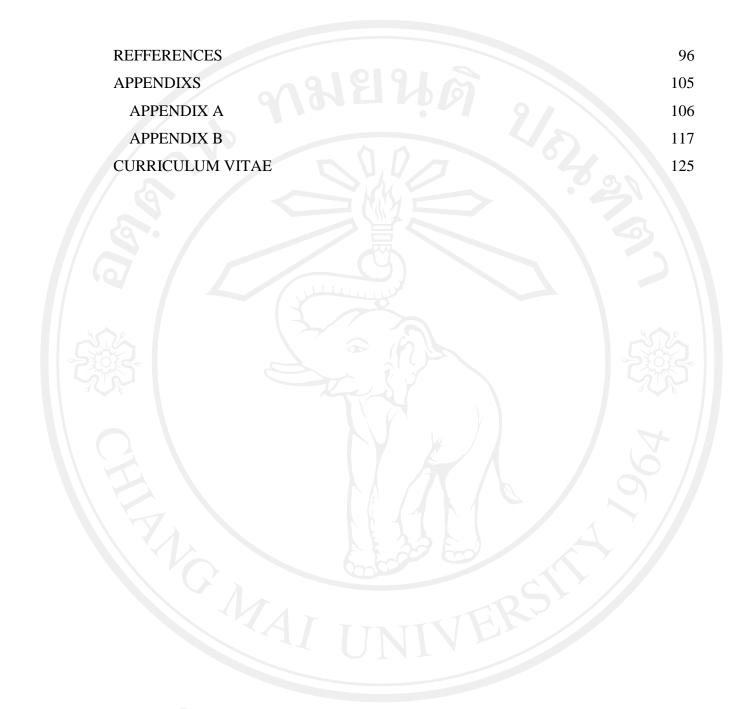
TABLE OF CONTENTS


Page

ACKNOWLE	DGEI	MENTS	iii
ABSTRACT (Engli	sh)	iv
ABSTRACT (Thai)		vi
LIST OF TAB	LES		ixx
LIST OF FIGU	JRES		xv
ABBREVIAT	IONS	AND SYMBOLS	xix
CHAPTER 1	INT	RODUCTION	st
	1.1	Introduction	1
	1.2	Degradation mechanisms	2
	1.3	Polymer Blend	5
		1.3.1 Polymer-Polymer Compatibility	6
		1.3.1.1 Compatible Blends	6
		1.3.1.2 Incompatible Blends	7
		1.3.1.3 Partially Compatible Blends	7
		1.3.2 Prepared of Polymer Blends	7
		1.3.2.1 Solution Blending	7
		1.3.2.2 Melt Mixing	8
	1.4	Experimental Determination of Blend Compatibility	8
		1.4.1 Direct Methods	8
		1.4.1.1 Glass Transition Temperature, T _g	8
		1.4.1.2 Transparency	9
		1.4.1.3 Morphology	9
		1.4.2 Indirect Methods	e ¹⁰ S

1.5	Poly(butylene succinate) (PBS)	10
1.6	Cellulose Acetate Butyrate (CAB)	14
01.7	Polymeric Plasticizer	16
1.8	Literature Reviews	17
1.9	Research Objective	19
CHAPTER 2 EX	PERIMENTAL METHODS AND CHARACTERIZATION	21
2.1	Chemicals, Apparatus and Instruments	21
	2.1.1 Chemicals	21
	2.1.2 Apparatus and Instruments	21
2.2	Characterization of starting material	22
	2.2.1 Materials	22
	2.2.2 Proton Nuclear Magnetic Resonance Spectroscopy	23
	(H ¹ -NMR)	
	2.2.3 Polymer Molecular Weight Determination	27
	2.2.3.1 Dilute-Solution Viscometry	27
2.3	Film Production by Solution Blending	31
	2.3.1 Preparation of Polymer Blend Films	31
	2.3.2 Property Testing of Polymer Blend Films	31
	2.3.2.1 Mechanical Properties	31
	2.3.2.2 Thermal Properties	34
	2.3.2.3 Morphology	35
	2.3.2.4 Optical Properties	36
2.4	Sheet Formation Preparation by Melt-Mixing	36
	2.4.1 Preparation of Polymer Blend Sheets	36
	2.4.2 Property Testing of Polymer Blend	38
	2.4.2.1 Melt-Flow Index	38
	2.4.2.2 Mechanical Properties	39
	2.4.2.3 Thermal Properties	-40
	2.4.2.3.1 Differential Scanning Calorimetry	40
	2.4.2.3.2 Dynamic Mechanical Analysis	40
	2.4.2.3.3 Thermogravimetric Analysis	42

	2.4.2.4 Morphology	43
	2.4.2.5 Optical Properties	43
	2.4.2.6 Biodegradation under Laboratory-Scale	43
CHAPTER 3	FILM FORMATION BY SOLUTION BLENDING	47
	3.1 Property of Starting Film Materials	47
	3.2 Binary and Ternary Blend Preparation by Solution-Casting	48
	3.2.1 Mechanical Properties	48
	3.2.2 Thermal Properties	52
	3.2.3 Morphology	57
	3.2.4 Optical Properties	60
CHAPTER 4	SHEET FORMATION BY MELT-MIXING	62
	4.1 Properties of Starting Material in Flat Sheet Form	62
	4.2 Binary and Ternary Blend Preparation by Melt-Mixing	62
	4.2.1 Melt Flow Index	63
	4.2.2 Mechanical Properties	65
	4.2.3 Thermal Properties	70
	4.2.4 Dynamic Mechanical Properties	73
	4.2.5 Thermogravimetric Analysis	78
	4.2.6 Morphology	83
	4.2.7 Optical Properties	85
	4.2.8 Biodegradation under Laboratory-Scale Composting	87
	Conditions	
CHAPTER 5	CONCLUSIONS	93
	5.1 Solution Blending	93
	5.2 Melt Blending	ersity

Х

<mark>ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table		Page
1.1	Properties and techniques used for measurement of the T_g	8
1.2	Indirect methods of polymer compatibility determination	10
2.1	Chemicals used in this research project	21
2.2	Apparatus and instruments used this research project	22
2.3	Interpretation of the H ¹ -NMR spectra of the PBS commercial	24
2.4	Interpretation of the H ¹ -NMR spectra of the CAB commercial	25
2.5	Interpretation of the H ¹ -NMR spectra of the Paraplex G40	26
	Commercial	
2.6	Dilute-solution viscosity data using chloroform as solvent at	28
	25 °C (±0.1 °C) for the PBS commercial	
2.7	Dilute-solution viscosity data using ethyl acetate as solvent at	-29
	25 °C (±0.1 °C) for the CAB commercial	
2.8	Molecular weight and intrinsic viscosity data of the starting	30
	Material	
2.9	Applications of DMA and Structure-Property Characterization	41
2.10	Mass mixing of compost and sample powder is used testing	46
3.1	PBS/CAB compositions prepared in chloroform	48
3.2	Mechanical properties of PBS, CAB and various PBS/CAB	49
3.3	PBS/CAB blends compositions with 10, 20 and 30 % by weight	49
	of Paraplex G40 prepared in chloroform at room temperature	
3.4	Tensile strength of various PBS/CAB blends without and with	50
	Paraplex G40 10, 20, 30% by weight	
3.5	% Elongation at break of various PBS/CAB blends without and	51
	with Paraplex G40 10, 20, 30% by weight	
3.6	Thermal properties of PBS, CAB and various PBS/CAB blends	53
3.7	Thermal properties of PBS, CAB and various PBS/CAB blends	55
	with 10% by weight Paraplex G40	

3.8	Thermal properties of PBS, CAB and various PBS/CAB blends	56
	with 20% by weight Paraplex G40	
3.9	SEM images of various PBS/CAB blend without and with 10,	58
	20% by weight Paraplex G40	
3.10	Transmittance of various PBS/CAB blends without and with 10,	60
	20% by weight Paraplex G40	
4.1	PBS/CAB blends compositions with 1 % by weight of Paraplex	62
	G40 prepared by melt-mixing	
4.2	Melt flow index of various PBS/CAB blends	63
4.3	Melt flow index of various PBS/CAB blends with 10% Paraplex	64
	G40	
4.4	Mechanical properties of PBS, CAB and various PBS/CAB	66
	blends	
4.5	Mechanical properties of PBS, CAB and various PBS/CAB	68
	blends with 10% Paraplex G40	
4.6	Thermal properties of PBS, CAB and various PBS/CAB blends	70
	with Paraplex G40 10 % by weight	
4.7	Temperature of tan δ (T _a) = T _g of PBS, CAB and various	74
	PBS/CAB blends	
4.8	Temperature of tan δ (T _a) = T _g of PBS, CAB and various	76
4.9	Range of degradation temperature (T_d) of PBS, CAB and	79
	various PBS/CAB blends	
4.10	Range of degradation temperature (T _d) of various PBS/CAB	79
	blends with 10% Paraplex G40	
4.11	SEM images of various PBS/CAB blend with 10% by weight	84
	Paraplex G40	
4.12	Transmittance of various PBS/CAB blends with 10% Paraplex	85
	G40	
4.13	Evaluation volatile solid, organic carbon and carbon dioxide	88
	theoretical (ThCO ₂) of all the test substances	

4.114	Degree of biodegradation of cellulose, PBS, and	92
	PBS/CAB/Paraplex G40 blend as measured by the cumulative	
	• production of ${}^{14}CO_2$	
A.1	The characteristics of compost inoculum	108
A.2	The composition of compost and sample/reference in the	111
	bioreactors	
A.3	Evaluation volatile solid, organic carbon and theoretical carbon	n 112
	dioxide (ThCO2) of all the test substances	
A.4	Cumulative CO2 production and %biodegradation of blank,	113
	cellulose and LDPE	
A.5	Cumulative CO2 production and %biodegradation of blank,	114
	PBS, sample (PBS/CAB/Paraplex G40) and CAB	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure		Page
1.1	Life's cycle of biodegradable plastic	1
1.2	A schematic representation of the dependence of T_g on	9
	composition in binary polymer blends	
1.3	Reactant of PBS monomer preparation from fermentation process	12
1.4	Chemical structures of PBS, CAB and Paraplex G40 for three- component blending	20
2.1	400 MHz H ¹ -NMR spectrum of PBS commercial in CDCl ₃ as	24
CARS-	solvent at 21°C	2015
2.2	400 MHz H^1 -NMR spectrum of CAB commercial in CDCl ₃ as solvent at 21°C	26
2.3	400 MHz H^1 -NMR spectrum of Paraplex G40 commercial in CDCl ₃ as solvent at 21 °C	27
2.4	Reduced (η_{red}) and inherent (η_{inh}) viscosity-concentration plots for PBS commercial	28
2.5	Reduced (η_{red}) and inherent (η_{inh}) viscosity-concentration plots for CAB commercial	29
2.6	Typical stress-strain curves	32
2.7	Lloyd Instruments LRX universal mechanical testing machine used for tensile testing according to the ASTM D882-91	33
2.8	The Mettle Toledo DSC 822 ^e differential scanning calorimeter used for thermal transition	34
	The Jeol JSM 5910-LV scanning electron microscope used for morphology	35
Copyr ^{2.10}	The Perkin-Elmer Lambda25 UV-Visible spectrometer used for transparency measurements	³⁶ rsity
All r		

2.11	The HAAKE Polylab internal mixer used in melt-mixing method	37
2.12	The compression molding LabTech Engineering used for	37
	preparation flat sheet polymer	
2.13	The Lloyd Instruments MFI-10 melt flow indexer used for melt	38
	flow measurement	
2.14	The Instron 55R4502 universal tensile testing machine used for	39
	tensile testing according to the ASTM D638 Type V	
2.15	The Metler-Toledu SDTA861 ^e dynamic mechanical analyzer used	40
	for dynamic mechanical properties	
2.16	The Perkin-Elmer (TGA7) thermogravimetric analyzer used for	42
	thermal degradation	
2.17	Physical property of sample test for biodegradation under	45
	Laboratory-Scale composting conditions	
2.18	Set-up using carbon dioxide-trapping apparatus	46
3.1	Stress-strain curve of CAB film	48
3.2	Tensile strength and %elongation at break of various PBS/CAB	50
	blend compositions	
3.3	Tensile strength of various PBS/CAB without and with Paraplex	51
	G40 10, 20, 30% by weight	
3.4	% Elongation at break of various PBS/CAB without and with	52
	Paraplex G40 10, 20, 30% by weight	
3.5	DSC thermograms of various PBS/CAB blends without Paraplex	54
	G40	
3.6	DSC thermograms of various PBS/CAB blends with Paraplex G40	55
	10% by weight	
3.7	DSC thermograms of various PBS/CAB blends with Paraplex G40	56
	20% by weight	
3.8	T _g of PBS/CAB blends without and with 10, 20% by weight	57
	Paraplex G40 as function of PBS/CAB composition	
3.9	Transmittance of various PBS/CAB blends	61

3.10	Transmittance of various PBS/CAB blends without and with 10%	61
	by weight Paraplex G40 as a function of PBS/CAB Compositions	
4.1	Melt flow index of various PBS/CAB blends	64
4.2	Melt flow index of various PBS/CAB	65
4.3	Mechanical properties of various PBS/CAB blends	67
4.4	Mechanical properties of PBS/CAB blends without and with add	68
	10% by weight Paraplex G40 as a function of PBS/CAB	
	compositions	
4.5	Mechanical properties PBS/CAB blends without and with add 10	69
	% by weight of Paraplex G40 as a function of PBS/CAB	
	compositions	
4.6	DSC thermograms of polymer compounds	72
4.7	T_g of PBS/CAB blends with 10% by weight Paraplex G40 as	72
	function of PBS/CAB composition	
4.8	Dynamic mechanical relaxation behavior composition of PBS/CAB	74
	blends sheets	
4.9	Dynamic mechanical relaxation behavior composition of	78
	PBS/CAB/Paraplex G40 blends sheets	
4.10	Mass loss (TG%) and derivative mass loss (DTG) vs temperature	80
	with heating rate 50°C/min	
4.11	TG curves of PBS, CAB and various PBS/CAB blends	81
4.12	Mass loss (TG%) and derivative mass loss (DTG) vs temperature	82
	with heating rate 50°C/min	
4.13	TG curves of PBS, CAB and various PBS/CAB blends with	83
	10%Paraplex G40	
4.14	Transmittance of various PBS/CAB blends	86
4.15	Transmittance of various PBS/CAB/Paraplex G40 blends	86
4.16	Transmittance of various PBS/CAB blends with 10% by weight	87
	Paraplex G40 as a function of PBS/CAB compositions	
4.17	Net cumulative CO_2 production as a function of time	90
4.18	Net cumulative CO_2 production as a function of time	$V_{91} \mathbf{e} 0$
r.10 =	The cumulative CO2 production as a function of time	71

4.19	Degree of biodegradation as a function of time	91
A.1	Schematic of set-up using carbon dioxide-trapping apparatus	108
A.2	Physical appearance of sample testing for testing (< 1000 μ m)	109
A.3	Net cumulative CO ₂ production as a function of time	115
A.4	Net cumulative CO ₂ production as a function of time	115
A.5	Degree of biodegradation as a function of time	116

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

	PBS	poly(butylene succinate)
	CAB	cellulose acetate butyrate
	Paraplex G40	polyester adipate grade G40
	¹ H-NMR	proton nuclear magnetic resonance spectroscopy
	DSC	differential scanning calorimetry
30%	SEM	scanning electron microscopy
-502	DMA	dynamic mechanical analysis
20°	MFI	melt flow index
	TGA	thermogravimetric analysis
	ASTM	American Society of Testing and Materials
	ISO	International Standard Organization
T I	Tg	glass transition temperature
	Tc	crystallisation temperature
	T _m	crystalline melting point
	Td	degradation temperature
	\overline{M}_n	number-average molecular weight
	\overline{M}_{w}	weight-average molecular weight
ลิขสทร	M	viscosity-average molecular weight
Convright	ΔG_p	free energy change of polymerisation
Copyright		
All r		

$\Delta {{H_m}^*}$	heat of melting of a 100% crystalline sample
%T	% transmittance
EB	%elongation at break
E'	storage modulus
<i>E</i> "	loss modulus
tan δ	loss tangent (E''/E')
°C	degrees Celcius
MPa	megapascal
kV	kilovolt
mm	millimeter
μm	micrometer
nm	nanometer
mg	milligram
min	minute
hr	hour
cm ⁻¹	wavenumber
g	gram
ml	millilitre
g/mol	gram per mole
mol. wt.	molecular weight
MHz	megahertz
δ	chemical shift (NMR)
ppm	part per million g Mai University
	is reserved

J/g	joules per gram
dl/g	decilitres per gram
%w/w	percent weight by weight
% w/v	percent weight by volume
%wt	percent by weight
n/d	not detectable
ThCO ₂	carbon dioxide theoretical
M _{TOT}	total dry solid
C _{TOT}	total carbon content
(CO ₂) _T	total weight of CO ₂ in sample
(CO ₂) _B	total weight of CO ₂ in blank

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved