TABLE OF CONTENTS

ACKNOWLEDGEMENTS

Page

iii

ABSTRACT (ENGLISH)	iv
ABSTRACT (THAI)	vii
TABLE OF CONTENTS	X
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF SCHEMES	xvi
ABBREVIATIONS AND SYMBOLS	xix
CHAPTER 1 INTRODUCTION	
1.1 Quinone	1
1.2 Black pepper	9
1.3 Literature reviews	14
1.4 The research objectives	31
CHAPTER 2 EXPERIMENTAL	
2.1 General techniques	33
2.2 Experimental procedures	
2.2.1 Preparation of naphthoquinone derivatives 102-122	37
2.2.2 Isolation of 5-(3,4-methylenedioxyphenyl)-2E,4E-	
pentadienoic acid piperidine amide (piperine) (10)	
from black pepper	84

2.2.3 General procedure for preparation of 5-(3,4-	
methylenedioxyphenyl)-2E,4E-pentadienoic acid	
(piperic acid) (67) from piperine (10)	85
2.2.4 General procedure for preparation of amides and ester	
derivatives of piperine	87
2.3 Biological studies of the naphthoquinone derivatives and piperine	
analogues	96
CHAPTER 3 RESULTS AND DISCUSSION	
3.1 Synthesis of naphthoquinone derivatives 102-122	102
3.2 General procedure for preparation of 5-(3,4-methylenedioxy	
phenyl)-2E,4E-pentadienoic acid (piperic acid) (67) from	
piperine (10)	139
3.3 Synthesis of amides and ester derivatives of piperine (123-126)	142
3.4 Biological activities test	150
CHAPTER 4 CONCLUSIONS	155
REFERENCES	157
APPENDIX	164
CURRICULUM VITAE	215

LIST OF TABLES

Table	Page
1 The chemicals used in this research	35
2 Data of naphthoquinone derivative 102	38
3 Data of naphthoquinone derivative 103	40
4 Data of naphthoquinone derivative 104	42
5 Data of naphthoquinone derivative 105	45
6 Data of naphthoquinone derivative 106	47
7 Data of naphthoquinone derivative 107	49
8 Data of naphthoquinone derivative 108	51
9 Data of naphthoquinone derivative 109	53
10 Data of naphthoquinone derivative 110	55
11 Data of naphthoquinone derivative 111	57
12 Data of naphthoquinone derivative 112	60
13 Data of naphthoquinone derivative 113	62
14 Data of naphthoquinone derivative 114	64
15 Data of naphthoquinone derivative 115	66
16 Data of naphthoquinone derivative 116	68
17 Data of naphthoquinone derivative 117	71
18 Data of naphthoquinone derivative 118	73
19 Data of naphthoquinone derivative 119	75
20 Data of naphthoquinone derivative 120	78
21 Data of naphthoquinone derivative 121	e r 80 e d

22	Data of naphthoquinone derivative 122	82
23	Data of piperine (10)	85
24	Data of piperic acid (67)	86
25	Data of piperine derivative 123	88
26	Data of piperine derivative 124	90
27	Data of piperine derivative 125	93
28	Data of piperine derivative 126	95
29	Activity of anti-malaria, anti-TB and cytotoxicity of compounds	151
30	Activity of anti-cancer (breast cancer MCF-7 and lung cancer	
	NCI-H187) cell lines and cytotoxicity of compounds	153
31	Antioxidant activity	154

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

xiv

LIST OF FIGURES

Figure	Page
1.1 Structure of quinines	2
1.2 Structure of Vitamin K ₁ and Vitamin K ₂	4
1.3 Structure of hydroxy-1,4-naphthoquinone	8
1.4 Flowers and leaves of the henna plant (Lawson	nia inermis) 8
1.5 Black pepper	11
1.6 Chemical structures of some natural amides iso	polated from <i>Piper</i> sp. 12
1.7 Rhinacanthone, 1,2-naphthoquinone and 1,4-na	aphthoquinone derivatives 17
3.1 ¹ H NMR spectra of compound 102	103
3.2 ¹ H NMR spectra of compound 103	106
3.3 ¹ H NMR spectra of compound 104	108
3.4 ¹ H NMR spectra of compound 105	109
3.5 ¹ H NMR spectra of compound 106	111
3.6 ¹ H NMR spectra of compound 107	112
3.7 ¹ H NMR spectra of compound 108	114
3.8 ¹ H NMR spectra of compound 109	116
3.9 ¹ H NMR spectra of compound 110	117
3.10 ¹ H NMR spectra of compound 111	119
3.11 ¹ H NMR spectra of compound 112	
3.12 ¹ H NMR spectra of compound 113	122
3.13 ¹ H NMR spectra of compound 114	Mai Univ ₁₂₄ rsity
3.14 ¹ H NMR spectra of compound 115	
3.15 ¹ H NMR spectra of compound 116	128

3.16	¹ H NMR spectra of compound 117	129
3.17	¹ H NMR spectra of compound 118	131
3.18	¹ H NMR spectra of compound 119	133
3.19	¹ H NMR spectra of compound 120	135
3.20	¹ H NMR spectra of compound 121	137
3.21	¹ H NMR spectra of compound 122	139
3.22	¹ H NMR spectra of compound 123	144
3.23	¹ H NMR spectra of compound 124	145
3.24	¹ H NMR spectra of compound 125	147
3.25	¹ H NMR spectra of compound 126	149

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

xvi

LIST OF SCHEMES

Scheme		Page
1.1	Synthesis of ferrocenyl compounds 20a-20d	15
1.2	Synthesis of ferrocenyl compounds 21a-21i	15
1.3	Synthesis of ferrocenyl compound 24	16
1.4	Synthesis of rhinacanthone (25) and 1,4-pyranonaphthoquinone (32)	18
1.5	Synthesis of 1,2-pyranonaphthoquinones (26 and 27) and 1,4-	
	pyranonaphthoquinones (33 and 34)	19
1.6	Synthesis of 1,2-pyranonaphthoquinone (28), 1,2-furano	
	naphthoquinones (29 and 30) and 1,4-furanonaphthoquinones (35 and 36)	20
1.7	Synthesis of 1,2-furanonaphthoquinone (31) and	
	1,4-furanonaphthoquinone (37)	21
1.8	Synthetic route used for the preparation of α - and β -furan	
	naphthoquinones (63a-i and 64a-i)	22
1.9	Synthetic of piperine derivatives 65-73	23
1.10	Synthesis of 4,4'-di-O-glycinoyl-curcumin (75), 4,4'-di-O-D-	
	alaninoylcurcumin (76), 4,4'-di-O-piperoyl curcumin (79)	25
1.11	Synthesis of piperic acid (67), p-nitro phenyl ester of piperic acid (80)	
	and piperoyl glycine (81)	26
1.12	Synthesis of 4,4'-di-O-(glycinoyl-di-N-piperoyl)-curcumin (82)	26
1.13	Synthesis of curcumin-4,4'-di- <i>O</i> -β-D-glucopyranoside (84)	27
1.14	Preparation of piperine analogues 85-86	28
	Preparation of the precursor of the cinnamic series 90-92	28
1.16	Preparation of compounds 93-95	29

xvii

1.17	Preparation of compounds 96-99	29
1.18	Preparation of compounds 100-101	30
1.19	The synthetic pathway of the novel naphthoquinone derivatives 102-122	31
1.20	The synthetic pathway of the novel piperine analogues 123-126	32
3.1	Synthesis of compound 102	103
3.2	Mechanism of naphthoquinone derivatives	104
3.3	Synthesis of compound 103	106
3.4	Synthesis of compound 104	107
3.5	Synthesis of compound 105	109
3.6	Synthesis of compound 106	110
3.7	Synthesis of compound 107	112
3.8	Synthesis of compound 108	114
3.9	Synthesis of compound 109	115
3.10	Synthesis of compound 110	117
3.11	Synthesis of compound 111	118
3.12	Synthesis of compound 112	120
3.13	Synthesis of compound 113	122
3.14	Synthesis of compound 114	123
3.15	Synthesis of compound 115	125
3.16	Synthesis of compound 116	127
3.17	Synthesis of compound 117	129
3.18	Synthesis of compound 118	130
3.19	Synthesis of compound 119	132
3.20	Synthesis of compound 120	134

xviii

3.2	1 Synthesis of compound 121	136
3.2	2 Synthesis of compound 122	138
3.2	3 Hydrolysis of piperic acid (67)	140
3.2	4 Mechanism of piperic acid (67) from piperine (10)	140
3.2	5 Preparation of piperic acid chloride (67a)	141
3.2	6 Mechanism of piperic acid chloride (67a)	141
3.2	7 Synthesis of compound 123	143
3.2	8 Mechanism of compounds 123 and 124	143
3.2	9 Synthesis of compound 124	145
3.3	90 Synthesis of compound 125	146
3.3	1 Mechanism of compounds 125 and 126	147
3.3	2 Synthesis of compound 126	148

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

b.p. = Boiling point

cm = Centimeter

calc. = Calcuated (IV) ammonium nitrate

CAN = Cerium (IV) ammonium nitrate

DMSO = Dimethyl sulphoxide

d = Doublets (spectral)

dd = Doublets of doublets (spectral)

dq = Doublets of quartets (spectral)

ESI-MS = Electrospray ionization mass spectrometry

equiv. = Equivalent(s)

Et = Ethyl

 Et_3N = Triethylamine

EtOAc = Ethyl acetate

FT-IR = Furear transfer infrared radiation

g = Gram

HRMS = High resolution mass spectrometry

h = Hour(s)

 IC_{50} = 50% inhibitory concentration

J = Coupling constant

m = Meter

mg = Milligram

Me = Methyl

Megahertz MHz Multiplet (spectral) Minimal inhibitory concentration MIC Minute (s) min Milliliter mL = Milimole mmol Mole mol Melting point m.p. Mass to charge ratio m/z Normality N Nuclear magnetic resonance **NMR** = Thin layer chromatography TLC Part per million (in NMR) ppm Room temperature RT = Singlet (spectral) Tetrahydrofuran THF Triplets (spectral) Chemical shift (ppm) δ °C Degree celsius Percent Wave number (cm⁻¹)

Microgram