldeoxoartemisinin. (131)	98
4.5	Synthesis of Fmoc-aeg-deoxoartemisinin- <i>t</i> Bu monomer. (132)	99
4.6	Synthesis pathway of peptide synthesis	100
4.7	Synthesis of Fmoc-aeg-deoxoartemisinin-tBu dimer. (134)	101
4.8	Synthesis of Fmoc-aeg-deoxoartemisinin- <i>t</i> Bu trimer. (137)	102
4.9	Synthesis of Fmoc-aeg-deoxoartemisinin- <i>t</i> Bu tetramer. (139)	103
4.10	Synthesis of Fmoc-lys(Boc)-aeg-deoxoartemisinin-tBu	105
	monomer. (141)	
4.11	Synthesis of Fmoc-lys-aeg-deoxoartemisinin-tBu monomer.	106
	(148)	
4.12	Synthesis of lys-aeg-deoxoartemisinin-tBu monomer. (152)	108
4.13	Synthesis of Fmoc-lys(Boc)-aeg-deoxoartemisinin-tBu	109
	dimer. (143)	
4.14	Synthesis of Fmoc-lys-aeg-deoxoartemisinin-tBu dimer. (149)	110
4.15	Synthesis of lys-aeg-deoxoartemisinin-tBu dimer. (154)	112
CODV 4.15	(continued) Synthesis of lys-aeg-deoxoartemisinin-tBu dimer.	ni ¹¹³ ersi
	(154)	

4.16	Synthesis of Fmoc-lys(Boc)-aeg-deoxoartemisinin-tBu trimer.	114
4.17	Synthesis of Fmoc-lys-aeg-deoxoartemisinin-tBu trimer. (150)	115
4.18	Synthesis of Fmoc-lys(Boc)-aeg-deoxoartemisinin-tBu	116
	tetramer. (146)	
4.19	Synthesis of Fmoc-lys-aeg-deoxoartemisinin-tBu tetramer.	118
	(151)	
4.20	Retrosynthesis of cyclic-aeg-deoxoartemisinin-oligomers.	120
4.21	Synthesis of cyclic-aeg-deoxoartemisinin-dimer. (156)	121
4.22	Synthesis of cyclic-aeg-deoxoartemisinin-trimer. (158)	122
4.23	Synthesis of cyclic-aeg-deoxoartemisinin-tetramer. (161)	123

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

g	gram
mmol	millimole
ml	milliliter
mg	milligram
h	hours
min	minute (s)
%	percent
Mp	melting point
°C	degree celcius
cm ⁻¹	wave number
m/z	mass to charge ratio
FT-IR	Fourier Transform Infrared
HRMS	High Resolution Mass Spectrometry
LRMS	Low Resolution Mass Spectrometry
ESI	Electrospray Ionization
¹ H-NMR	Proton Nuclear Magnetic Resonance
¹³ C NMR	Carbon-13 Nuclear Magnetic Resonance
MHz	Megahertz
ppm	part per million
Hz	Hertz
δ	chemical shift (ppm)
α	alpha P O P V O
β	

J	coupling constant (NMR signal)
d of of	doublet (NMR signal)
s	singlet (NMR signal)
t	triplet (NMR signal)
q	quartet (NMR signal)
td	triplet of doublet (NMR signal)
m	multiplet (NMR signal)
RP-HPLC	Reverse-Phase High Performance Liquid
	Chromatography
mM	millimolar
μΙ	microliter
% v/v	percent volume by volume (concentration)
μg	microgram
rpm	revolutions per minute
μΜ	micromolar
nM	nanomolar
IC ₅₀	inhibition concentration (50%)
LD_{50}	lethal dose (50%)
aeg	N-(2-aminoethyl)glycine
Fmoc	Fluorenylmethyloxycarbonyl
Boc	tert-Butyloxycarbonyl group
DIEA	N,N-Diisopropylethylamine
Lys	Lysine Mai University
Phe	Phenylalanine
Pro	Proline e se e ve o

PNA	Peptide Nucleic Acid
DCE	Dichloroethane
TFA	Trifluoroacetic acid
DMF	N,N-Dimethylformamide
HATU	2-(1 <i>H</i> -7-Azabenzotriazol-1-yl)-1,1,3,3- tetramethyl uronium hexafluorophosphate methanaminium
2,6-Lutidine	2,6-Dimethylpyridine
NaHCO ₃	Sodium hydrogen carbonate
MgSO ₄	Magnesium sulphate anhydrous
ZnCl ₂	Zinc chloride
NaIO ₄	Sodium periodate
KMnO ₄	Potassium permanganate
HCl	Hydrochloric acid
CH_2Cl_2	Dichloromethane
NaCl	Sodium Chloride
HOAt	1-Hydroxy-7-azabenzotriazole
KCl	Potassium chloride
Na ₂ HPO ₄	Sodium dihydrogen phosphate
KH ₂ PO ₄	Potassium dihydrogen phosphate
FBS	Foetal bovine serum
MTT	3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide