### viii

|                                      | TABLE OF CONTENTS                    |                      |
|--------------------------------------|--------------------------------------|----------------------|
|                                      |                                      | Page                 |
| Acknowledgement                      | is Signature Signature               | iii                  |
| English Abstract                     |                                      | iv                   |
| Thai Abstract                        |                                      | vi                   |
| Table of Contents                    |                                      | viii                 |
| List of Tables                       |                                      | xi                   |
| List of Figures                      |                                      | xii                  |
| Symbols                              |                                      | XV                   |
| CHAPTER 1 INTI                       | RODUCTION                            |                      |
| 1.1                                  | Overview                             | P                    |
| 1.2                                  | Objectives of the study              | 2                    |
| 1.3                                  | Significance of the study            | 2                    |
| 1.4                                  | Scopes of the study                  | 3                    |
| 1.5                                  | Thesis outline                       | 3                    |
| CHAPTER 2 THE                        | CORY AND LITERATURE REVIEWS          |                      |
| 2.1                                  | Vegetable oil                        | 4                    |
|                                      | Emulsion and Emulsifier              | 6                    |
| 2.3                                  | Combustion Reaction                  |                      |
| 000000000000000000000000000000000000 | Fuel Droplet Combustion              | niversitv            |
| 2.5                                  | Fuel Properties                      | 11                   |
|                                      | 2.5.1 Specific Heat Capacity of Fuel | r <sup>1</sup> V e d |
|                                      | 2.5.2 Heating Value of Fuel          | 12                   |

|      | 2.5.3 Latent Heat of Fuel                                    | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | 2.5.4 Boiling Point of Liquid Fuels                          | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 2.5.5 Schmidt Number                                         | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.6  | Application of Mass Transfer Theory in                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | Engine Performance Prediction                                | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.7  | Engine Performance                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | 2.7.1 Brake Power of engine                                  | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 2.7.2 Brake Specific Fuel Consumption                        | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.8  | Literature Review                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | 2.8.1 Mass Transfer                                          | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 2.8.2 Blended Vegetable Oil/Diesel Oil/Water                 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PROF | PERTIES OF EMULSIFIED OIL                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3.1  | Emulsified Oil                                               | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.2  | Properties of the oil emulsion                               | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 3.2.1 Viscosity                                              | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 3.2.2 Flash Point                                            | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 3.2.3 High Heating Value                                     | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 3.2.4 Boiling Point Temperature                              | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.3  | Experiment Test                                              | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MAS  | SS TRANSFER MODEL FOR SINGLE                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DRO  | PLET COMBUSTION                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.1  | Mass Transfer Theory                                         | 34/ •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4.2  | Experiment for Single droplet combustion                     | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 2.7<br>2.8<br>PROF<br>3.1<br>3.2<br>3.3<br>MAS<br>DRO<br>4.1 | <ul> <li>2.5.4 Boiling Point of Liquid Fuels</li> <li>2.5.5 Schmidt Number</li> <li>2.6 Application of Mass Transfer Theory in<br/>Engine Performance Prediction</li> <li>2.7 Engine Performance</li> <li>2.7.1 Brake Power of engine</li> <li>2.7.2 Brake Specific Fuel Consumption</li> <li>2.8 Literature Review</li> <li>2.8.1 Mass Transfer</li> <li>2.8.2 Blended Vegetable Oil/Diesel Oil/Water</li> <li>PROPERTIES OF EMULSIFIED OIL</li> <li>3.1 Emulsified Oil</li> <li>3.2 Properties of the oil emulsion</li> <li>3.2.1 Viscosity</li> <li>3.2.2 Flash Point</li> <li>3.2.3 High Heating Value</li> <li>3.2.4 Boiling Point Temperature</li> <li>3.3 Experiment Test</li> <li>MASS TRANSFER MODEL FOR SINGLE</li> <li>DROPLET COMBUSTION</li> <li>4.1 Mass Transfer Theory</li> </ul> |

| 4.3 Results                                          | 38                    |
|------------------------------------------------------|-----------------------|
| CHAPTER 5 ENGINE PERFORMANCE                         |                       |
| 5.1 Test engine preparation                          | 40                    |
| 5.2 Engine Performances                              | 42                    |
| 5.3 Gas Emissions Analysis                           | 42                    |
| 5.4 Experimental Results                             | 45                    |
| CHAPTER 6 PREDICTION OF POWER GENERATION BY MASS     |                       |
| TRANSFER THEORY                                      | 55                    |
| 6.1 Mass Transfer Theory                             | 55                    |
| 6.2 Prediction of Power Generation                   | 58                    |
| CHAPTER 7CONCLUSIONS AND RECOMMENDATIONS             |                       |
| 7.1 Conclusions                                      | 61                    |
| 7.2 Recommendations for Further Studies              | 62                    |
| References                                           | 64                    |
| Appendices                                           | 65                    |
|                                                      | 05                    |
| Appendix A                                           | 73                    |
| Appendix A<br>Appendix B                             |                       |
|                                                      | 73                    |
| Appendix B                                           | 73<br>83              |
| Appendix B<br>Appendix C<br>Appendix D<br>Appendix E | 73<br>83<br>88<br>113 |
| Appendix B<br>Appendix C<br>Appendix D               | 73<br>83<br>88        |

Х

### LIST OF TABLES

Page

Table

### 2.1 Physical and thermal properties of vegetable oils 2.2 Chemical composition of fatty acids in general Physical and thermal properties of various vegetable oils 2.3 5 Properties of Span 80 2.4 6 3.1 Physical and thermal of oil properties 33 4.1 Mass transfer rate of fuel for single droplet combustion 39 5.1 Specifications of the Yanmar TF 75-LM diesel engine 41 5.2 Details of emissions and their measuring range of Testo 350 XL 44

# ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright<sup>©</sup> by Chiang Mai University All rights reserved

## LIST OF FIGURES

| Figure Page |                                                                        |      |  |
|-------------|------------------------------------------------------------------------|------|--|
| 2.1         | Chemical structure of vegetable oil                                    | 4    |  |
| 2.2         | Emulsified Oil Combustion                                              | 7    |  |
| 2.3         | The pattern of fuel droplets combustion                                | 9    |  |
| 2.4         | The values of $f^*$ and $\omega^*$ which are functions of Ta           | 15   |  |
| 2.5         | Cylinder conditions after 250 hr operation                             | 21 < |  |
| 2.6         | The condition of the fuel injectors after 250 hr operation             | 21   |  |
| 3.1         | The unstability of the emulsion after blending (span 80 2% vol.)       | 26   |  |
| 3.2         | The stability of the emulsion after blending (span 80 1% vol.)         | 27   |  |
| 3.3         | The structure of emulsified oil. The magnification of eye piece is 10x | 28   |  |
| 3.4         | The stability of the emulsion after blending                           | 28   |  |
| 3.5         | Saybolt Viscometer Apparatus                                           | 29   |  |
| 3.61        | Flash Point Apparatus                                                  | 29   |  |
| 3.7         | Bomb Calorie meter Apparatus                                           | 30   |  |
| 3.8         | Automated Distillation Apparatus                                       | 30   |  |
| 3.9         | Heating Value of Emulsified oils                                       | 31   |  |
| 3.10        | ) Flash point of Emulsified oils                                       | 32   |  |
| 3.1         | Viscosity of Emulsified oils                                           | 32   |  |
| 4.1         | Experimental setup for testing single droplet combustion               | 36   |  |
| 4.2         | The brass sphere of 5 mm diameter                                      | 36   |  |
| 4.3         | The Bunsen burner                                                      | 37   |  |

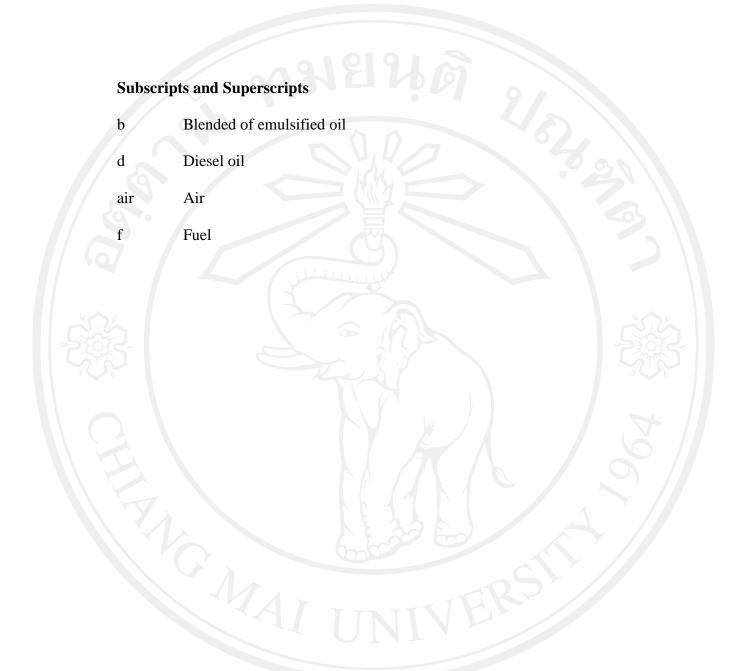
| 4.4  | Fixing the sphere with the oil feeding tube                          | 37 |
|------|----------------------------------------------------------------------|----|
| 4.5  | Hot wire anemometer for measuring air speed                          | 37 |
| 5.1  | The engine test bed                                                  | 40 |
| 5.2  | Schematic of the engine test bed                                     | 41 |
| 5.3  | Flue Gas Analyzer TESTO 350 XL                                       | 43 |
| 5.4  | Engine torque at different engine speeds                             | 46 |
| 5.5  | Engine power at different engine speeds                              | 47 |
| 5.6  | Specific fuel consumption at different engine speeds                 | 47 |
| 5.7  | CO emission at different engine speeds                               | 48 |
| 5.8  | NOx emission at different engine speeds                              | 48 |
| 5.9  | Black smoke of engine with different oil compositions                | 49 |
| 5.10 | Wear at the engine piston for the fuel oil and the emulsified        |    |
|      | Diesel/CPO/water of 90/5/5 after 200 h operation                     | 50 |
| 5.11 | Wear at the needle injection of fuel pump for the fuel oil and       |    |
|      | the emulsified Diesel/CPO/water of 90/5/5 after 200 h operation      | 50 |
| 5.12 | 2 Wear at the piston of oil pump for the fuel oil and the emulsified |    |
|      | Diesel/CPO/water of 90/5/5 after 200 h operation                     | 50 |
| 5.13 | Wear at the piston ring for the fuel oil and the emulsified          |    |
|      | Diesel/CPO/water of 90/5/5 after 200 h operation                     | 51 |
| 5.14 | Wear at the intake valve and exhaust valve for the fuel oil          |    |
|      | and the emulsified Diesel/CPO/water of 90/5/5 after 200 h operation  | 51 |
| 5.15 | Wear at the piston shaft bearing for the fuel oil and the emulsified |    |
|      | Diesel/CPO/water of 90/5/5 after 200 h operation                     | 51 |

xiii

| 6.1 | Combustion model of a single fuel droplet                 | 56 |
|-----|-----------------------------------------------------------|----|
| 6.2 | Engine efficiency versus engine speed with different      |    |
|     | compositions of emulsified fuels                          | 58 |
| 6.3 | The simulated engine brake power when the emulsified oils |    |
|     | were taken as fuel in the engine                          | 59 |
| 6.4 | The maximum errors of engine brake power when             |    |
|     | the emulsified oils were taken as fuel in the engine.     | 60 |
|     |                                                           |    |
|     |                                                           |    |

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright<sup>©</sup> by Chiang Mai University All rights reserved

# SYMBOLS


| В              |                | Mass transfer driving force                                                        |
|----------------|----------------|------------------------------------------------------------------------------------|
| bs             | fc             | Brake specific fuel consumption (g/kW hr)                                          |
| C              |                | Constant of the initial drop size equation is $\sqrt[3]{\frac{3}{\pi A_{\theta}}}$ |
|                |                | where $A_{\theta}$ is constant of nozzle; $A_{\theta} \cong 0.01$                  |
| Cp             | 0              | Specific heat of air (kJ/kg K)                                                     |
| Cŗ             | Pfu            | Specific heat capacity of fuel (kJ/kg K)                                           |
| Cŗ             | p <sub>b</sub> | Specific heat capacity of vegetable oil(kcal/kg°C)                                 |
| Cd             | 1              | Discharge Coefficient of Nozzle = 0.6                                              |
| d              |                | Diameter of droplet oil(m)                                                         |
| g              |                | Mass transfer conductance(kg/m <sup>2</sup> s)                                     |
| н              |                | Heating value (kJ/kg)                                                              |
| L              |                | Latent heat of evaporation of fuel (kJ/kg)                                         |
| Μ              |                | Molecular weight of fuel                                                           |
| m'             | "              | Mass transfer flux (kg/m <sup>2</sup> s)                                           |
| m <sub>f</sub> | ŕ              | Fuel consumption (g/hr)                                                            |
| m              | ox,G           | Mass ratio of $O_2$ in the ambient air = 0.232                                     |
| N              |                | Speed of engine (rpm)                                                              |
| P <sub>b</sub> | 5              | Brake power of engine (W)                                                          |
| ΔF             | P              | Pressure difference in nozzle injection and combustion chamber (Pa)                |
| $Q_s^{\cdot}$  | sinale         | The combustion heat rate from the single fuel droplet $(g/s)$                      |

| r               | Ratio of O <sub>2</sub> (Oxidant) to fuel for complete combustion |
|-----------------|-------------------------------------------------------------------|
| Re              | Reynolds Number                                                   |
| spgr            | Specific gravity of blended oil                                   |
| Sc              | Schmidt Number                                                    |
| Т               | Torque of engine from dynamometer (N-m)                           |
| T <sub>bp</sub> | Boiling point temperature (°C)                                    |
| T <sub>G</sub>  | The ambient temperature (°C)                                      |
| T <sub>fu</sub> | Temperature of the fuel in the tank (°C)                          |
| T <sub>bp</sub> | Boiling point temperature (°C).                                   |
| Va              | Velocity of air flow over a sphere (m/s)                          |
| $V_{\rm f}$     | Velocity of fuel injection in combustion chamber (m/s)            |
|                 |                                                                   |

### **Greek Letters**

| μ       | Viscosity at average temperature of surrounding air and droplet (kg/m s) |
|---------|--------------------------------------------------------------------------|
| $\mu_a$ | Viscosity of air at average temperature between combustion               |
|         | and air intake (N-s/m <sup>2</sup> )                                     |
|         |                                                                          |

- $\rho_a$  Density of air (kg/m<sup>3</sup>)
- $\rho_{\rm f}$  Density of fuel (kg/m<sup>3</sup>)
  - Surface tension of fuel (N/m)
- $\lambda$  Dimensionless wavelength  $\lambda$  Dimensionless wavelength  $\lambda$



<mark>ລິບສິກສົນหາວົກຍາລັຍເຮີຍວໃหม</mark> Copyright<sup>©</sup> by Chiang Mai University All rights reserved

xvii