TABL	E OF CONTENTS	
	Page)
ACKNOWLEDGEMENTS	iii	
ABSTRACT (in English)	iv	
ABSTRACT (in Thai)	vi	
TABLE OF CONTENTS	viii	
LIST OF TABLES	xv	
LIST OF FIGURES	xvii	
LIST OF SCHEMES	xx	
ABBREVIATIONS AND SYMBO	LS xxiii	
CHAPTER 1 INTRODUCTION		
1.1 Overviews of TADDOLs		
1.2 Asymmetric reaction	3	
1.3 Optical activity of organic com	pounds 6	
1.3.1 The polarimeter	6	
1.3.2 Specific rotation	7	
1.3.3 Enantiomeric excess	8	
1.4 Literature reviews	9	
1.4.1 TADDOLs	9	
1.4.2 TADDOLs-hydroperoxi	de 11	
1.4.3 Titanium–TADDOLs co	mplex 14	
1.4.4 Phosphorus-TADDOLs	complex 16	
1.4.5 Synthesis and application	n of aminoalcohols 17	
1.4.5.1 1,2-aminoalcoh	ols 17	
1.4.5.2 1,3-aminoalcoh		
1.4.5.3 1,4-aminoalcoh	ols 24	
1.5 Aims and research objectives		

viii

C	CHAPTER 2 EXPERIMENTAL				
2.	1 P	Preparation and resolution of both enantiomerically pure dimethyl			
	it	tacona	ate-anthracene adducts ((+)-(11S)-100 and (-)-(11R)-100)	30	
	2	2.1.1	Preparation of (±)-11-carbomethoxy-11-carboxylmethyl-9,10-		
			dihydro-9,10-ethanoanthracene ((±)- 100)	30	
	02	2.1.2	Preparation of (–)-11-carbomethoxy-11-[(–)-menthoxy acetyl]-		
			9,10-dihydro-9,10-ethanoanthracenes ((-)-(11S)-101a and		
			(-)-(11 <i>R</i>)- 101b)	32	
	2	2.1.3	Preparation of optically active (+)-(11S)-11-carbomethoxy-11-		
			methoxyacetyl-9,10-dihydro-9,10-ethanoanthracene		
			((+)-(11 <i>S</i>)- 100)	36	
	2	2.1.4	Preparation of optically active (–)-(11 <i>R</i>)-11-carbomethoxy-11-		
			methoxyacetyl-9,10-dihydro-9,10-ethanoanthracene		
			((-)-(11 <i>R</i>)- 100)	38	
2.	2 S	Synthe	esis of both enantiomerically pure monoacid-anthracene		
	a	dduct	ts (+)-(11 <i>S</i>)- 102 and (-)-(11 <i>R</i>)- 102	39	
	2	2.2.1	Synthesis of enantiomeric (+)-(11S)-11-carbomethoxy-11-		
			carboxylmethyl-9,10-dihydro-9,10-ethanoanthracene		
			((+)-(11 <i>S</i>)- 102)	39	
	2	2.2.2	Synthesis of enantiomeric (-)-(11R)-11-carbomethoxy-11-		
			carboxylmethyl-9,10-dihydro-9,10-ethanoanthracene		
			((-)-(11 <i>R</i>)- 102)	39	
2.	3 S	Synthe	esis of both enantiomerically pure amide-anthracene adducts		
	(•	+)-(1	1 <i>S</i>)- 103 , (-)-(11 <i>R</i>)- 103 , (+)-(11 <i>S</i>)- 104 and (-)-(11 <i>R</i>)- 104	40	
	2	2.3.1	Synthesis of (+)-(11S)-11-carbomethoxy-11-pyrrolidinyl		
			acetyl-9,10-dihydro-9,10-ethanoanthracene ((+)-(11S)- 103)	40	
	2	2.3.2	Synthesis of (–)-(11 <i>R</i>)-11-carbomethoxy-11-pyrrolidinyl		
			acetyl-9,10-dihydro-9,10-ethanoanthracene $((-)-(11R)-103)$	42	
	2	2.3.3	Synthesis of (+)-(11S)-11-carbomethoxy-11-piperidinyl acetyl-		
			9,10-dihydro-9,10-ethanoanthracene ((+)-(11 <i>S</i>)- 104)	43	

	2.3.4	Synthesis of (-)-(11R)-11-carbomethoxy-11-piperidinyl acetyl-	
		9,10-dihydro-9,10-ethanoanthracene ((-)-(11 <i>R</i>)- 104)	45
2.4	Synth	esis of both enantiomerically pure pyrrolidinyl amide–	
	anthra	cene adduct derivatives (11S)-114, (11R)-114, (11S)-115 and	
	(11R)	-115	46
	2.4.1	Synthesis of (11S)-11-[2'-benzyl-1'-pyrrolidinylacetyl]-11-	
		carbomethoxy-9,10-dihydro-9,10-ethanoanthracene	
		((11 <i>S</i>)- 144)	46
		2.4.1.1 By using 1.2 equivalence of lithium diisopropylamide	
		(LDA)	46
		2.4.1.2 By using 2.5 equivalence of lithium	
		diisopropylamide (LDA)	47
	2.4.2	Synthesis of (11R)-11-[2'-benzyl-1'-pyrrolidinylacetyl]-11-	
		carbo-methoxy-9,10-dihydro-9,10-ethanoanthracene	
		((11 <i>R</i>)- 114)	47
	2.4.3	Synthesis of (11S)-11-[2'-methyl-1'-pyrrolidinylacetyl]-11-	
		carbomethoxy-9,10-dihydro-9,10-ethanoanthracene	
		((115)-115)	48
	2.4.4	Synthesis of (11R)-11-[2'-methyl-1'-pyrrolidinylacetyl]-11-	
		carbo-methoxy-9,10-dihydro-9,10-ethanoanthracene	
		((11 <i>R</i>)- 115)	48
2.5	Synth	esis of both enantiomerically pure piperidinyl amide-anthracene	
	adduc	t derivatives (11S)-116, (11R)-116, (11S)-117 and (11R)-117	49
	2.5.1	Synthesis of (11S)-11-[2'-benzyl-1'-piperidinylacetyl]-11-	
		carbo-methoxy-9,10-dihydro-9,10-ethanoanthracene	
		((11 <i>S</i>)- 116)	49
		2.5.1.1 By using 1.2 equivalence of lithium	
		diisopropylamide (LDA)	49
		2.5.1.2 By using 2.5 equivalence of lithium	
		diisopropylamide (LDA)	⁴⁹ е

Х

	2.5.2 Synthesis of (11 <i>R</i>)-11-[2'-benzyl-1'-piperidinylacetyl]-11-	
	carbo-methoxy-9,10-dihydro-9,10-ethanoanthracene	
	((11 <i>R</i>)- 116)	49
	2.5.3 Synthesis of (11S)-11-[2'-benzyl-1'-piperidinylacetyl]-11-	
	carbo-methoxy-9,10-dihydro-9,10-ethanoanthracene	
	((11 <i>S</i>)- 117)	50
	2.5.4 Synthesis of (-)-(11R)-11-[2'-methyl-1'-piperidinylacetyl]-11-	
	carbo-methoxy-9,10-dihydro-9,10-ethanoanthracene	
	((11 <i>R</i>)- 117)	50
2.6	Synthesis of diastereomerically pure spiro-lactone anthracene adducts	
	(4'S,11R)-107a, (4'R,11R)-107b, (4'S,11R)-108a and (4'R,11R)-108b	51
	2.6.1 Synthesis of diastereomeric tetrahydro-4'-carbopyrrolidinyl-	
	5',5'-diphenyl-2'-furanone-3'-spiro-11-9,10-dihydro-9,10-	
	ethanoanthracenes ((+)-(4'S,11R)- 107a and (4'R,11R)- 107b)	51
	2.6.2 Synthesis of diastereomeric tetrahydro-4'-carbopiperidinyl-	
	5',5'-diphenyl-2'-furanone-3'-spiro-11-9,10-dihydro-9,10-	
	ethanoanthracenes ((+)-(4'S,11R)-108a and (4'R,11R)-108b)	54
2.7	Reduction reaction of both enantiomerically pure (pyrrolidinyl or	
	piperidinyl) amide-anthracene adducts	56
	2.7.1 Synthesis of (-)-(11S)-11-hydroxymethylene-11-(2"-	
	pyrrolidinylethyl)-9,10-dihydro-9,10-ethanoanthracene	
	((-)-(11 <i>S</i>)- 105)	56
	2.7.1.1 By using 5 equivalence of lithium aluminium	
	hydride (LAH)	
	2.7.1.2 By using 10 equivalence of lithium aluminium	
	hydride (LAH)	58
	2.7.1.3 By using 15 equivalence of lithium aluminium	
	hydride (LAH)	59 SIL
	2.7.1.4 By using 5 equivalence of lithium aluminium	
	hydride (LAH) and refluxing overnight	59

	2.7.2	Synthesis	s of (+)-(11 <i>R</i>)-11-hydroxymethylene-11-(2"-	
		pyrrolidii	nylethyl)-9,10-dihydro-9,10-ethanoanthracene	
		((+)-(11 <i>R</i>	2)-105)	60
	2.7.3	Synthesis	s of (–)-(11S)-11-hydroxymethylene-11-(2"-	
		piperidin	ylethyl)-9,10-dihydro-9,10-ethanoanthracene	
		((-)-(11S	r)-106)	60
		2.7.3.1	By using 5 equivalence of lithium aluminium hydride	
			(LAH)	60
		2.7.3.2	By using 10 equivalence of lithium aluminium	
			hydride (LAH)	62
		2.7.3.3	By using 15 equivalence of lithium aluminium	
]	hydride (LAH)	62
		2.7.3.4	By using 5 equivalence of lithium aluminium	
]	hydride (LAH) and refluxing overnight	63
	2.7.4	Synthesis	s of (+)-(11S)-11-hydroxymethylene-11-(2''-	
		piperidin	ylethyl)-9,10-dihydro-9,10-ethanoanthracene	
		((+)-(11S	()- 106)	63
2.8	8 Redu	ction react	ion of diastereomerically pure spiro-lactone	
	anthra	acene addu	acts (4'S,11R)-107a and (4'S,11R)-108a	64
	2.8.1	Synthesis	s of compound (4'S,11R)- 114a by variation of the	
		stoichion	netric amount of lithium aluminium hydride (LAH) as	
		a nucleop	bhile and reaction times	64
		2.8.1.1	By using 7 equivalence of lithium aluminium	
		1	hydride (LAH) and stirring 3 hours	64
		2.8.1.2	By using 7 equivalence of lithium aluminium	
			hydride (LAH) and stirring 6 hours	66
		2.8.1.3	By using 7 equivalence of lithium aluminium	
		9	hydride (LAH) and stirring 24 h	67
		2.8.1.4	By using 7 equivalence of lithium aluminium	
		i o'	hydride (LAH) and stirring 3 days	67

	2.8.1.5	By using 20 equivalence of lithium aluminium	
		hydride (LAH) and stirring 24 h	67
	2.8.1.6	By using 20 equivalence of lithium aluminium	
		hydride (LAH) and stirring 3 days	68
	2.8.1.7	By using 7 equivalence of lithium aluminium	
		hydride (LAH) and refluxing overnight	68
	2.8.2 Synthes	is of compound $(4'S, 11R)$ - 114b by variation of the	
	stoichio	metric amount of lithium aluminium hydride (LAH) as	
	a nucleo	ophile and reaction times	69
	2.8.2.1	By using 7 equivalence of lithium aluminium	
		hydride (LAH) and stirring 3 days	69
	2.8.2.2	By using 20 equivalence of lithium aluminium	502
		hydride (LAH) and stirring 3 days	271
	2823	By using 7 equivalence of lithium aluminium	
	2.0.2.3	hydride (LAH) and refluxing overnight	72
		nyando (12/11) and fond ang overnight	6
СН	APTER 3 RES	ULTS AND DISCUSSION	
3.1	Preparation an	d resolution of optically active monoacid-anthracene	
	adducts (+)-(1	1S)- 102 and (-)-(11 <i>R</i>)- 102 as starting material	73
3.2	Synthesis of or	ptically active amide–anthracene adducts $(+)$ - $(11S)$ -	
	103 $(-)$ - $(11R)$	-103 (+)-(11S)-104 and (-)-(11R)-104	75
	3.2.1 Synthes	is of both ontically active pure 11-carbomethoxy-	
	11pvrro	lidinylacetyl-9 10-dybydro-9 10-ethanoanthracene	
	((+)-(11	S)-103 and $(-)-(11R)-103$	75
	322 Synthes	is of both ontically active pure 11-carbomethoxy 11	
	5.2.2 Synthes	nylacetyl 9 10 dybydro 9 10 ethanoanthracene	
		S = 104 and (112) = 104	
	((+)-(11	S = 104 and (-) - (11K) - 104)	
Copyris	Derivatization	of optically active amide–anthracene adducts	niversity
	(+)-(115)- 103 ,	(-)-(11K)-103, $(+)-(11S)-104$ and $(-)-(11K)-104$	19

	3.3.1	Synthesis of diastereomeric benzyl(piperidinyl or	
		pyrrolidinyl) amide–anthracene adducts (11S)-114, (11R)-	
		114 , (11 <i>S</i>)- 116 and (11 <i>R</i>)- 116	79
	3.3.2	Synthesis of diastereomeric methyl(piperidinyl or pyrrolidinyl)	
		amide–anthracene adducts (11S)-115, (11R)-115, (11S)-117	
		and (11 <i>R</i>)- 117	85
3.4	Synth	esis of optically active amide spiro-lactone anthracene adducts	
	(+)-(4	'S,11R)-107a, (4'R,11R)-107b, (+)-(4'S,11R)-108a and	
	(4' <i>R</i> ,1	1 <i>R</i>)- 108b	91
3.5	Prepa	ration of <i>N</i> , <i>O</i> heteroatoms TADDOLs–like anthracene adducts	
	via re	duction reaction of amide-anthracene adducts and amide spiro-	
	lacton	e anthracene adducts	96
	3.5.1	Reduction reaction of both enantiomerically pure pyrrolidinyl	
		amide–anthracene adducts (+)-(11 <i>S</i>)- 103 and (–)-(11 <i>S</i>)- 103	97
	3.5.2	Reduction reaction of both enantiomerically pure pyrrolidinyl	
		amide–anthracene adducts (+)-(11S)-104 and (–)-(11S)-104	100
	3.5.3	Reduction reaction of optically active pure (pyrrolidinyl or	
		piperidinyl) spiro-lactone anthracene adducts $(+)-(4'S,11R)$ -	
		107a and (+)-(4' <i>S</i> ,11 <i>R</i>)- 108a	102
СН	APTE	R 4 CONCLUSION	112
RE	FEREN	NCES	114
API	PENDI	X	118
CU	RRICU	JLUM VITAE	166

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table		Page
1	Catalytic oxidation of mesitylol (34) by the various transition-	
	metal-substituted polyoxometalates with racemic hydroperoxide	3,11
2	Catalytic enantioselective epoxidation of the primary allylic	
	alcohol by $[ZnW(VO)_2(ZnW_9O_{34})_2]^{12}$ with TADOOH	12
3	Vanadium-catalyzed epoxidation of allylic alcohol with optically	
	active hydrogen peroxide	14
4	Catalytic, asymmetric [2+2] cycloaddition reaction of various	
	aldehydes and TMS-ketene	15
5	Asymmetric nitrone acylation	17
6	Enantiomeric addition to aldehydes of dimethyltitanium	
	compound	18
7	Enantioselective alkylation of aldehydes with diethylzinc	
	catalyzed by chiral β -aminoalcohols 62 and 64	19
8	Reduction reaction of aralkyl ketone using catalyst 73	21
9	Enantioselective addition of Et ₂ Zn to benzaldehyde	24
10	Enantioselective addition of diethylzinc to aromatic aldehydes	
	catalyzed by amino-TADDOLs 95a-95d	25
11	Enantioselective addition of diethylzinc to aromatic aldehydes	
	catalyzed by amino-TADDOL 95e	26
12	Asymmetric ene-cyclization by BIPHEP-Ph/NOBIN catalyst	
	[97] without TfOH	27
13	Data of the monoacid–anthracene adduct (\pm) -100	31
	Data of the monomenthyl-anthracene adduct (-)-101a	33
15	Data of the monomenthyl-anthracene adduct (-)-101b	35
16	Data of the dimethyl–anthracene adduct (+)-(11S)-100	37
17	Data of the pyrrolidinyl amide–anthracene adduct (+)-(11S)-103	41

		٠
X	V	1
-	v	T

18	Data of the piperidinyl amide-anthracene adduct (+)-(11S)-104	43
19	Data of the spiro-lactone anthracene adduct $(+)-(4'S,11R)-107a$	52
20	Data of the spiro-lactone anthracene adduct (+)-(4'S,11R)-108a	54
21	Data of <i>N</i> , <i>O</i> TADDOLs–like anthracene adduct (–)-(11 <i>S</i>)-105	57
22	Data of <i>N</i> , <i>O</i> TADDOLs–like anthracene adduct (–)-(11 <i>S</i>)- 106	61
23	Data of adduct (+)-(2'S,4'S,11R)- 118	65
24	Data of adduct (+)-(2'S,4'S,11R)- 120	0 70
25	Optimization of synthetic benzylamide anthracene adducts	
	(11 <i>S</i>)- 114 and (11 <i>S</i>)- 116	79
26	Optimization of synthetic dibenzylamide anthracene adducts	
	(11 <i>S</i>)- 121 and (11 <i>S</i>)- 122	85
27	Optimization of conditions for reduction reaction of pyrrolidinyl	
	amide-anthracene adduct (+)-(11S)-103	98
28	Optimization of conditions for reduction reaction of piperidinyl	
	amide–anthracene adduct (+)-(11S)-104	100
29	Optimization of conditions for reduction reaction of amide	
	spiro-lactone anthracene adducts $(+)-(4'S,11R)-107a$ and	
	(+)-(4' <i>S</i> ,11 <i>R</i>)- 108a	103

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure		Page
1	General structure of TADDOLs	1
2	Examples of TADDOLs, their derivatives and TADDOLs	
	analogues	2
3	Polarimeter	7
4	Amino-TADDOLs derivatives 95a-95e	24
5	¹ H-NMR spectral data of pyrrolidinyl amide–anthracene adducts	
	(+)-(11 <i>S</i>)- 103 and (-)-(11 <i>R</i>)- 103 (Dash arrows and plain arrows	
	were COSY and HMBC correlation)	76
6	¹ H-NMR spectral data of piperidinyl amide–anthracene adducts	
	(+)-(11 <i>S</i>)- 104 and (-)-(11 <i>R</i>)- 104 (Dash arrows and plain arrows	
	were COSY and HMBC correlation)	78
7	¹ H-NMR spectral data of benzyl pyrrolidinyl amide–anthracene	
	adducts (11S)-114a, (11S)-114b, (11R)-114a and (11R)-114b	81
8	3D structure conformation of benzyl pyrrolidinyl amide-	
	anthracene adducts (11S)-114a, (11S)-114b, (11R)-114a and	
	(11R)-114b were generated by MM2 force field calculations for	
	energy minimization from modeling program Chem3D Ultra	
	11.0 and GaussView 3.09 program	82
9	¹ H-NMR spectral data of benzyl piperidinyl amide–anthracene	
	adducts (11S)-116a, (11S)-116b, (11R)-116a and (11R)-116b	83
10	3D structure conformation of benzyl piperidinyl amide-	
	anthracene adducts (11S)-116a, (11S)-116b, (11R)-116a and	
	(11 <i>R</i>)- 116b were generated by MM2 force field calculations for	
	energy minimization from modeling program Chem3D Ultra	
	11.0 and GaussView 3.09 program	84
11	¹ H-NMR spectral data of methyl pyrrolidinyl amide–anthracene	
	adducts (11S)-115a, (11S)-115b, (11R)-115a and (11R)-115b	87

12	3D structure conformation of benzyl pyrrolidinyl amide-	
	anthracene adducts (11S)-115a, (11S)-115b, (11R)-115a and	
	(11 <i>R</i>)- 115b were generated by MM2 force field calculations for	
	energy minimization from modeling program Chem3D Ultra	
	11.0 and GaussView 3.09 program	88
13	¹ H-NMR spectral data of benzyl pyrrolidinyl amide–anthracene	
	adducts (11S)-117a, (11S)-117b, (11R)-117a and (11R)-117b	89
14	3D structure conformation of benzyl piperidinyl amide-	
	anthracene adducts (11S)-117a, (11S)-117b, (11R)-117a and	
	(11R)-117b were generated by MM2 force field calculations for	
	energy minimization from modeling program Chem3D Ultra	
	11.0 and GaussView 3.09 program	90
15	¹ H-NMR spectral data of pyrrolidinyl spiro–lactone anthracene	
	adduct (+)-(4'S,11R)-107a (Plain arrow was HMBC correlation)	93
16	3D structure conformation of pyrrolidinyl spiro-lactone	
	anthracene adduct (+)-(4'S,11R)-107a was generated by MM2	
	force field calculations for energy minimization from modeling	
	program Chem3D Ultra 11.0 and GaussView 3.09 program with	
	the observed NOE correlations (arrows)	94
17	¹ H-NMR spectral data of piperidinyl spiro–lactone anthracene	
	adduct (+)-(4'S,11R)-108a (Plain arrow was HMBC correlation)	95
18	3D structure conformation of piperidinyl spiro-lactone	
	anthracene adduct $(+)-(4'S,11R)-108a$ was generated by MM2	
	force field calculations for energy minimization from modeling	
	program Chem3D Ultra 11.0 and GaussView 3.09 program with	
	the observed NOE correlations (arrows)	96
19	¹ H-NMR spectral data of the optically active N,O heteroatoms	
	TADDOLs–like anthracene adducts (+)-(11S)- 105 and (–)-	
	(11R)-105 (Dash arrows and plain arrows were COSY and	
	HMBC correlation)	99
	I Y N'I S F E S E F	

20	¹ H-NMR spectral data of the optically active N,O heteroatoms	
	TADDOLs-like anthracene adducts (+)-(11S)-106 and (-)-	
	(11R)-106 (Dash arrows and plain arrows were COSY and	
	HMBC correlation)	102
21	¹ H-NMR spectral data of adduct (+)-(2'S,4'S,11R)- 118 (Dash	
	arrows and plain arrows were COSY and HMBC correlation)	105
22	3D structure conformation of adduct (+)-(2' <i>S</i> ,4' <i>S</i> ,11 <i>R</i>)- 118 was	
	generated by MM2 force field calculations for energy	
	minimization from modeling program Chem3D Ultra 11.0 and	
	GaussView 3.09 program with the observed NOE correlations	
	(arrows)	106
23	¹ H-NMR spectral data of adduct (+)- $(2'S,4'S,11R)$ - 120 (Dash	
	arrows and plain arrows were COSY and HMBC correlation)	107
24	3D structure conformation of adduct (+)-(2' <i>S</i> ,4' <i>S</i> ,11 <i>R</i>)- 120 was	
	generated by MM2 force field calculations for energy	
	minimization from modeling program Chem3D Ultra 11.0 and	
	GaussView 3.09 program with the observed NOE correlations	
	(arrows)	108
25	¹ H-NMR spectral data of by-products (11 <i>R</i>)- 79 and (11 <i>S</i>)- 79	
	(Dash arrows and plain arrows were COSY, NOE and HMBC	
	correlation, respectively)	109

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF SCHEMES

Scheme		Page
1	Preparation of TADDOLs	1
2	The reduction reaction of the chiral hydroxyl ketone 12	3
3	The alkylation reaction of the chiral enolate 16	4
4	The schematic representation of asymmetric catalysis	4
5	The alkylation of diethylzinc to benzaldehyde promoted by	
	DAIB catalyst	5%
6	The schematic representation of asymmetric chiral auxiliary	55
7	The simple pathway of the alkylation reaction of prochiral	
	reactant 24 gives the major product	6
8	Enantioselective vinylogous Mukaiyama aldol reaction.	9
9	The optical resolution of 1-phenyl-3-methyl-3-phospholene-1-	
	oxide with TADDOLs	10
10	Asymmetric conjugation addition with chiral phosphorus ligand	
	based on TADDOL	16
11	The ring-opening reaction of compounds 61 and 63 give β -	
	aminoalcohols 62 and 64	19
12	The reductive deacetylation of 1,3-diacetyl-4,5-tetramethylene	
	2-imidazolidinethiones	20
13	Preparation for catalytic enantioselective reducing reagent from	
	1,2-aminoalcohol and 9-BBN	20
14	Synthesis of <i>syn</i> -1,3-aminoalcohol 82	22
15	Synthesis of anti-1,3-aminoalcohol 89	22
16	Separation of 1,3-aminoalcohol 82 and 89	23
17	Synthesis of the BIPHEP-Rh/(S)-NOBIN (97)	26

18	Syntheses of N,O heteroatoms TADDOLs-anthracene adducts	
	(11 <i>S</i>)-105, (11 <i>R</i>)-105, (11 <i>S</i>)-106, (11 <i>R</i>)-106), (4' <i>R</i> ,11 <i>R</i>)-109,	
	(4'S,11S)- 109 , (4'R,11R)- 110 and (4'S,11S)- 110	28
19	Preparation of racemic monoacid-anthracene adduct (±)-102	73
20	Resolution of optically active monoacid-anthracene adducts (+)-	
	(11 <i>S</i>)- 102 and (–)-(11 <i>R</i>)- 102	74
21	Synthesis of both enantiomeric pure pyrrolidinyl amide-	
	anthracene adducts (+)-(11S)-103 and (-)-(11R)-103	75
22	Synthesis of both enantiomeric pure piperidinyl amide-	
	anthracene adducts (+)-(11S)-104 and (-)-(11R)-104	77
23	Synthesis of optically active benzyl amide-anthracene adducts	
	(11S)-114, (11R)-114, (11S)-116, and (11R)-116	80
24	Synthesis of optically active methyl amide-anthracene adducts	
	(11 <i>S</i>)-115, (11 <i>R</i>)-115, (11 <i>S</i>)-117, and (11 <i>R</i>)-117	86
25	Synthesis of optically active pure amide spiro-lactone	
	anthracene adducts (+)-(4'S,11R)-107a, (4'R,11R)-107b, (+)-	
	(4' <i>S</i> ,11 <i>R</i>)- 108a and (4' <i>R</i> ,11 <i>R</i>)- 108b via tandem aldol-	
	lactonization reactions	91
26	Proposed mechanism of diastereoselective tandem aldol-	
	lactonization reactions of the amide spiro-lactone anthracene	
	adducts	92
27	The target product, N,O heteroatoms TADDOLs-like anthracene	
	adducts	97
28	Synthesis of optically active N,O heteroatoms TADDOLs-like	
	anthracene adducts (+)-(11 <i>S</i>)-105 and (-)-(11 <i>R</i>)-105	98
29	Synthesis of optically active <i>N</i> , <i>O</i> heteroatoms TADDOLs–like	
	anthracene adducts (+)-(11S)-106 and (-)-(11R)-106	101
30	Proposed mechanism of cyclization reaction and nucleophilic	
	addition reaction for the reduction reaction of amide spiro-	
	lactone anthracene adducts $(+)-(4'S,11R)-107a$ and $(+)-$	
	(4' <i>S</i> ,11 <i>R</i>)- 108a	104

8

31	Proposed mechanism of cyclization reaction gave by-product	
	121	109
32	Reduction reaction of amide spiro-lactone anthracene adducts	
	(+)-(4' <i>S</i> ,11 <i>R</i>)- 109 and (+)-(4' <i>S</i> ,11 <i>R</i>)- 110 by refluxing for	
	overnight	110
33	Proposed mechanism of reduction reaction amide spiro-lactone	
	anthracene adducts (+)-(4'S,11R)-107a and (+)-(4'S,11R)-108a	
	by refluxing with LAH	111
34	Total synthesis of N,O heteroatoms TADDOLs–like anthracene	
	adducts (11S)-105, (11R)-105, (11S)-106 and (11R)-106	112
35	Studying of synthetic N,O heteroatoms TADDOLs-like	
	anthracene adducts (+)-(4'S,11R)-107a and (+)-(4'S,11R)-108a	113

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

Bn	benzyl
b.p.	boiling point
n-BuLi	<i>n</i> -butyllithium
°C	degrees celcius
calc	calculated
cat.	catalyst
conc	concentration
COSY	correlation spectroscopy
δ	chemical shift in parts per million downfield from
	tetramethylsilane
d	doublet (spectral)
d	density
dd	double of doublet (spectral)
ddd	double of doublet (spectral)
dt	double of triplet (spectral)
d.e.	diastereomeric excess
DCC	N,N'-dicyclohexylcarbodiimide
DEPT	distortionless enhancement by polarization transfer
DMAP	4-(N,N-dimethylamino)pyridine
ее.	enantiomeric excess
ESI-MS	electrospray ionization mass spectrometry
EtOAc	ethyl acetate
equiv	equivalence
FT-IR	fourier-transform infrared
g	gram Childing Mai Offiversity
НМВС	heteronuclear multiple bond correlation
НМРА	hexamethylphospharamide
HMQC	heteronuclear multiple quantum correlation

Hz	hertz
h	hour (s)
IR O	infrared
J	coupling constant
LAH	lithium aluminium hydride
LDA	lithium diisopropylamide
Me	methyl
MHz	megahertz
MW	molecular weight
m	multiplet (spectral)
min	minute (s)
mL	millilitre
mmol	milimole
mol	mole
m.p.	melting point
m/z	mass to charge ratio
NMR	nuclear magnetic resonance
NOE	nuclear overhauser effect
Ph	phenyl
PLC	preparative layer chromatography
ppm	parts per million (in NMR)
<i>i</i> -Pr	isopropyl
rt	room temperature (°C)
S	singlet (spectral)
THF	tetrahydrofuran
TMS	tetramethylsilane
TMEDA	tetramethylenediamine
	triplet (spectral)
UV	ultraviolet and any and a university
%	percent
[<i>a</i>]	specific optically rotation
v	wave number (cm ⁻¹)

xxiv