TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT (ENGLISH)	iv
ABSTRACT (THAI)	vii
TABLE OF CONTENTS	ix
LIST OF TABLES	xv
LIST OF FIGURES	xix
ABBREVIATIONS AND SYMBOLS	xxvi
CHAPTER 1 INTRODUCTION	1
1.1 Overview and background	1
1.2 Principle of flow injection analysis (FIA)	2
1.3 Micro flow analysis	4
1.3.1 Materials and fabrication technique of chips	12
1.3.2 Bonding techniques	23
1.3.3 Propelling system	29
1.3.4 Sample introduction to the microflow analysis system	0 LML_{35}
Op 1.3.5 Liquid mixing V Chiang Mai Un	iversity 39
1.3.6 Detection system	V e (40
1.4 Nickel and zinc	44
1.4.1 Nickel	44
1.4.2 Determination of nickel	46

		Page
	1.4.3 Zinc	52
	1.4.4 Determination of zinc	54
1.5	Nitroso-R salt	56
1.6	Xylenol orange	57
1.7	Reasons for creating this work	58
1.8	Research objectives	59
CHA	PTER 2 EXPERIMENTAL	60
2.1	Instrument and apparatus	60
2.2	Chemicals	61
2.3	Preparation of standard solutions and reagents	63
	2.3.1 Preparation of standard solutions and reagents for nickel	63
	determination with FIA	
	2.3.2 Preparation of standard solutions and reagents for zinc	64
	determination M99181880[M]	
2.4	Water samples collection and pretreatment for metal determination	65
	2.4.1 Water samples collection and pretreatment for nickel	65
	determination	
	2.4.2 Water samples pretreatment for zinc determination	65
2.5	Methodology for the FIA system for determination of nickel with	66
	nitroso-R salt as complexing agent	

			Page
	2.5.1 H	Preliminary studies of spectrophotometric of Ni-nitroso-R salt	66
	comple	ex for selecting the maximum absorption wavelength	
	2.5.2 8	Study of the composition of the Ni(II)-nitroso-R salt complex	67
	with m	ole-ratio method	
	2.5.3 T	The FIA system for determination of nickel	67
	2.5.4 A	Analytical characteristics study	69
2.6	Mini-C	ENC machine modification with diode laser for fabrication of	72
	PMMA	A chips	
	2.6.1	Home-made mini-CNC machine	72
	2.6.2	Mini-CNC machine modification with diode laser	74
	2.6.3	The design of PMMA chip	74
	2.6.4	Fabrication of PMMA chips	75
	2.6.5	Investigation of size of microchannel	77
	2.6.6	Surface modification and thermal bonding	78
	2.6.7	A home-made PMMA microflow analyser	79
op	2.6.8	Validation of the proposed PMMA chip	81
2.7	Fabrica	ation of a PMMA chip with CO ₂ laser for determination of	81
	Zn(II)		
	2.7.1	The design of PMMA microchannels	81
	2.7.2	CO ₂ laser machine setup	82

			Page
	2.7.3	Dimensions of PMMA microchannels	84
	2.7.4	Surface modification and thermal bonding	84
	2.7.5	Fabrication of microflow analyzer	84
	2.7.6	Analytical characteristics study	89
СНА	PTER 3	RESULTS AND DISCUSSION	91
3.1	Determ	nination of Ni(II) by flow injection analysis	91
	3.1.1	Preliminary studied and selection of the absorption	91
	300	wavelength	
	3.1.2	The composition of Ni(II)-nitroso-R salt complex by mole-	93
		ratio method	
	3.1.3	Design of the flow injection system for Ni(II) determination	95
	3.1.4	Optimization of the experimental conditions	96
	3.1.5	Analytical characteristics	105
	3.1.6	Determination of Ni(II) in water samples	114
3.2	Mini-C	NC machine modification with diode laser for rapid fabrication	117
Cop	of PMN	MAchips by Chiang Mai Universit	У
	3.2.1	Mini-CNC machine modification with diode laser	117
	3.2.2	Design and fabrication of the PMMA chip	117
	3.2.3	The depth and the width of PMMA microchannel	119
	3.2.4	The smoothness of microchannels	125

			Page
	3.2.5	Bonding of PMMA microchannels	128
	3.2.6	Validation of the proposed PMMA chip from diode laser	129
		technique	
	3.2.7	Repeatability and reproducibility	131
	3.2.8	Accuracy and sample throughput	132
	3.2.9	Application to water samples analysis	132
3.3	Fabrica	ation of PMMA chip with CO ₂ laser for determination of zinc	134
	by mic	roflow analysis using xylenol orange as complexing agent	
	3.3.1	The patterns of PMMA chip	134
	3.3.2	The depth and the width of microchannel PMMA using CO ₂	137
		laser	
	3.3.3	The smoothness of PMMA microchannels	141
	3.3.4	Bonding of PMMA chip	143
	3.3.5	Preliminary study on the absorption spectra of Zn(II)-xylenol	145
		orange complex in the presence of quinine photosensitizer	
p	3.3.6	Determination of Zn(II) by micro flow analysis using xylenol	145
		orange as complexing agent	
	3.3.7	Design and fabrication of the micro flow system for zinc (II)	147
		determination	

			Page
	3.3.8	Optimization of the experimental conditions by univariate	150
		method a 818186	
	3.3.9	Analytical characteristics	161
	3.3.10	Determination of Zn(II) in water samples	169
СНА	PTER 4	CONCLUSIONS	172
4.1	Fabrica	tion of a simple FIA analyzer for nickel(II) determination	172
4.2	Mini-C	NC machine modified with diode laser for fabrication of	173
	PMMA	chip	
4.3	Fabrica	tion of a PMMA chip using CO ₂ laser for determination of	176
	Zn(II)		
REFE	ERENCE		179
APPE	ENDICE	s MAI UNIVERS	197
APPE	ENDIX A		198
	ENDIX E		208 209
	ENDIX C	LaC La Chiana Mai I laineach	
APPE	ENDIX E	rights reserve	233
CURI	RICULU	JM VITAE	237

LIST OF TABLES

Table		Page
1.1	The applications of lab-on-a-chip analysis in various samples	6
1.2	Summary of materials and techniques for fabrication of microfluidic devices	18
1.3	A brief review of the methods for the determination of nickel	51
1.4	A brief review of the methods for the determination of zinc	56
2.1	The studied range for the optimization of all parameters of FIA	69
2.2	The studied ranges for the optimization of all parameters of	88
	μFA	
3.1	Effect of nitroso-R salt concentrations for mole-ratio	94
	Ni-nitroso-R salt complex	
3.2	Effect of pH on the sensitivity	98
3.3	Effect of nitroso-R salt concentration on the sensitivity of	99
315	Ni(II)-nitroso-R salt complex	
3.4	Effect of reaction coil length on the sensitivity	101
3.5	Effect of flow rate on the sensitivity	103
3.6	Effect of sample volume on the sensitivity	104
3.7	Peak height at various Ni(II) concentrations for linearity	106
	inspect of the calibration graph	

LIST OF TABLES (Continued)

Table		Page
3.8	Precision of verification using standard 1.0 mg L ⁻¹ Ni(II)	108
3.9	The absorbance of Ni(II)-nitroso-R salt complex for	110
	calibration curve	
3.10	Calculation of detection limit of FIA spectrophotometric for	111
	Ni(II) determination	
3.11	Tolerable levels of interferences ions effect on the signal	113
	obtained from 1.0 µg mL ⁻¹ Ni(II)	
3.12	The optimum conditions and the analytical characteristic for	114
	Ni(II) determination with the FIA system	
3.13	Concentrations of Ni(II) in water samples analyzed by using	115
	the proposed FIA system	
3.14	Comparative determination of Ni(II) in water samples by	116
	proposed FIA and FAAS	
3.15	The width of microchannel at constant laser power of 5 W	122
3.16	The depth of microchannel at constant laser power of 5 W	123
3.17	The width of microchannel at constant X-Y movement speed	124
	of 4 mm s ⁻¹ g h t s reserv	
3.18	The depth of microchannel at constant X-Y movement speed	124
	of 4 mm s^{-1}	

LIST OF TABLES (Continued)

Table		Page
3.19	Repeatability and reproducibility of replicate determination of	131
	Fe(III) NULL PROPERTY OF THE P	
3.20	Comparative determination of total iron in water samples by	133
	the proposed µrFA and FAAS methods	
3.21	The width of microchannel at constant laser power of 8 W	138
3.22	The depth of microchannel at constant laser power of 8 W	139
3.23	The width of microchannel at constant beam speed of 5 mm s ⁻¹	140
3.24	The depth of microchannel at constant beam speed of 5 mm s ⁻¹	140
	obtained by the proposed µFA	
3.25	Preliminary conditions before optimization of the PMMA μFA	151
	systems	
3.26	Effect of wavelength on the sensitivity of $Zn(\Pi)$ -(XO) ₂	152
	complex	
3.27	The effect of pH on the sensitivity of Zn(II)-(XO) ₂ complex	154
	measured at 590 nm	AKU
	Effect of several concentration of xylenol orange on the	
	sensitivity ghts reserve	
3.29	Effect of concentration of quinine hydrochloride on the	157
	sensitivity	
3.30	Effect of flow rate on the sensitivity of Zn(II)-(XO) ₂	158

LIST OF TABLES (Continued)

Table		Page
3.31	Effect of injection volume on the sensitivity of $Zn(II)$ - $(XO)_2$	160
3.32	Optimum conditions for Zn(II) determination using the	161
	home-made PMMA microflow analyzer	
3.33	Linearity of Zn(II) determination with μFA system	162
3.34	The precision study using two standard solutions (0.5 and 1.0	164
	mg mL ⁻¹)	
3.35	The absorbance of Zn(II)-(XO) ₂ complex for calibration curve	166
3.36	Calculation of detection limit of µFA spectrophotometric	167
	determination of zinc (II)	
3.37	Tolerable levels of interfering ions effect on the absorption	169
	signal	
3.38	Concentrations of Zn(II) in water sample (mg L ⁻¹) analyzed by	170
	using the proposed µFA	
3.39	Comparative determination of Zn(II) in water samples by	171
	proposed PMMA chip and FAAS	
Copy	right [©] by Chiang Mai Univers	sity
	l rights reserve	

LIST OF FIGURES

Figure		Page
1.1	The basic components of the FIA system	3
1.2	The FIA gram; S: time of injection, H: the peak height, W:	4
	the peak width at a selected level, A: the peak area, and T:	
	the residence time corresponding to the peak height	
	measurement	
1.3	The lab-on-a-chip patterns	5
1.45	Process of photolithographic fabrication	19
1.5	Schematic diagram of the laser micromachining process on	22
	PMMA	
1.6	Glass to silicon bonding diagram	27
1.7	Syringe pumps	30
1.8	Micro peristaltic pump	31
1.9	Piezoelectric micro pump	33
1.10	Electroosmotic flow	34
1.11	Nickel UNDON BOAR 1880 IY	45
1.12	rzincht by Chiang Mai Universi	52
1.13	The Structure formula of nitroso-R salt	57
2.1	The design of the FIA system for the determination of Ni(II):	68
	S, sample; M, mixing coil; I, injection valve; P, pump; D,	
	detector	

Figure		Page
2.2	A home-made mini-CNC machine; M1, M2, M3: motors,	73
	C:control cage, P: platform and S: spindle	
2.3	Diode laser of 5 W (808 nm) and focusing lens (New Diode	74
	Laser Company, Xibeiwang, Haidian, Beijing	
	100094, China)	
2.4	The design of the PMMA microchannels patterns	75
2.5	KCAM program for control diode laser mini-CNC machine	76
2.6	Schematic view of diode laser mini-CNC machine system	77
	with X-Y stages	
2.7	The bonding block for two PMMA substrates	79
2.8	The microflow analyzer with the T-junction PMMA chip	81
2.9	CO ₂ laser machine (SF960 Jinan Senfeng Technology Co.,	83
	LTD, China)	
2.10	Laser operation and setup parameters program for fabrication	83
	of PMMA chip	
2.11	The µFA system with Y-junction pattern for Zn(II)	87
	determination: Standard, Zn(II)/water sample; reagent, XO	
	mixed quinine photosensitizer	

Figure		Page
3.1	The absorbance of Ni(II)-nitroso-R salt complexes measured	92
	at various wavelength in the range from 380 to 700 nm with	
	nitroso-R salt at pH 8.0; 2.0×10^{-4} mole L ⁻¹ nitroso-R salt	
3.2	Mole-ratio study of Ni(II)-nitroso-R salt system; Ni 1.0×10 ⁻⁵	94
	mol L ⁻¹ , pH 8.0, wavelength 490 nm	
3.3	The chemical reaction between Ni(II) and nitroso-R salt	95
3.45	The proposed FIA system for nickel determination; S:	96
	sample, R: reagent, V: selection valve, M: motor driver	
	unit, P: peristaltic pump, MC: mixing coil, C: personal	
	computer, D : spectrometer and W : waste	
3.5	Relationship between pH and the sensitivity of the	98
	calibration curve	
3.6	Effect of nitroso-R salt concentration on the sensitivity of	100
	Ni(II)-nitroso-R salt complex	
3.7	Effect of the coil length on the sensitivity of Ni(II)-nitroso-R	101
opy	salt complex by Chiang Mai University	sity
3.8	Effect of flow rate on the sensitivity of Ni(II)-nitroso-R salt	103
	complex	

Figure		Page
3.9	Effect of sample introduction volume on the sensitivity of	105
	Ni(II)-nitroso-R complex	
3.10	Relationship between peak height and concentrations of	107
	Ni(II)	
3.11	FIA-gram of standard Ni(II) solution at (a) 0.25 mg L ⁻¹ , (b)	109
	0.5 mg L^{-1} , (c) 1.5 mg L^{-1} , (d) 2.5 mg L^{-1} and (e) 3.5 mg L^{-1}	
5	respectively	
3.12	Calibration curve for Ni(II) determination using the FIA	110
	system	
3.13	The diode laser mini-CNC machine system	118
3.14	The microchannel patterns are designed from Drawing	119
	program	
3.15	The complete PMMA chips make from mini-CNC machine	119
	modified with diode laser and the length of microchannels;	
	(a):2 cm, (b): 10 cm, (c): 20 cm, (d): 30 cm	
3.16	SEM images of PMMA chips with different depths of	120
	channels using movement speed of (a) 1.0, (b) 2.0 and (c) 3.0	
	mm s ⁻¹ (power 5 W)	

Figure		Page
3.17	SEM images of PMMA substrates with different width of	121
	channels using laser power of (a) 3.5 W, (b) 4.0 W and (c)	
	4.5 W (speed 4 mm s ⁻¹)	
3.18	Relationship between X-Y movement speed and geometric	123
	parameters	
3.19	Relationship between laser power and geometric parameters	124
3.20	SEM images of PMMA substrates show the smooth of	126
	channel with different scanning speed (5 W laser power)	
3.21	SEM images of PMMA microchannel demonstrating the	127
	smooth effect of expose to CH ₂ Cl ₂ solution; (a) before	
	exposure to CH ₂ Cl ₂ and (b) after exposure to CH ₂ Cl ₂ for 10	
	min AI LINITERS	
3.22	Cross section of the bonded microchannel	128
3.23	Fabrication procedures for the PMMA chip	129
3.24	Calibration curve of standard Fe(III) solution	130
3.25	Y-junction patterns of PMMA microchannels	135
3.26	The complete PMMA microchannel from CO ₂ laser machine	135
3.27	Cross section of the PMMA microchannel	136
3.28	Relation of beam speed on geometric parameters	139
3.29	Relation of laser power on geometric parameters	141

Figure		Page
3.30	SEM images close up of PMMA microchannels with beam	142
	speed of 5 (a), 10 (b), 15 (c) and 20 (c) mm s ⁻¹ and fixed	
	laser power of 8 W	
3.31	SEM image of a cross section of a bonded PMMA chip	143
3.32	Summary the steps for fabrication PMMA chip (4.0x4.0 cm ²)	144
3.33	The structure formula of xylenol orange	146
3.34	Absorption spectra of XO (1); XO-quinine (2); 1 ppm of	147
	Zn(II)-XO (3), 2 ppm of Zn(II)-XO (4), 3 ppm of Zn(II)-XO	
	(5) against XO blank at pH 5.5; 1 ppm of Zn(II)-XO (6), 2	
	ppm of Zn(II)-XO (7), 3 ppm of Zn(II)-XO (8) against XO	
	mixed with quinine blank at pH 5.5, XO concentration: 3.0 x	
	10^{-5} mol L ⁻¹ ; quinine hydrochloride concentration : 2.0×10^{-5}	
	mol L ⁻¹	
3.35	The microflow manifold for Zn (II) determination: S,	149
	sample; R, buffered nitroso-R salt; V, selection valve (Valcol	
ору	Instrument); P, pump; M, a micro-flow analyzer; LED, light	ity
	source; D, spectrophotometer (USB4000); N, computer; W,	
	waste	

Figure		Page
3.36	The intensity of light pass through the detection cell of	150
	PMMA chip 3881266	
3.37	The absorption signal achieved from the $Zn(II)$ - $(XO)_2$	151
	complex (2.0x10 ⁻⁴ mol L ⁻¹ quinine hydrochloride, 1.0 mg L ⁻¹	
	Zn(II), pH 5, 2x10 ⁻⁴ mol L ⁻¹ XO) using the proposed method	
3.38	Effect of wavelength on the sensitivity for Zn determination	153
3.39	Effect of pH on the sensitivity of Zn(II)-(XO) ₂ complex	154
3.40	Effect of XO concentration on the sensitivity of Zn(II)-(XO) ₂	156
	complex	
3.41	Effect of quinine hydrochloride on the sensitivity of	157
	Zn(II)-(XO) ₂ complex	
3.42	Effect of flow rate on the sensitivity of Zn(II)-(XO) ₂	159
	complex	
3.43	Effect of sample introduction volume on the sensitivity of	160
	Zn(II)-(XO) ₂ complex	
3.44	Relationship between peak height and concentrations of	163
	$Zn(II) 0.01-1.8 \text{ mg L}^{-1}$	
3.45	µFA grams for determining Zn(II) as Zn(II)-(XO) ₂ using the	165
	proposed μFA under the optimum conditions	
3.46	Calibration curve of the µFA system for zinc determination	166

ABBREVIATIONS AND SYMBOLS

Abs Absorbance

AU Absorbance unit

CCD Charge-coupled device

CE Capillary electrophoresis

cm Centimeter

COC Cyclic olefin copolymer

CTC Chlortetracycline

EOF Electroosmotic flow

FIA Flow injection analysis

h Hour

i.d. Internal diameter

IDTs Inter digital transducers

L Liter

LED Light emitting diode

LOC Lab-on-a-chip

LOD Limit of detection

LOQ Limit of quantitation

mg Milligram

min Minute

mL Milliliter

mm Millimeter

nm Nanometer

PMT photomultiplier tubes

o.d. Outer diameter

PC polycarbonate

PDMS Poly(dimethylsiloxane)

PMMA Polymethyl methacrylate

PTFE Polytetrafluoroethylene

RSD Relative standard deviation

SD Standard deviation

s Second

 $\bar{\mathbf{x}}$ Mean

XO Xylenol orange

μFA Micro flow analysis

μrFA Micro reverse flow analysis

μL Microlitre

μm Micrometre

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved