TABLE OF CONTENTS

Page

15

Acknowledgements		iii	
Abstract (English)		v	
Abstract (Thai)		viii	
List of tables		xvi	
List of figures		xvii	
Abbreviations and Symbols		xxiv	
Chapter 1 Introduction		1	
1.1 Conducting	polymers	1	
1.1.1	Conduction mechanisms	3	
1.1.2	Synthesis of conducting polymers	5	
1.1.3	Step-growth polymerization	6	
1.1.4	Chain-growth polymerizations	7	
1.1.5	Ring-opening metathesis polymerization	7	
1.1.6	Electrochemical synthesis	8	
1.1.7	Polyaniline	10	
	Electrochemical set up	13	
	1.1.8.1 Working electrodes or indicator electrodes	14	

1.1.8.2 Counter or auxiliary electrode

	1.1.8.3 Reference electrodes	15
	1.1.8.4 Silver/silver chloride reference electrode	16
	1.1.8.5 Saturated calomel reference electrode	16
	1.1.8.6 Pseudo-reference electrode	17
	1.1.8.7 Silver/silver ion electrode	17
	1.1.8.8 Electrolyte solution	18
1.2 Cyclic voltar	mmetry	019
1.2.1	Cyclic voltammetry primer	20
1.2.2	Mechanistic complications	23
	1.2.2.1 Nernstian (reversible) behavior	23
	1.2.2.2 The Electrochemical Chemical (EC)	26
	mechanism	
	1.2.2.3 Dealing with an EC mechanism	27
1.3 Surface Plas	mon Resonance Spectroscopy	29
1.3.1	Theoretical background	29
1.3.2	The architecture of experimental setup	30
1.3.3	SPR for investigation of the adsorption processes	32
1.3.4	Electrochemical-Surface Plasmon Resonance	35
	Spectroscopy (EC-SPR)	

1.4 Biomolecules (such as catecholamine, uric acid and ascorbic acid)	36
1.4.1 Catecholamine	36
1.4.2 Adrenaline	40
1.4.3 Uric acid	42
1.4.4 Ascorbic acid	44
1.5 Single-wall carbon nanotubes (SWNTs)	46
1.6 ZnO nanoparticles	52
1.7 Literature review	54
1.8 Research objectives	67
Chapter 2 Experimental	69
2.1 Chemicals	69
2.2 Instruments	70
2.2.1 Thermal evaporator	72
2.3 Electropolymerization of 2ABA on gold electrode	73
2.4 Fabrication of the P2ABA/SWNT composites thin film	74
2.5 Fabrication of the P2ABA/ZnO nanoparticles composites thin film	76
2.6 Characterization of the P2ABA thin films	78

xiii

TABLE OF CONTENTS (Continued)

2.6.1 Quartz crystal microbalance with dissipation	78
(QCM-D) measurement	
2.6.2 UV-vis absorption properties of P2ABA thin film	79
2.6.3 Fourier transforms infrared spectroscopy attenuated	80
total reflectance (FTIR/ATR)	
2.6.3.1 KBr Spectra determinations	81
2.6.3.2 ATR Spectra determinations	81
2.6.4 Atomic Force Microscopy (AFM) Analysis	82
2.7 Detection of adrenaline, UA and AA	83
2.7.1 Detection of adrenaline in the presence of UA and A.	A 83
2.7.2 Detection of UA and AA	84
2.7.3 Detection of UA on the P2ABA/ZnO nanoparticles	84
composites thin film	
2.7.4 Comparison of the P2ABA/ZnO nanoparticles	84
composite and P2ABA/SWNTs composite thin	
films on the detection of UA	

Chapter 3	Res	ults and discussion	85
	3.1	EC-SPR measurement for electropolymerization of 2-ABA	85
	3.2	Detection of adrenaline on the P2ABA thin film	87
	3.3	QCM-D measurement	94
	3.4	UV-vis absorption properties of P2ABA thin film before and	96
		after adsorption of adrenaline	
	3.5	Atomic force microscopy (AFM) analysis	98
	3.6	Fourier transforms infrared spectroscopy attenuated total	99
		reflectance (FTIR/ATR) analysis	
	3.7	EC-SPR spectroscopy measurement of P2ABA/SWNTs	101
		composites thin film formation	
	3.8	Detection of UA by EC-SPR spectroscopy of P2ABA/SWNTs	103
		composites thin film	
	3.9	Detection of UA by P2ABA/carboxylated SWNTs and	105
		P2ABA/RawSWNTs composites thin film	
	3.10	Detection of adrenaline on the P2ABA/ZnO nanoparticles	106
		composites thin film	
	3.11	Detection of UA on the P2ABA/ZnO nanoparticles composites	108
		thin film	

Page

111

115

129

3.12 Comparison of the P2ABA/ZnO nanoparticles composite and 109

P2ABA/SWNTs composite thin films on the detection of UA

Chapter 4

Conclusion

References

Curriculum Vitae

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table

Page

1.1	Chemical structures of some of the most common conjugated polymers	2
1.2	Comparison of chemical and electrochemical CPs polymerization	6
1.3	Mechanical properties of engineering fibers	50
1.4	Transport properties of conductive materials	51
2.1	Chemical, purity, molecular formula, molecular weight and company	69

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

xvi

LIST OF FIGURES

xvii

งมุลหมู่

Figure

1.1	Band structure in an electronically conducting polymer	3
1.2	General schemes for a ring-opening polymerization	8
1.3	Mechanism for heterocycle polymerization via electrochemical synthesis	10
	X = NH, S, or O. This pathway is initiated by the oxidation of a monomer	
	at the working electrode to give a cation species, which can react with a	
	neutral monomer species or radical cation oligomeric species to generate	
	the polymer Common vinyl polymers synthesized by chain-growth	
	polymerization	
1.4	Main PANI structure $n + m = 1$, $x =$ degree of polymerization	10
1.5	PANI (emeraldine) salt in the alkaline medium convert to PANI	11
	(emeraldine) base. A^- is an alkali ion	
1.6	Electropolymerization setup	14
1.7	Normal wave form of cyclic voltammetry	21
1.8	The basic shape of the current response for a cyclic voltammetry	22
1.9	Cyclic voltammograms for ferrocene carboxylic acid at different scan rate	24
1.10	The basic shape of cyclic voltammograms of EC mechanism with different	25
	different first-order rate constant (k _f)	

xviii มยนดิ

LIST OF FIGURES (Continued)

	LIST OF FIGURES (Continued)				
	525				
Figur	e	Page			
1.11	The basic shape of cyclic voltammograms of EC mechanism with	27			
	different scan rates				
1.12	The basic shape of cyclic voltammograms of EC mechanism with	29			
	different scan rates				
1.13	Two concept for experimental setup of surface plasmon resonance	32			
	spectroscopy (a) The Otto-configuration (b) Kretschman configuration				
	with attenuated total internal reflection (ATR) construction				
1.14	Schematic of the experimental system for SPS reflectivity curve obtained	34			
	from a bare Au-film and self-assembled monolayer				
1.15	Schematic diagram showing the experimental set up of EC-SPR	35			
1.16	Chemical structure of catechol and catecholamines	37			
1.17	Synthesis of catecholamines (adrenaline, noradrenaline, dopamine)	38			
	from tyrosine				
1.18	Chemical structure of uric acid	42			
1.19	Chemical structure of ascorbic acid	45			
1.20	Chemical structure of (a) ascorbic acid (reduced form of Vitamin C) and	46			
	(b) dehydroascorbic acid (oxidized form of Vitamin C)				

LIST OF FIGURES (Continued)					
Figur	e	Page			
1.21	Tube chirality explained on graphene sheet and the graphite sheet is rolled	48			
	into a nanotube				
1.22	Kataura plot of the energy of an electronic transition decreases as the	49			
	diameter of the nanotube increases				
2.1	EC-SPR instrument setup	72			
2.2	Schematic diagram showing vacuum evaporation device	73			
2.3	Immobilization of P2ABA thin film on gold film electrode by	74			
	electropolymerization of 50 mM 2ABA monomer in 0.5 M H ₂ SO ₄				
	followed by cycling the potential between -0.2 and 0.1 V vs. Ag/AgCl				
	for 10 cycles at a scan rate 20 mV/s				
2.4	EC-SPR setup in the Kretschmann configuration for using surface	76			
	plasmon resonance and immobilization of P2ABA/SWNTs thin film				
	on gold film electrode and the structure of PABA/SWNTs reaction				
	with uric acid				
2.5	Immobilization of P2ABA thin film on gold film electrode and the	78			
	structure of PABA/ZnO/Au electrode for the detection some biomolecules				

xix

 2.6 QCM-D instrument 2.7 V-650 UV-vis Spectrophotometer 2.8 FTIR/ATR instrument 2.9 ATR measurement 2.10 Block diagram of AFM 3.1 Cyclic voltammograms of 50 mM 2ABA monomer on gold electrode by cycling the potential between -0.2 and 0.1 V vs. Ag/AgCl for 10 cycles at a scan rate of 20 mV/s to form P2ABA film 3.2 Angular-reflectivity curves before and after electropolymerization of P2ABA thin film on gold-coated high reflective index glass substrate 3.3 The specific reaction of adrenaline to P2ABA film 3.4 SPR reflectivity responses upon injection of 1 mM adrenaline into P2ABA 89 and PANI thin film at (a) constant potential of 0.5 V and (b) an open circuit potential 3.5 SPR reflectivity response after injection of 1 mM each of adrenaline, UA and AA into P2ABA thin film at a constant applied potential of 0.5 V 	Figur	e la	Page
 2.7 V-650 UV-vis Spectrophotometer 2.8 FTIR/ATR instrument 2.9 ATR measurement 2.10 Block diagram of AFM 3.1 Cyclic voltammograms of 50 mM 2ABA monomer on gold electrode by cycling the potential between -0.2 and 0.1 V vs. Ag/AgCl for 10 cycles at a scan rate of 20 mV/s to form P2ABA film 3.2 Angular-reflectivity curves before and after electropolymerization of P2ABA thin film on gold-coated high reflective index glass substrate 3.3 The specific reaction of adrenaline to P2ABA film 3.4 SPR reflectivity responses upon injection of 1 mM adrenaline into P2ABA 89 and PANI thin film at (a) constant potential of 0.5 V and (b) an open circuit potential 3.5 SPR reflectivity response after injection of 1 mM each of adrenaline, UA and AA into P2ABA thin film at a constant applied potential of 0.5 V 	2.6	QCM-D instrument	79
 2.8 FTIR/ATR instrument 2.9 ATR measurement 2.10 Block diagram of AFM 3.1 Cyclic voltammograms of 50 mM 2ABA monomer on gold electrode by cycling the potential between -0.2 and 0.1 V vs. Ag/AgCl for 10 cycles at a scan rate of 20 mV/s to form P2ABA film 3.2 Angular-reflectivity curves before and after electropolymerization of P2ABA thin film on gold-coated high reflective index glass substrate 3.3 The specific reaction of adrenaline to P2ABA film 3.4 SPR reflectivity responses upon injection of 1 mM adrenaline into P2ABA 89 and PANI thin film at (a) constant potential of 0.5 V and (b) an open circuit potential 3.5 SPR reflectivity response after injection of 1 mM each of adrenaline, UA and AA into P2ABA thin film at a constant applied potential of 0.5 V 	2.7	V-650 UV-vis Spectrophotometer	80
 2.9 ATR measurement 2.10 Block diagram of AFM 3.1 Cyclic voltammograms of 50 mM 2ABA monomer on gold electrode by cycling the potential between -0.2 and 0.1 V vs. Ag/AgCl for 10 cycles at a scan rate of 20 mV/s to form P2ABA film 3.2 Angular-reflectivity curves before and after electropolymerization of P2ABA thin film on gold-coated high reflective index glass substrate 3.3 The specific reaction of adrenaline to P2ABA film 3.4 SPR reflectivity responses upon injection of 1 mM adrenaline into P2ABA 89 and PANI thin film at (a) constant potential of 0.5 V and (b) an open circuit potential 3.5 SPR reflectivity response after injection of 1 mM each of adrenaline, UA and AA into P2ABA thin film at a constant applied potential of 0.5 V 	2.8	FTIR/ATR instrument	81
 2.10 Block diagram of AFM 3.1 Cyclic voltammograms of 50 mM 2ABA monomer on gold electrode by cycling the potential between -0.2 and 0.1 V vs. Ag/AgCl for 10 cycles at a scan rate of 20 mV/s to form P2ABA film 3.2 Angular-reflectivity curves before and after electropolymerization of P2ABA thin film on gold-coated high reflective index glass substrate 3.3 The specific reaction of adrenaline to P2ABA film 3.4 SPR reflectivity responses upon injection of 1 mM adrenaline into P2ABA 89 and PANI thin film at (a) constant potential of 0.5 V and (b) an open circuit potential 3.5 SPR reflectivity response after injection of 1 mM each of adrenaline, UA and AA into P2ABA thin film at a constant applied potential of 0.5 V 	2.9	ATR measurement	82
 3.1 Cyclic voltammograms of 50 mM 2ABA monomer on gold electrode by cycling the potential between -0.2 and 0.1 V vs. Ag/AgCl for 10 cycles at a scan rate of 20 mV/s to form P2ABA film 3.2 Angular-reflectivity curves before and after electropolymerization of P2ABA thin film on gold-coated high reflective index glass substrate 3.3 The specific reaction of adrenaline to P2ABA film 3.4 SPR reflectivity responses upon injection of 1 mM adrenaline into P2ABA 89 and PANI thin film at (a) constant potential of 0.5 V and (b) an open circuit potential 3.5 SPR reflectivity response after injection of 1 mM each of adrenaline, UA and AA into P2ABA thin film at a constant applied potential of 0.5 V 	2.10	Block diagram of AFM	83
 by cycling the potential between -0.2 and 0.1 V vs. Ag/AgCl for 10 cycles at a scan rate of 20 mV/s to form P2ABA film 3.2 Angular-reflectivity curves before and after electropolymerization of P2ABA thin film on gold-coated high reflective index glass substrate 3.3 The specific reaction of adrenaline to P2ABA film 3.4 SPR reflectivity responses upon injection of 1 mM adrenaline into P2ABA 89 and PANI thin film at (a) constant potential of 0.5 V and (b) an open circuit potential 3.5 SPR reflectivity response after injection of 1 mM each of adrenaline, UA and AA into P2ABA thin film at a constant applied potential of 0.5 V 	3.1	Cyclic voltammograms of 50 mM 2ABA monomer on gold electrode	86
 cycles at a scan rate of 20 mV/s to form P2ABA film 3.2 Angular-reflectivity curves before and after electropolymerization of P2ABA thin film on gold-coated high reflective index glass substrate 3.3 The specific reaction of adrenaline to P2ABA film 3.4 SPR reflectivity responses upon injection of 1 mM adrenaline into P2ABA 89 and PANI thin film at (a) constant potential of 0.5 V and (b) an open circuit potential 3.5 SPR reflectivity response after injection of 1 mM each of adrenaline, UA and AA into P2ABA thin film at a constant applied potential of 0.5 V 		by cycling the potential between -0.2 and 0.1 V vs. Ag/AgCl for 10	
 3.2 Angular-reflectivity curves before and after electropolymerization of P2ABA thin film on gold-coated high reflective index glass substrate 3.3 The specific reaction of adrenaline to P2ABA film 3.4 SPR reflectivity responses upon injection of 1 mM adrenaline into P2ABA 89 and PANI thin film at (a) constant potential of 0.5 V and (b) an open circuit potential 3.5 SPR reflectivity response after injection of 1 mM each of adrenaline, UA and AA into P2ABA thin film at a constant applied potential of 0.5 V 		cycles at a scan rate of 20 mV/s to form P2ABA film	
 of P2ABA thin film on gold-coated high reflective index glass substrate 3.3 The specific reaction of adrenaline to P2ABA film 3.4 SPR reflectivity responses upon injection of 1 mM adrenaline into P2ABA 89 and PANI thin film at (a) constant potential of 0.5 V and (b) an open circuit potential 3.5 SPR reflectivity response after injection of 1 mM each of adrenaline, UA and AA into P2ABA thin film at a constant applied potential of 0.5 V 	3.2	Angular-reflectivity curves before and after electropolymerization	86
 3.3 The specific reaction of adrenaline to P2ABA film 3.4 SPR reflectivity responses upon injection of 1 mM adrenaline into P2ABA 89 and PANI thin film at (a) constant potential of 0.5 V and (b) an open circuit potential 3.5 SPR reflectivity response after injection of 1 mM each of adrenaline, UA and AA into P2ABA thin film at a constant applied potential of 0.5 V 		of P2ABA thin film on gold-coated high reflective index glass substrate	
 3.4 SPR reflectivity responses upon injection of 1 mM adrenaline into P2ABA 89 and PANI thin film at (a) constant potential of 0.5 V and (b) an open circuit potential 3.5 SPR reflectivity response after injection of 1 mM each of adrenaline, UA and AA into P2ABA thin film at a constant applied potential of 0.5 V 	3.3	The specific reaction of adrenaline to P2ABA film	87
 89 and PANI thin film at (a) constant potential of 0.5 V and (b) an open circuit potential 3.5 SPR reflectivity response after injection of 1 mM each of adrenaline, UA and AA into P2ABA thin film at a constant applied potential of 0.5 V 	3.4	SPR reflectivity responses upon injection of 1 mM adrenaline into P2ABA	
 potential 3.5 SPR reflectivity response after injection of 1 mM each of adrenaline, UA and AA into P2ABA thin film at a constant applied potential of 0.5 V 		89 and PANI thin film at (a) constant potential of 0.5 V and (b) an open circ	cuit
3.5 SPR reflectivity response after injection of 1 mM each of adrenaline, UA and AA into P2ABA thin film at a constant applied potential of 0.5 V		potential	
and AA into P2ABA thin film at a constant applied potential of 0.5 V	3.5	SPR reflectivity response after injection of 1 mM each of adrenaline, UA	90
		and AA into P2ABA thin film at a constant applied potential of 0.5 V	

XX

Page Figure 92 3.6 The SPR reflectivity result of P2ABA film after reaction with 1 mM each of adrenaline, UA and AA at constant applied potentials of (a) -0.2 V and (b) an open circuit potential 3.7 SPR reflectivity responses upon injection of 1 mM adrenaline into 93 P2ABA thin film at -0.2, open circuit potential, and 0.5 V Calibrated double-logarithmic plots of the change of the reflectivity as 94 3.8 a function of adrenaline concentration 3.9 QCM-D response upon injection of 1 mM, 100 µM, 10 µM, and 95 1 µM adrenaline into P2ABA thin film at an open circuit potential 3.10 QCM-D response upon injection of 1 mM adrenaline into P2ABA thin film 96 compared with UA and AA at an open circuit potential 3.11 97 (a) UV-vis spectrum of each material in PBS solution and (b) after the reaction with 1 mM each of adrenaline, UA and AA at a constant applied potential of 0.5 V 3.12 AFM images of P2ABA film (a) after binding reaction with adrenaline at 99 constant applied potentials of (b) -0.2 V, (c)open circuit and (d) 0.5 V 3.13 FTIR/ATR spectra of bare gold and P2ABA thin film 100

xxi

	LIST OF FIGURES (Continued)	
Figur	e	Page
3.14	FTIR/ATR spectra of P2ABA thin film after the reaction with 1 mM	101
	adrenaline at an open circuit potential	
3.15	SPR angular reflectivity curves of bare gold, P2ABA (after electro-	102
	polymerization) and P2ABA/SWNTs composites thin film	
	(after carboxylated SWNTs assembled on the P2ABA thin film).	
3.16	Cyclic voltammograms of P2ABA/SWNTs composites and P2ABA	103
	thin film in PBS solution	
3.17	SPR reflectivity response upon injection of 1mM UA and AA into	104
	P2ABA/SWNTs composites thin film at constant applied potential of 0.5 V	
3.18	The current response upon injection of 1 mM UA and AA into	104
	P2ABA/SWNTs composites thin film at a constant applied potential	
	of 0.5 V	
3.19	SPR reflectivity responses upon injection of 1 mM UA into P2ABA,	105
	P2ABA/RawSWNTs and P2ABA/COOH–SWNTs composite thin films	
3.20	SPR reflectivity responses upon injection 1 mM each of adrenaline, UA	107
	and AA into P2ABA/ZnO nanoparticles composites thin film at a constant	
	applied potential of 0.5 V	

xxii มยนดิ

xxiii

LIST OF FIGURES (Continued)

Figure

Page

3.21	SPR reflectivity response upon injection 1 mM adrenaline into	108		
	P2ABA/ZnO nanoparticles composites and P2ABA thin film at a			
	constant applied potential of 0.5 V			
3.22	SPR reflectivity response upon injection of 1 mM UA and AA into	109		
	P2ABA/ZnO nanoparticles composites thin film at a constant applied			
	potential of 0.5 V			
3.23	(a) SPR reflectivity and (b) current responses upon injection of 1 mM UA	110		
	into P2ABA/ZnO nanoparticles composite and P2ABA/SWNTs			

composite thin films at a constant applied potential of 0.5 V

<mark>ລິບສິກສົນหາວົກຍາລັຍເຮີຍວໃหມ່</mark> Copyright[©] by Chiang Mai University All rights reserved

xxiv

ABBREVIATIONS AND SYMBOLS

Å	Angstrom
AA	Ascorbic acid
AFM	Atomic force microscopy
ATR	Attenuated Total Internal Reflection
A-IgG	Anti-human Immunoglobulin G (Feb specific)
BLM	Bilayer lipid membrane
°C	Celsius degree
СА	Catecholamine
СР	Conjugated polymer
CPE	Carbon paste electrode
CV	Cyclic voltammetry
СТАВ	Cation surfactant cetyltrimethyl ammonium bromide
DA	Dopamine
EC-SPR	Electrochemical-surface plasmon resonance
EC-QCM	Electrochemical quartz crystal microbalance
E_g	Energy gap
EA-HCl	Ethanolamine hydrochloride
EDC	1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide
	Hydrochloride reserve

e.g.	Exempli gratia (for example)
FETs	Field effect transistors
FTIR/ATR	Fourier transforms infrared spectroscopy attenuated total
	reflectance
fmol	A billion of a millionth (10^{-15}) of a mole
НОМО	Highest occupied molecular orbital
hr.	Hour
ICP	Intrinsically conductive polymer
IgG	Immunoglobulin G
ІТО	Indium-Tin Oxide
k_{f}	First order rate constant
LbL	Layer by layer
LUMO	Lowest occupied molecular orbital
μm	Micrometer
mL	Milliliter
mV/ sec	Millivolt/second
min	Minute
M	Molarity
nM	Nanomolar
NHS	N-hydroxysuccinimide
OLEDs	Light-emitting diodes

XXV

PANI	Polyaniline
РЗНТ	Poly(3-hexylthiophene-2,5diyl)
PBS	Phosphate buffer saline
P2ABA	Poly(2-aminobenzylamine)
P2ABA/SWNTs	Poly(2-aminobenzylamine)/single wall carbon nanotube
P2ABA/ZnO nanoparticles	Poly(2-aminobenzylamine)/ZnO nanoparticles
PEDOT	Poly(3,4-ethylenedioxythiophene)
рМ	Picomolar
PPy	Polypyrrole
PPy/PPa	Poly(pyrrole-co-pyrrolepropylic acid)
РТ	Polythiophene
QCM-D	Quartz crystal microbalance with dissipation
ROMP	Ring-opening metathesis polymerization
sec	Second
SAMs	Self-assembled monolayers
SPR	Surface plasmon resonance
UA	Uric acid
UV-vis	Ultraviolet-visible
v	Volts
XPS	X-ray photoelectron spectroscopy
^λ riσh	Wavelength