
 

CHAPTER 3 

COMBINATION OF HCA, K-MEANS CLUSTERING AND 

LDA FOR EVALUATION OF SIGNALS FROM  

OFT-ANALYZER TO THE PREDICTION OF PATIENT 

GROUP OF THALASSEMIA SCREENING 

  

3.1  Introduction 

Identification of group of samples in dataset can be performed by 2 

methodologies depended on priori of data [1]; unsupervised and supervised 

pattern recognition.  

Unsupervised pattern recognition is clustering method which performed 

without priori knowledge about class membership, data points are grouped 

into same group because of the similarity of their feathers. Among such 

methods are cluster analysis, principle component analysis, correspondence 

analysis, projection pursuit, Kohonen networks, adaptive resonance theory 

(ART) and the eigenvector method [2, 3] . 

Popular clustering methods such as k-means clustering and hierarchical 

clustering analysis were used in many fields. K-means clustering is technique 

to  group data [4].  K-means clustering is suitable for sample size larger than 

100 data [5]. Awareness of k-means clustering are the proper k value which 

needed to assign from user have to relate with natural group of the considered 

data and started point of cluster centers had affect to quality of k-means 

clustering [6]. 

Hierarchical cluster analysis (HCA) dendrogram provide the detailed of 

relationship between the cases in data [7-10]. HCA expressed distribution of 
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samples in data in picture of dendrogram. In various position of the combined 

distance in each level of dengrogram can expressed structure of samples 

when considered numbers of groups were varied. This is a big good point of 

HCA. Furthermore, outliers can cluster to the separated group from all 

samples and they do not affect to the rest groups so it can said that HCA do 

not affect from outliers.  Drawback of HCA is its algorithm takes much time 

to perform dendrogram so HCA is not proper for large dataset [4, 11]. 

Principal component analysis (PCA) is tool to extract condensed 

information of multivariate pattern in data. PCA involves forming a new 

format of dataset called the principal components (PCs), which are the 

eigenvectors of the covariance or correlation matrix of the raw data. The first 

principal component (PC1) engaged extracting, group of data from raw data, 

the second principal component (PC2), orthogonal to the first one, has been 

the extracted information from the remain data after PC1 is extracted, and so 

on. Eigenvalue is amount of relative variance which correlating the 

considered principal component. Scatter plot present distribution of data in 

forms of principal componentss [12, 13].  

Supervised pattern recognition needs training set of known class 

membership to set up classification model for use to predict group of data of 

unknown samples [5, 14-16]. Evaluation of classification model is performed 

by the use of a validation set comparing predictions with true group [17]. 

Linear discriminant analysis is one of supervised pattern recognition 

which widely used in many fields such as food industry [17-35], pharmacy 

[36-40], forensic science [41], Petroleum [42] and bio-species [43, 
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44].Furthermore, LDA method was found to use in many clinical studies. 

LDA were used to screening of many kinds of disorders  such as sleep 

apnoea [45], diabetes [46, 47], asthma [47, 48], cancer [49-52] and 

thalassemia [53, 54]. 

A stopped flow system with hydrodynamic injection for red blood cells 

was developed to generate automatic osmotic fragility test (OFT) analyzer 

[55]. In [55], slope of OFT was used as variable to discriminate 73 samples in 

the dataset .  

In this study, the chemometrics methods were employed for thalassemia 

screening. LDA models were performed for this aim. Various types of signals 

were used to cluster thalassemia patients. 

 

3.2  Chemometrics methodology 

3.2.1  Extraction and distribution of data: Principal component 

analysis (PCA)  

Principal component analysis (PCA) is used to extract OFT signals. 

Approximation of OFT data is performed by PCA and digested into 3 

matrices; score, T and loading, P and E, residue error, respectively.  

X=TP+E 

Score metric T is principle component which express characteristic of each 

samples and loading metric P is new variables which extracted by PCA[56]. 

In this work, the OFT data was extracted by using correlation metric and 

varimax rotation method, the component score metric was extracted by 

regression method, only principle components which have eigenvalues 
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greater than 1 were selected. Score metric can be used in 2 aims that was 

used as variable for the clustering and was plotted to expressed the 

distribution of signal of samples. 

3.2.2  Clustering using Hierarchical Cluster Analysis (HCA) and k-

means clustering  

 

3.2.2.1  Hierarchical cluster analysis (HCA)  

Agglomerative hierarchical cluster analysis is 

unsupervised pattern recognition which applied to cluster OFT signals of 

blood samples. Dissimilarity of any 2 cases was explained by using distance. 

The distance measure of samples x and y at variable 1-p was calculated based 

on city block and shown in equation 3.1 [57]: 

dCity Block=∑        
 
    ……….3.1 

The least distance of cases or subclusters was sequential 

combined to produce dendrogram. In the first step all cases are considered as 

separate clusters, afterthat 2 cases which have least distance are linked and 

combined bigger cluster. Distance of rest cases and new subcluster are 

recalculated. The new distances are considered, the least distance is merge 

with the formerly subcluster. Linkage cases/subcluster is done sequentially 

until all cases combined into single cluster. This present work, complete 

linkage is used as combined method. Complete linkage also called furthest 

neighbors, the distance between one cluster and another cluster is considered 

as the furthest distance from any member of one cluster to any member of the 

another cluster [58]. When HCA was performed, number of natural groups of 

signals in dataset was considered from distance cluster combine.  
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3.2.2.2  K-means clustering  

K-means is a partitioning clustering method 

which clustering samples into k groups [59, 60]. Number cluster, k, is 

necessary to assign. In this present work, k was defined by using natural 

group as same as HCA. Each sample, xi, is inputted and assigned to the 

cluster whose centroid is closest, using a Euclidean distance metric. Cluster 

centroids are then updated. Iterative process is done by running means 

method. The process repeats until no more reassignments of the observational 

units occur [61]. 

3.2.3  Identification of group of signals of sample: 

Linear discriminate analysis (LDA) 

Linear Discriminant Analysis (LDA) [62-65] is 

performed for the classified model on conditions that dataset has normal 

distribution with the same dispersion (variance–covariance matrix) for each 

group. Distances of each signal of sample are calculated by Euclidean 

distance.  LDA model gain the boundary to classified groups of signal of 

samples by considering of eigenvalue. The linear discriminant functions are 

obtained by linear combinations of initial variables. The number of 

orthogonal linear discriminant functions or called canonical functions is the 

number of signal of sample groups minus 1. 
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3.3  Experimental  

3.3.1  Osmotic Fragility Test (OFT) of blood samples [1] 

 Data used here were taken from reference  [1]. All 73 blood 

samples (21 samples are positive thalassemia patients (RT) and 52 negative 

thalassemia patients (RN)) were collected by the Thalassemia Research 

Laboratories, Maharajnakorn Chiang Mai Hospital, Chiang Mai University, 

Thailand. For thalassemia screening, stopped flow-hydrodynamic injection 

(SF-HI) system was performed. Solution stream (10 mM phosphate buffer pH 

7.5 without NaCl and with0.55% NaCl which used as washing/equilibrating 

buffer and hypotonic saline solution, respectively) direction was controlled 

by three-way solenoid valves. Microcontroller was used for controlling of 

time on the valves. After blood was injected by hydrodynamic force, the 

mixture solution was stopped in flow cell for 30 s, sample injection volume 

was 40 ul approximately. The change in transmittance at wavelength 620 nm 

was observed by Spectronic21. The signal was recorded as voltage with the 

lab-built computer software and BASIC Stamp data recording system. From 

the reference66, the slope of osmotic fragility test (OFT) were used as criteria 

for decision of thalassemia screening. Condition of calculation of slope was 

optimized until all 73 cases were correctly classified.  

  In this present work, 4 types of osmotic fragility test signals 

were used. OFT data matrix obtianed size 73x26 which Row of OFT data 

matrix expressed case of blood samples and column expressed analysis time 

of signal.  
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3.3.2  Apparatus 

Chemometrics methods which used in this work were performed 

on SPSS17, all of software are connected to an AMD Athlon™ 64X2 Dual 

Core Processor 3800+ 2.20 GHz., 2.00 GB of RAM Physical Address 

Extension, which were used for the statistical treatment of the data and for 

the application of PCA, k-means clustering, HCA, and LDA methods. 

3.3.3  Chemometric methods and data analysis 

Clustering analysis methods were used as unbiased tool for 

screening thalassemia patients. Groups of blood samples were clarified by 2 

unsupervised pattern recognition; k-means clustering and hierarchical cluster 

analysis by using 4 types of signal (1 dimension slope, 13 dimension slopes, 

OFT and PCs of OFT) to be „PT‟ (positive patient for thalassemia), „PN‟ 

(negative patient for thalassemia) and „PU‟ (unidentified sample). The 

samples which grouping by 4 types of signal correlated with the database as 

PT and PN were chosen to use as training set. To identify the signals that 

discriminate between those two groups, the linear discriminant analysis 

(LDA) were applied. The statistical analysis of OFT data may be broken 

down into the following steps in the diagram which contains 4 main parts; 

data pretreatment, classification of the positive and negative patient using k-

means and Hierarchical clustering analysis (HCA), selections of training set 

in LDA and building the LDA model for screening. Visualization is done 

using principle component analysis. 
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3.3.4  Data pretreatment 

73 thalassemia samples with 21 samples for positive and 52 samples 

for negative patients of OFT-FIs were recorded by different time frequency 

and shown in Figure 3.1. From requirement of chemometrics method, each 

point of signals have to record at the same time period so data pretreatment is 

needed by using 3 steps. 

a) calculating the signal mean per second. The total analysis time is equal for 

each case.     

b) selecting data in range from the working time at 25-50 seconds for 

chemometrics analysis. The slope of the invested area is showned in Figure 

3.2 .The time is rescaled to 1-26 seconds range. 

c) smoothing data using the adjacent average with 5 interval point. 

 

 

Figure 3.1 Raw OFT signals of 73 cases obtained 21 positive test of 

thalassemia (red line) and 52 negative test of thalassemia [1] 
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Figure 3.2 The selected range of OFT signals of blood samples 

 

From figure 3.1, in this study the comparison of various types of 

selected range of signals were used to find the natural group of blood samples 

by considering of groups of signals of samples in different views obtained. 4 

types of signals which used in this study obtained OFT, 1 dimension slope, 

13 dimension slopes, and PCs of OFT. 

OFT is signal that shows turbidity of solution because of blood 

broken in range of 1-26 seconds. 1 dimension slope is slope that calculated 

OFT during 1-26 second range. 13 dimension slopes is gradient slopes within 

2 second interval from 1 -26 second range to perform 13 interval slopes. The 

2 types of slope expressed change of the signal with overall slope and 

digested gradient slope. The principle components during 1-26 second range 

were extracted by using correlation metric and varimax rotation method , the 

component scores, which was condensed information from OFT, were 

extracted by regression method, only principle components which have 

eigenvalues greater than 1 were selected. 
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3.3.5  Classification methods: k-means clustering and hierarchical 

clustering analysis (HCA)  

Hierarchical clustering analysis (HCA), k-means clustering, and 

principal component analysis were performed on SPSS version 17. Clustering 

results from 8 models of 4 signal types by 2 clustering methods reflected 

natural group of samples. Signals of samples can be clustered with various 

probabilities. Samples which were clustered to be negative test of thalassemia 

with more than 4 of 8 clustering models have probability to be normal person 

(named as PN). Samples which were clustered to be positive test of 

thalassemia with more than 4 of 8 clustering models have probability to be 

thalassemia patient (named as PT). Samples which were clustered to be 

negative test of thalassemia with 4 of 8 clustering models have probability to 

be unidentified sample (named as PU). Clearly identified samples to be 

negative test and positive test of thalassemia were clustered by 8 clustering 

models to be PN and PT respectively. Finally, the samples which cannot 

identify clearly will be excluded in order to build the suitable model for 

positive and negative patients using LDA.  

3.3.6  LDA model for screening and visualization using principle 

component analysis    

Linear discriminant analysis was also performed using SPSS 

version 17. Characteristic of the LDA model was described by eginvalue and 

canonical correlation. Those terms are defined as:  

-Eigenvalue is explained how well the model can separate sample signals in 

term of ratio of Between-Group Sum Square by Within-Group Sum Square. 
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-Canonical correlation is correlation between blood samples groups and 

signal type. 

Distributions of various types of samples were plotted and were 

labeled by group from LDA classification. Furthermore, OFT distribution of 

blood samples and 13 dimension slopes cannot be easy to notice. 

Visualization of OFT and 13 dimension slopes distributions can be done by 

using PCA. Information of distribution of OFT and 13 dimension slopes can 

be extracted by PCA and shown as PCA score plots.  

3.3.7  LDA training set selection and construction of LDA models. 

The ratio of each function of LDA models was used to classify 

samples. The sample with more than 3/4 of LDA models was predicted 

to be negative or positive test of thalassemia was assigned as MN or MT 

respectively. The sample with 2/4 of LDA models was predicted to be 

MT and MN was assigned as MU. 

 

3.4  Results and discussions 

3.4.1  Grouping of blood samples by hierarchical cluster analysis 

(HCA) and k-means clustering 

The comparison of clustering 2 methods (hierarchical clustering 

and k-means clustering) by those 4 types of signal is alternative way to 

convince group of samples. The training set was chosen by selecting of the 

samples which clustering groups of 4 types of signals were correlated with 

the database. For guarantee positive and negative test of thalassemia samples, 
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the unidentified group was defined as the samples which cluster in PU group 

or differently cluster among the clustering of 4 types of signals and database. 

Dendrogram of each type of signal were shown in figure 3.3. The 

groups of samples were defined   from dissimilarity using city block distance 

and complete linkage. The groups of the clustering obtain positive with low 

slope and negative test of thalassemia with high slope and unidentified 

sample with moderate slope (the group was called PT, PN and PU, 

respectively). 

K-means clustering can be also clustered samples in 3 groups. 

Summary of k-means and HCA group clustering as PT, PN or PU with 

different signal clustering were shown in table 3.1.  

The various patterns of 8 clustering models from using HCA and 

k-means clustering and 4 kind of signals of samples can be found. 

In this work, 11 samples which were clustering predicted from all 

types of signal be the same group and correlated to database were chosen to 

set the training set. The training set obtained from all correlated data are 

sample number 1, 2, 8, 9, 12, 13, and 14 in T group and sample number 31, 

36, 40 and 71 in the PN group. For uncorrelated data, the predict group from 

clustering method identify by PN or PT when ratio of clustering was more 

than 4 of 8 of clustering models that sample was clustered to PN or PT group, 

respectively, other samples was identified to PU . 

Pattern of the clustering to be PT, PN and PU group can be 

noticed from table 3.1.T group obtained 20 samples which clustered by the 

ratios of PT:PU:PN are (8PT:0PU:0PN), (6PT:2PU:0PN),(5PT:3PU:0PN) are 



37 
 

7, 2, and 11 samples, respectively. PN group obtained 11 samples which 

clustered by the ratios of PT:PU:PN are (0PT:0PU:8PN), (0PT:1PU:7PN), 

(0PT:2PU:6PN), (0PT:3PU:5PN) are 4,2,4, and 1, respectively. Other 

samples were identified to be PU 42 samples. 
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Figure 3.3 Dendrograms of blood samples; OFT (a), and PCs of OFT (b), ;1 dimension slope (c), 13 dimension slopes (d) 
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Figure 3.3 Dendrograms of blood samples; OFT (a), and PCs of OFT (b), ;1 dimension slope (c), 13 dimension slopes (d) 

-continue-
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ble 3.1  Clustering analysis of blood samples (label selected cases which will used to 

set LDA) 

Case Slope 
OFT PC of OFT 1 dimension slope 13 dimension slopes 

G_k means G_HCA G_k means G_HCA G_k means G_HCA G_k means G_HCA 

1 1.32 PT PT PT PT PT PT PT PT 

2 1.68 PT PT PT PT PT PT PT PT 

3 1.44 PU PU PU PT PT PT PT PT 

4 1.88 PU PU PU PT PT PT PT PT 

5 1.6 PT PU PU PT PT PT PT PT 

6 2.48 PN PN PU PU PT PT PT PT 

7 3.04 PU PU PT PT PT PU PT PT 

8 2.24 PT PT PT PT PT PT PT PT 

9 1.8 PT PT PT PT PT PT PT PT 

10 2.2 PU PU PU PT PT PT PT PT 

11 1.96 PU PU PU PT PT PT PT PT 

12 1.72 PT PT PT PT PT PT PT PT 

13 1.32 PT PT PT PT PT PT PT PT 

14 1.52 PT PT PT PT PT PT PT PT 

15 1.4 PU PU PU PT PT PT PT PT 

16 1.8 PU PU PU PT PT PT PT PT 

17 1.88 PU PU PU PT PT PT PT PT 

18 2.24 PU PU PU PT PT PT PT PT 

19 3.24 PT PT PT PT PU PU PT PT 

20 2.96 PU PU PU PT PT PU PT PT 

21 2.92 PU PU PU PT PT PU PT PT 

22 5.32 PN PN PN PU PU PU PU PU 

23 5.04 PN PN PN PU PU PU PU PU 

24 4.76 PN PN PN PU PU PU PU PT 

25 4.16 PN PN PN PU PU PU PU PT 

26 3.68 PU PU PU PU PU PU PU PT 

27 3.88 PN PN PU PU PU PU PU PT 

28 4.88 PU PU PT PT PU PU PU PT 

29 5.04 PT PT PT PT PU PU PU PU 

30 4.24 PN PN PN PU PU PU PU PT 

31 6.96 PN PN PN PN PN PN PN PN 

32 6.16 PU PU PN PN PN PN PU PU 

33 3.48 PN PN PU PU PU PU PU PT 

34 3.84 PU PU PU PU PU PU PU PT 

35 8.84 PU PU PN PN PN PN PN PN 

36 7.36 PN PN PN PN PN PN PN PN 

37 4.32 PN PN PN PU PU PU PU PT 

38 7.12 PU PN PN PN PN PN PN PN 

39 4.96 PT PU PT PT PU PU PU PU 

40 7.64 PN PN PN PN PN PN PN PN 
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Table 3.1  Clustering analysis of blood samples (label selected cases which will used 

to set LDA) –continue- 

Case Slope 
OFT PC of OFT 1 dimension slope 13 dimension slopes 

G_k means G_HCA G_k means G_HCA G_k means G_HCA G_k means G_HCA 

41 7 PN PN PN PU PN PN PN PN 

42 5.04 PU PN PN PU PU PU PU PU 

43 7.48 PU PU PN PN PN PN PN PU 

44 6.96 PU PU PN PN PN PN PN PN 

45 4.84 PT PT PT PT PU PU PU PU 

46 5.56 PN PN PN PU PU PU PU PU 

47 3.84 PN PN PU PU PU PU PU PT 

48 3.2 PN PN PU PU PU PU PT PT 

49 3.92 PT PT PT PT PU PU PU PT 

50 8.32 PU PU PN PN PN PN PN PN 

51 5.56 PU PU PT PT PU PU PU PU 

52 7.32 PT PT PT PN PN PN PN PU 

53 3.36 PN PN PU PU PU PU PU PT 

54 8.12 PT PT PT PN PN PN PN PU 

55 7.6 PT PT PN PN PN PN PN PU 

56 3.72 PN PN PU PU PU PU PU PT 

57 4.24 PU PU PN PU PU PU PU PT 

58 4.64 PU PU PN PU PU PU PU PU 

59 4.83 PN PN PN PU PU PU PU PU 

60 3.46 PT PT PT PT PU PU PU PT 

61 7.29 PT PT PT PN PN PN PN PU 

62 5.75 PU PU PN PU PU PU PU PU 

63 6.49 PU PU PN PN PN PN PU PU 

64 4.25 PN PN PU PU PU PU PU PT 

65 4.89 PT PT PT PT PU PU PU PU 

66 6.27 PU PU PN PN PN PN PU PU 

67 6.61 PT PT PT PN PN PN PN PU 

68 6.9 PT PT PT PN PN PN PN PU 

69 3.8 PU PU PU PU PU PU PU PT 

70 9.2 PU PU PN PN PN PN PN PN 

71 7.11 PN PN PN PN PN PN PN PN 

72 5.5 PU PU PN PU PU PU PU PU 

73 4.45 PU PU PT PT PU PU PU PU 
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Table 3.2  Member in each group of clustering 

Signal type 
HCA K-means clustering 

PT PN PU PT PN PU 

OFT 19 (26%) 23(32%) 31(42%) 21 (29%) 21 (29%) 31(42%) 

PCs of OFT 29(40%) 19(26%) 25(34%) 23 (32%) 28 (38%) 22 (30%) 

1 dimension slope 17 (23%) 20 (27%) 36 (49%) 20 (27%) 20 (27%) 33(45%) 

13 dimension slopes 39(53%) 10 (14%) 24 (33%) 22 (30%) 17 (23%) 34 (47%) 

 

  Amount of samples in each group of clustering was show in table 3.2. When 

HCA was used to cluster samples by 4 types of signal, amount of samples in 3 groups 

were different. From hospital records, 29% should be PT and 71% should be PN. 13 

dimension slopes with HCA gave different result from other type of data. Whereas k-

means clustering gave similar result.  

3.4.2  LDA training set selection and construction of LDA models 

Identification of samples was considered from 4 LDA models which 

use 4 different kinds of signal with same training set. Sample were identified as MT 

or MN when more than 3 of 4 LDA models predicted in the same group, on the other 

hand, samples were identified as U when 2 of 4 LDA models are shown.  The LDA 

prediction result was shown in Table 3.3.  

From the table samples were predicted to MT group 39 samples; 4 of 

4 of LDA models (34 samples) and 3 of 4of LDA models (5 samples). Samples were 

predicted to MN group 25 samples; 4 of 4 of LDA models (12 samples) and 3 of 4 of 

LDA models (13 samples). 9 samples were unidentified samples. 
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Table 3.3  Identification of blood samples by 4 LDA models  

Case Record 

LDA classified result 

Prediction 
OFT 

PC of 

OFT 

Overall 

slope 

Gradient 

slope 

1 RT MT MT MT MT MT 

2 RT MT MT MT MT MT 

3 RT MN MT MT MT MT 

4 RT MN MT MT MT MT 

5 RT MT MT MT MT MT 

6 RT MN MT MT MT MT 

7 RT MT MT MT MT MT 

8 RT MT MT MT MT MT 

9 RT MT MT MT MT MT 

10 RT MT MT MT MT MT 

11 RT MT MT MT MT MT 

12 RT MT MT MT MT MT 

13 RT MT MT MT MT MT 

14 RT MT MT MT MT MT 

15 RT MN MT MT MT MT 

16 RT MN MT MT MT MT 

17 RT MT MT MT MT MT 

18 RT MN MT MT MT MT 

19 RT MT MT MT MT MT 

20 RT MN MT MT MT MT 

21 RT MT MT MT MT MT 

22 RN MN MN MN MN MU 

23 RN MN MN MN MT MU 

24 RN MN MN MN MN MU 

25 RN MN MN MT MT MU 

26 RN MN MT MT MT MT 

27 RN MN MN MT MT MU 

28 RN MT MT MN MT MU 

29 RN MT MT MN MT MU 

30 RN MN MN MT MT MU 

31 RN MN MN MN MN MN 

32 RN MT MN MN MT MU 

33 RN MN MN MT MT MT 

34 RN MN MT MT MT MT 

35 RN MN MN MN MN MN 

36 RN MN MN MN MN MN 

37 RN MN MN MT MN MU 

38 RN MN MN MN MN MN 

39 RN MT MT MN MT MU 

40 RN MN MN MN MN MN 

41 RN MN MN MN MN MN 

42 RN MN MN MN MT MU 

43 RN MN MN MN MN MN 

44 RN MN MN MN MN MN 

45 RN MT MT MN MT MU 

46 RN MN MN MN MN MU 

47 RN MN MN MT MT MT 

48 RN MN MN MT MT MT 

49 RN MT MT MT MT MT 

50 RN MN MN MN MN MN 

51 RN MT MT MN MT MU 
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Table 3.3  Identification of blood samples by 4 LDA models -continue- 

Case Record 

LDA classified result 

Prediction 
OFT 

PC of 

OFT 

Overall 

slope 

Gradient 

slope 

52 RN MT MN MN MN MU 

53 RN MN MN MT MT MT 

54 RN MT MN MN MN MU 

55 RN MT MN MN MT MN 

56 RN MN MN MT MT MT 

57 RN MN MT MT MT MT 

58 RN MN MT MN MT MU 

59 RN MN MN MN MT MU 

60 RN MT MT MT MT MT 

61 RN MT MN MN MT MU 

62 RN MN MN MN MT MU 

63 RN MT MN MN MN MU 

64 RN MN MN MT MT MT 

65 RN MT MT MN MT MU 

66 RN MT MN MN MN MU 

67 RN MT MN MN MN MU 

68 RN MT MT MN MN MU 

69 RN MN MT MT MT MT 

70 RN MN MN MN MN MN 

71 RN MN MN MN MN MN 

72 RN MN MN MN MT MU 

73 RN MT MT MT MT MT 
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Figure 3.4  Distribution of blood samples defined by groups selected cases for LDA; 

OFT (top), and PCs of OFT (bottom), 1 dimension slope (top), 13 dimension slopes 

(bottom) (red dot is sample which predict by 4 of 4 of LDA models to MT, yellow dot 

is sample which predict by 1 of 4 of LDA models to MN, grey dot is sample which 

predict by 2 of 4 of LDA models to MN, light green dot is sample which predict by 3 

of 4 of LDA models to MN , and dark green dot is sample which predict by 4 of 4 of 

LDA models to MN)  
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Figure 3.4  Distribution of blood samples defined by groups selected cases for LDA; 

OFT (top), and PCs of OFT (bottom), 1 dimension slope (top), 13 dimension slopes 

(bottom) (red dot is sample which predict by 4 of 4 of LDA models to MT, yellow dot 

is sample which predict by 1 of 4 of LDA models to MN, grey dot is sample which 

predict by 2 of 4 of LDA models to MN, light green dot is sample which predict by 3 

of 4 of LDA models to MN , and dark green dot is sample which predict by 4 of 4 of 

LDA models to MN) -continue- 
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In Figure 3.4, the distributions of samples in each case of LDA 

models predicted by 4 types of signal with different prediction ratio were shown. The 

samples which were predicted as MN or MT in ratio of 4 of 4 of LDA models were 

clearly separation. Samples in moderate zone which were in cycles are unreliable 

signal different from database and line in boundary between MT and MN group. Such 

signal are samples number 25, 26, 29, 33, 34, 39, 47, 48, 49, 53, 56, 57, 58, 60, 64, 

65, 69, and 73 with the moderate slope which indicated in figure 3.5( the red lines).  

 

Figure 3.5 Unreliable signals different from database  

 

In application of our model can be clearly predicted signal with high 

and low slope using LDA model. The LDA models results were compared with the 

referent method 
55

 and hospital record. It was found that 21 samples which were 

predicted to be “MT” were correlated with referent method and hospital record. The 

comparison between “MN” samples which predicted by LDA and hospital record 

shown 2 different types of samples. The first one, LDA results was correlated with 

record as MN and MU. samples which were predicted as MN 25 samples are sample 
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number 22, 24, 28, 31, 35, 36, 37, 38, 40, 41, 42, 43, 44, 50, 51, 52, 54, 55, 62, 63, 67, 

68, 70, 71 and 72. Samples which were predicted as MU 9 samples are sample 

number 23, 27, 30, 32, 45, 46, 59, 61 and 66. Second one, the predictions (as MT) 

were uncorrelated with hospital record (as MN) 18 samples are sample number 25, 

26, 29, 33, 34, 39, 47, 48, 49, 53, 56, 57, 58, 60, 64, 65, 69, and 73. 1 dimension slope 

value and ratio of MT of clustering process were used as boundary of LDA 

prediction. It was found that the moderate signal 3.20 to 5.04 unable to identify the 

group clearly. The samples which obtained 1 dimension slope within 3.20-5.04 need 

to check from clustering result before predict with LDA. Only samples which 

clustering as T more than 6/8 of clustering models can be allowed to analyze with 

LDA models. The process of the screening of samples is shown in figure 3.6. 
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(a) 

 

(b) 

Figure 3.6  Overview of thalassemia screening by aid of clustering methods; (a) 

training model and (b) predict sample 
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The samples which were predicted as other ratios of prediction were still gave 

overlapping distribution. Although some samples had overlapping distribution but the 

LDA models results were comparison before identify samples group so the prediction 

gave high confident result. Characteristic of the LDA models are show in table 3.4.  

 

Table 3.4 LDA canonical function and characteristic of the LDA models 

Signal type 
Canonical Discriminant Function Eigenvalue 

Canonical 

Correlation 

OFT D=0.427*t1 - 0.609*t2 - 0.529 *t4 + 

0.749*t6 - 27.972 
70.226

a
 .993 

PCs of OFT 
D=13.133*PC1 + 1.532*PC2 - 1.309 192.921

a
 .997 

1 dimension slope 
D=3.201*m - 11.833 91.177

a
 .995 

13 dimension slopes 
D=0.496*m1 - 0.288*m2 + 0.244*m3 + 

2.250*m4 + 3.369*m5 -4.093*m6 + 

0.238*m7 - 1.652*m8 + 2.814*m9 - 17.062 

214.463
a
 .998 

a. First 1 canonical discriminant functions were used in the analysis. 

 

From table 3.4, Canonical function was used as classification model. 

From the function, it was found that some variables of 13 dimension slopes and OFT 

were selected out. The canonical function of 13 dimension slopes contained only m1-

m9 and the canonical function of OFT contain only 4 variables; t1, t2, t4 and t6 from 

the initial of variables of signal. All canonical functions can be used to classify 

samples with the high eigenvalues. Furthermore the different between groups 

compared by within group of LDA model of 13 dimension slopes and PCs of OFT are 

more than 2 times. The canonical coefficient of all LDA model can used for predict 

group of sample with in 0.99. 

When the LDA predictions were compared with hospital records, it 

was found that predictions of 46 samples were correlated with the records but 
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predictions of 27 samples were uncorrelated with the records but these samples should 

be ejected when consider from process which shown in figure 3.6 so the screening 

still saved.   
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