
 

 

 

 

CHAPTER 3 

METHODOLOGY 

 

General methodology for simulation of physiology modeling is introduced 

first in this chapter to explain how to relate system modeling, such as parametric 

model, model validation, governing equation, boundary condition setting and equation 

solving, to physiological system. Two methodologies for stresses and strains 

distributions of murine aortic vessel in three-dimension three-layer abdominal aortic 

wall based on in vivo ultrasound imaging and stresses and strains distributions of 

human aortic vessel in three-dimension five-layer aortic wall based on in vivo 

ultrasound imaging are then expressed.  

We had firstly applied mechanical modeling of blood vessel to murine aortic 

vessel experimental data. The new mechanical modeling of aortic vessel can 

determine stress and strain distributions in all principal three directions of 

longitudinal, circumferential and radial directions and in multilayer. More realistic 

properties of aortic which well known to be as anisotropic and nonlinear material are 

also included in this study. Fiber-reinforced constitutive equation is suitable employed 

for all three major layers of aortic wall separated by considering histology of each 

aortic layer. Advantages of in vivo noninvasive ultrasound imaging provide important 

data of aortic wall movement along cardiac cycle time. Stress and strain distributions 

can be illustrated and interpreted. This advantage of combination of three-dimension 

three-layer fiber-reinforced aortic vessel modeling for stress and strain predictions and 

in vivo noninvasive experimental data has been first proposed on this study.
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Consequently, the new mechanical modeling has been extend to use with more 

realistic aortic vessel by involve with more number of aortic layers and more 

constitutive equations and to then use as implement to predict and illustrate rupturing 

of the aortic vessel which has also been firstly introduced on this study.  The new 

developed model is applied to determine stresses and strains distributions of human 

aortic vessel in three-dimension five-layer aortic wall based on in vivo ultrasound 

imaging. Two constitutive equations are suitable employed for all five layers of aortic 

wall separated by considering histology of each aortic layer. Stress and strain 

distributions can be illustrated and interpreted. Mapping of rupture area and rupture 

risk of aortic wall subjected by various luminal pressures can be performed by using 

critical stress and strain criterion. 

To derive equations involving with the modeling from governing equation, 

authors would reasonably like to use notation for equations in from of tensor to allow 

reader easier understand global system of the modeling and can follow complexity of 

equations system. There are a number of basics tensor operations that may be conduct 

tensors and again produce a tensor. These tensor operations are not expressed on this 

chapter. One of several ways to find out these tensor operations is by using advanced 

mathematics books. 

Methodology for simulation of physiology modeling to construct constitutive 

equation for three dimensional stress and strain relationship model and predict stress 

and strain distribution in aortic vessel wall is show as schematic chart in Figure 3.1 

and could be explained as following. 
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3.1. Simulation of physiology modeling 

Simulation of physiology modeling is the process of solving the model (the 

equations that are the realization of the model) to examine its output behavior. This 

process typically involves examining one or more of the parameters thus performing 

computer is needed to experiment on the model. During model building, simulation 

could be performed to clarify aspects of system behavior to determine whether a 

proposed model representation is appropriate. This is done by comparison of the 

model output with experimental data from the same situation. When carried out on a 

complete, validation model, simulation yields output responses that provide 

information on system behavior. Depending on the modeling purpose, this 

information assists in describing the system, predicting behavior, or yielding 

additional insights.  

Complete mathematical model is firstly needed. All its parameters are 

specified and initial conditions are defined for all the variables. If the model is not 

complete, there has unspecified parameter values, parameter estimation technique 

must be employed. Once a complete model is available, it is implemented on the 

computer. If model equations cannot be solved analytically, a numerical solution of 

the system is needed. 

Methodology for physiology modeling construction consists of 2 parts, is 

shown in Figure 3.1, which are collecting physiological data of physiological system 

of aortic vessel (physiological experiment) and modeling the system (data analysis). 

Collecting physiological data of physiological system Physiological 

experiment data can represent physiological behavior. Experimental data from in 

vivo-noninvasive aortic vessel imaging technique using experimental data in animal 
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such as rat are used. The qualitative data, the imaging data, then must be conversed to 

be quantitative data, displacement data. This quantitative data are used to consider in 

the system modeling. 

Modeling the system Model of the system is physiologically based by 

mathematically explanation that can describe directly to physiology of aortic vessel. 

Hence, a prior knowledge and reasonable assumptions are required.  

 

3.1.1. Modeling the system (data analysis)  

To perform physiological data for modeling the system, both a model 

structure and fully determined parameters corresponding to that structure are required. 

In the other word, a complete model is required. However, such a model has not yet 

established. Therefore, at least one candidate model is selected. A model is 

incomplete; it will be due to some unknown parameter value.  

The solution from this problem requires data. The input and output data 

from experiment must contain that part of model with the unknown parameter values. 

In the process, data are mapped into parameter values by the model, where error can 

occur in both the data and model. Modeling the system is also called mechanical 

modeling. 

 

3.1.2. Parametric model 

The experimental data must be rich enough to estimate all the unknown 

parameters. Problem is a mismatch between the complexity of the model and the 

richness of the data which mean that model is too complex or too many unknown 

parameters for available data or the data are not sufficient for the model provided.  
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Figure 3.1 Methodology for simulation of physiology modeling 
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Existed techniques for parameter estimation are most widely adopted such as linear or 

nonlinear least squares. These require for a prior knowledge or assumptions regarding 

the statistics of the situation being model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Modeling the system 
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essence of the validation process at this stage is shown in Figure 3.1 and Figure 3.2. 

The process is dependent upon model propose. That might be testing the 

appropriateness of model structure in relation to any intended use for hypothesis 

testing parameters that would be meaningful in the context of specific disease. 

Changing in parameter values could correspond to the change from a healthy state to a 

diseased state. Dependent upon propose, features of the model and system data must 

corresponded sufficiently for the same input, there have an acceptably small 

difference between them. In the other word, within the necessary domain of validity, 

there is testing whether the model is credible. The validation process is to compare the 

model and physiological behavior by estimate relevant parameters by minimizes 

function of mean square error of pressures. Any mismatch between them should be 

analyzed for plausibility of behavior. Additional explanation of modeling the system 

or mechanical modeling in the parts of governing equation setting, boundary 

conditions setting and equation solving showing in Figure 3.3 can be described.  

 

3.1.4. Governing equation  

Setting Knowledge of continuum mechanics is required to construct 

mechanical modeling using elasticity and deformation theory. Mechanical modeling is 

shown in Figure 3.3. Governing equation consist of five equations which are 

conservation equation of mass, conservation equation of momentum, conservation 

equation of energy, deformation equation and constitutive equation.  

Deformation equation usually well known as strain and displacement 

relationship including Lagrangian coordinate, Spatial coordinate, Deformation 
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gradient, Green’s deformation tensor, Cauchy deformation tensor, Lagrangian finite 

strain tensor, Eulerian finite strain tensor.  

Geometry and coordination are considered to appropriate with anatomy 

of aortic vessel. The geometry of aortic vessel might be considered as symmetry or 

asymmetry in longitudinal axis and coordination might be considered either Cartesian 

coordination (X,Y,Z) or cylindrical coordination (R,,Z).  

Strain and displacement relationship equation is also called motion 

equation. Motion equation is the mapping equation which describes motion and 

deformation of aortic vessel that is assumed to satisfy the following conditions; the 

function is continuously differentiable, the function is one-to-one and the jacobian 

determinant satisfies (J=det F) the condition J>0.  

Constitutive equation is equation which describes aortic vessel behavior 

and relates stress to correspond with deformation. The formulation of constitutive 

equation consist of five steps which are delineation of general characteristics of 

interest, establishing an appropriate theoretical framework quantification, 

identification of specific functional forms of the constitutive equation, calculation of 

the value of the associated material parameters, evaluation of the predictive capability 

of the final relation. Assumptions of properties of aortic vessel regard to anatomy and 

physiology, might be selected from these; homogeneous/ heterogeneous/ composite 

material, compressible/ incompressible material, isotropic/ anisotropic material, 

hyperelastic/ pseudoelastic/ ramdomly elastic/ poroelastic/ viscoelastic material.  

Stress and strain relationship can be written in form of equation which 

is importance to represent aortic vessel behavior. Differentiation of strain energy 
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density function respect to strain with lowest potential energy method is obtained 

stress function. Constitutive equation could be obtained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Mechanical Modeling 
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3.1.6. Equation solving  

This stage is to solve the problem by selecting the suitable method. An 

analytical solution is one of method. In some case, analytical solution requires the 

solution of ordinary or partial differential equations which are not usually obtainable 

because of the complication geometry, loading, and material properties. Hence, 

numerical methods could be reliability, such as finite element method, for acceptable 

solutions.  

Conclusions of the research will be obtained which are constitutive 

equation for three dimensional stress and strain relationship model of aortic vessel and 

prediction of stress and strain distribution across aortic vessel. 

 

3.2. Mechanical modeling of blood vessel for murine aortic vessel 

Vascular system has the aorta which acts as both conduit and an elastic 

chamber. The elastic of aorta serves to convert pulsatile flow pumped by heart to 

steady flow in peripheral vessels. Atherosclerosis, the common disease of arterial 

wall, is a disease usually located within large arteries (Yang and Vafai, 2006) and 

buildup of atherosclerosis plaque usually associates with pathological changes of 

intimal component of vascular layers (Holzapfel and Gasser, 2001; Holzapfel, 2001). 

One of the implications of the structural changes is the change in mechanical 

properties of the blood vessel. Stress and strain are used to represent the mechanical 

properties. As mention, it could be observed that disease location associates with 

position on artery tree and inside wall. So, stress and strain distribution in 

multidimensional and multilayers should be predicted. In order to friendly for patient, 

advantage of imaging technology should be used as additional data, especially the 
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ultrasound scanning. Ultrasound scanning is non-invasive medical test that has no 

needles or injections and is usually painless. Hence, this section proposes to predict 

stresses and strains distributions in coordinate of three dimensions and in three major 

layers of abdominal aortic wall based on in vivo ultrasound imaging. 

 

3.2.1. Experimental data harvest 

 

 3.2.1.1. Luminal pressure 

Luminal pressure acted to the inside wall causes vascular wall 

movement. Wild-type C57BL/6 male mouse is obtained from the Jackson (Bar 

Harbor, ME) and Taconic (German town, NY) Laboratories. All procedures are 

approved by the Institutional Animal Care and use committee of Columbia 

University. Abdominal aorta of mouse is canulated using an ultraminiature pressure 

catheter through the mouse carotid artery and introduces into the abdominal aortic 

region to provide both of luminal pressure and ECG signals (see Figure 3.4- Figure 

3.6).  

 

Figure 3.4 The system set up of mouse experiments (Danpinid, 2010) 
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Figure 3.5 A. 30 MHz ultrasound probe B. Mouse platform (left) and heart rate and 

temperature recorder (right) C. Experimental assembly with Vevo 770 (VisualSonics), 

30 MHz ultrasound probe, mouse platform (Danpinid, 2010) 
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3.2.1.2. Displacement 

Five wild-type C57BL/6 male mice (7-10 month old) are 

obtained from the Jackson (Bar Harbor, ME) and Taconic (German town, NY) 

Laboratories. All procedures are approved by the Institutional Animal Care and use 

committee of Columbia University. The inside and outside aortic diameters of 

abdominal aortic wall are clearly obtained through manual tracing on the B-mode 

image of ultrasound imaging with higher frame rate of 8 MHz. Then, the radial 

incremental displacements of the inside and outside walls are determined which then 

accumulate to obtain the wall diameter variation over a cardiac cycle. The luminal 

pressure and aortic wall diameter variations are matched using the corresponding 

ECG by align the maximum and minimum peaks of the luminal pressure and diameter 

variations. All experimental data based on ultrasound then are used as importance 

inputs in mechanical model (see more details in Danpinid (2010), Danpinid et al. 

(2010) and Fujikura et al. (2007)). (Experimental data had supported from Ultrasound 

and Elasticity Imaging Laboratory (UEIL), Biomedical Engineering and Radiology, 

Columbia University, New York, USA). 

 

Figure 3.6 Experimental methodology with healthy mouse in abdomen 
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3.2.2. Mechanical modeling 

 

3.2.2.1. Continuum mechanics 

The mathematical description of deformation, the body occupy 

in the reference configuration   . When the body is deformed, every particle at point 

         transforms to new position at point          in deformed configuration  . 

Configurations of artery are shown in Figure 2.8.     and   are radial, angular 

(circumferential) and longitudinal positions in reference configuration and     and   

are radial, angular (circumferential) and longitudinal positions in deformed (current) 

configuration  The transformation gradient could be determined by following 

equation. 

 

  
  

  
   (3.1) 

 

Right and left Cauchy Green tensor associate with   as following. 

 

      ,       (3.2) 

 

So, the Green-Lagrange strain tensor could be introduced as Equation (3.3). 

 

  
 

 
      (3.3) 

 

where   denotes the second order unit tensor.  
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For stress response of the artery, Cauchy stress tensor    

relates to Green-Lagrange strain tensor    via transformation             the 

Piola Kirchhoff stress tensor   which is the first derivative (
  

  
) of strain energy 

function   respected to Green-Lagrange strain tensor  .   is Jacobien determinant of 

deformation gradient tensor. Cauchy stress tensor   could be expressed as the sum of 

two other stress tensors which are volumetric stress tensor      and stress deviator 

tensor  ̅ as Equation (3.4). 

 

        ̅ (3.4) 

 

where         and   is Lagrange multiplier to descript the incompressibility of the 

artery wall (Shigley and Mischke, 2001; Fung, 1994; Fung, 1985; Fung, 1990).  

 

 

Figure 3.7 Boundary conditions 
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3.2.2.2. Computational model 

Boundary conditions shows in Figure 3.7. Thickness ratio of 

media and adventitia is set as 2:1 (Holzapfel and Gasser, 2000) and thickness ratio of 

intima and media is set as 1:20 (Yang and Vafai, 2006).  

 

 3.2.2.3. Mechanical formulations 

Kinematics of the artery in cylindrical coordinate, deformation 

equations (Holzapfel and Gasser, 2000; Holzapfel, 2001) are as following. 

 

  √
     

 

   
   

 , (3.5) 

      
 

 
, (3.6) 

        (3.7) 

 

where   
  

      
,    is stretch ratio in longitudinal direction,   and   are opening 

angle and overall length of artery in reference configuration and subscript   in 

Equation (3.5) refers to inside. 

According to the artery structure composted of fiber and non-collagen matrix of 

material, fiber reinforced strain energy function suggested by G.A.Holzapfel (2000) 

had been suitable used to relate stress and strain. The strain energy function could be 

written in two terms of isotropic and anisotropic deformations as Equation (3.8). 

 

 ̅  
  

 
   ̅     

   

    
∑ ,   *   (  ̅   )

 
+   -      (3.8) 
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where     ,       are stress-like parameter and       is dimensionless 

parameter, subscript   refer to intima, media and adventitia layers (see Figure 3.7) and 

subscript   refer to index number of invariants. In Equation (3.8),   ̅  is the first 

principal invariant of  ̅ and the definitions of the invariants in Equation (3.9) 

associate with the anisotropic deformation of arterial wall. 

 

  ̅   ̅    ,   ̅   ̅     (3.9) 

 

The collagen fiber is assumed that it do not support compressive stress. Thus, in case 

of   ̅   and   ̅    the response is similar to the response of rubber like material 

that descripted by Neo-Hookean functions. The tensor     and     characterizing the 

structure are given by Equation (3.10). 

 

             ,               (3.10)

  

Component of the direction vector      and      in cylindrical coordinate system are 

in forms as Equation (3.11). 

 

     [

 
     

     

],       [

 
     

      

] (3.11) 

 

where    is the angle between the collagen fibers and circumferential direction. 



 

 

43 

 

Hence, the stress in Eulerian description could be determined by the expression in 

Equation (3.12). 

 

 ̅         ̅  ∑   ̅      (       )      (3.12)  

 

where  ̅   
  ̅     

   ̅ 
 denotes as response function and      ̅     denotes as Eulerian 

counter part of     . The equilibrium equation in cylindrical coordination in equation 

(3.13) is used with boundary equations. Inside pressure from the model and the 

equations to predict stresses distributions are provided. 

 

  

  
    (3.13) 

 

3.2.2.4. Determination constitutive parameters  

There are three parameters in each arterial layers which must 

be estimated to apply in equations of stresses. Nonlinear lease square method is used 

to estimate these relevant parameters by minimizes function of mean square error 

(MSE) of pressures in form as Equation (3.14) 

 

       
 

 
∑ (                      )

  
    (3.14) 

 

where   is number of longitudinal data points. 
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The Pearson product moment correlation coefficient parr  through the data points in 

i ,mod elp  and i ,experimentp  is used for the agreement of fit. The Equation for the Pearson 

product moment correlation coefficient parr  is 
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  

 (3.15) 

 

where N  is number of longitudinal data points and i  is index for summation over the 

whole data points. 

 

3.3. Mechanical modeling of blood vessel for human aortic vessel 

Cardiovascular system has a heart acted as a pump, arteries system served to 

convert pulsatile flow pumped by heart to steady flow in peripheral vessels and vein 

system acted as reservoir of returned blood before return to the heart to complete 

cycle of cardiovascular blood flow. To normally serve fresh blood to body, artery is 

important role. The pressure resulting from blood flow acts in endothelium cells of 

artery. The endothelium cells response to the stress and to strain by inflation or 

contraction and extension. To prevent unrequired failure of artery, the initiation and 

propagation of rupture area should be predicted and assessment of rupture area should 

be qualitatively observed. Mechanical properties of stress and strain of the arterial 

wall have received more attention in recent. Several constitutive models have been 

proposed (Holzapfel et al., 2000; Delfino et al., 1997; Fung, 1990; Fung, 1997; Fung, 

1993). Monolayer homogenous arterial wall is simple way to study. However, it is 
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well known the arterial wall is non-homogeneous material. A better approach is to 

model heterogeneity of the arterial wall by considering as multi-layer according to its 

histology. The arterial wall is modelled as several different layers, i.e. endothelium, 

intima, internal elastic lamina, media and adventitia and this model couples the blood 

flow through lumen causing pressure acted on inside surface of arterial wall. Stress 

and strain are mechanical concept based on continuum model developed to interpret 

concentration of force and deformation of arterial wall. There are many definitions of 

stress and strain (Fung, 1969; Fung, 1994; Fung, 2001). In present study, the Cauchy 

stress and the Green-Lagrange strain are used to refer force acted on deformed area 

and ratio of inflation and extension. These are for simple physics quantify.  

 Although, biological tissue might not directly to the stress and strain in that it 

might be excited by various basic quantities such as chemical action which are 

generally difficult to measure, measured stress and strain are therefore quantitatively 

important. By monitoring stress and strain during a cyclic load experiment, the 

response of the artery could be clearly identified that the load and unloading paths 

show only small hysteresis (Holzapfel at al., 2004). Stress and strain behavior of 

arterial wall hence involve with elastic deformation under the pressure load. The main 

purpose of this section is to develop three-dimension five-layer model for study effect 

of pressure on arterial failure. In particular, levels of pressure are studied and rupture 

area is consequently predicted. 
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3.3.1. Experimental data harvest 

 

3.3.1.1. Luminal pressure 

 

Figure 3.8 The pressure profile along a cardiac cycle at carotid artery of human (Male, 

Time step=0.140014 ms, N =5852 points, Cardiac cycle time=Time step*( N -

1)=0.8192 s, Heart rate=73.240 bpm). Experimental data are supported by Ultrasound 

and Elasticity Imaging Laboratory (UEIL), Biomedical Engineering and Radiology, 

Columbia University, New York, USA. 

 

Lumen region is considered to obtain luminal pressure 

variation acted on inside surface of artery and experimental data of pressure are 

required. Experimental data is examined from healthy American volunteer with age of 

28 year old. The pressure profile from experimental data ( N =5852) at carotid artery 

of human supported by UEIL (Ultrasound and Elasticity Imaging Laboratory (UEIL), 
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Biomedical Engineering and Radiology, Columbia University, New York, USA) are 

shown in Figure 3.8. Methodology to obtain the pressure (Khamdaeng et al., 2011) is 

briefly explained as following. To obtain pressure wave form, the applanation 

tonometer (Millar SPT-301 probe; Millar Instruments, Houston, TX) is placed on the 

subject at wrist against the radial artery and the strongest pulse signal is manually 

detected. Since diastolic blood pressure ( DBP ) and systolic blood pressure ( SBP ) are 

equal to those of the brachial artery (Payne at el., 2007), the radial pressure waveform 

is calibrated via a SphygmoCor system (AtCor medical, Sydney, NSW, Australia) 

using the brachial blood pressure measured by a sphygmomanometer. To obtain 

magnitude of pressure waveform, a sensor is placed perpendicularly on the carotid 

artery and measures the mean blood pressure ( MBP ) and diastolic blood pressure        

( DBP ). The pressure profile is then obtained. 

 

3.3.1.2. Displacement 

The diameter profile from experimental data ( N =404) at 

carotid artery of human supported by UEIL (Ultrasound and Elasticity Imaging 

Laboratory (UEIL), Biomedical Engineering and Radiology, Columbia University, 

New York, USA) are shown in Figure 3.9. Methodology to obtain the diameter is 

briefly explained as following. The ultrasound probe is placed on the skin at the 

carotid position. Ultrasound gel is used as a coupling medium to acquire RF signals. 

High temporal resolution RF frames of the carotid are obtained by using 10-MHz 

linear array transducer and clinical ultrasound system (Sonix TOUCH; Ultrasonix 

Medical, Burnaby, British Columbia, Canada). Cross-correlation technique (Luo and 

Konofagou, 2010) is used to estimate the wall displacement from the ultrasound radio 
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frequency (RF) signals acquired at a frame rate of 505 Hz and determined between 

consecutive RF frames acquired at a sampling frequency of 20 MHz, depth of 30 mm, 

width of 38 mm, and a line density from 16 to 32 beams. Regarding cross-correlation 

technique, the cumulative displacement was calculated. The diameter of the carotid 

artery could be obtained. 

 

Figure 3.9. The diameter profile along a cardiac cycle at carotid artery of human 

(Time step= 1/505 ms, N = 404 points, Cardiac cycle time= Time step*( N -1)= 

0.7980 sec, Heart rate= 75.186 bpm). Experimental data are supported by Ultrasound 

and Elasticity Imaging Laboratory (UEIL), Biomedical Engineering and Radiology, 

Columbia University, New York, USA. 
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3.3.2. Mechanical modeling 

 

3.3.2.1. Continuum mechanics 

Continuum mechanics Equations provide us to descript 

properties of stress and strain responses of the arterial wall. Continuum mechanics 

knowledge is excellently reviewed by Y. C. Fung (Fung, 1969; Fung, 1994). The 

stress is always understood to be the force acted on arterial wall per unit area and 

related to deformation of the arterial wall described by strain. Classical knowledge of 

conservation equations, strain-displacement equations and appropriated constitutive 

equation are applied with boundary conditions to determine these stress and strain 

responses that are afterward important to consider rupture of arterial wall. 

The mathematical description of deformation is interested in 

movement of the arterial wall. Once the arterial wall is moved every particle of 

arterial medium is going to new position. Consider the body of arterial wall in the 

reference configuration 
o , every material particle point in cylindrical coordinate is 

given as  R, ,ZX . By the time that the body of arterial wall is deformed, the 

material point  R, ,ZX  transforms to position  r, ,zx  or its inverse in deformed 

configuration  . The features of transformation described the deformation are given 

by the first partial derivatives of these two configurations relationships called the 

deformation gradient tensor F  and written as 

 

   
  

  
.  (3.1) 
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The deformation gradients could be used to describe the distance between two 

neighboring points in these two configurations and the Green-Lagrange strain tensor 

E  could be introduced as equation 

 

 
1

2
 E C I . (3.3) 

 

This form of the Green-Lagrange strain tensor E  is in terms of the right Cauchy 

Green tensor C  which is 

 

TC F F   (3.2) 

 

and I  denotes identity tensor.  

The internal force reacted to external force and acting within deformed body per unit 

area could be measured as stress. To describe the hyperelastic stress response of 

arterial wall, appropriate strain energy function   is chosen to describe physical 

behavior of arterial wall. The force in the reference configuration 
o  to area in the 

reference configuration 
o  well-known as the second Piola–Kirchhoff stress tensor S  

could be determined by performing the first derivative of strain energy function   

respected to the Green-Lagrange strain tensor E  as 

 





S
E

. (3.16) 
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The Piola–Kirchhoff stress tensor could be transformed to the Cauchy stress tensor 

via relationship of  

 

1 TJ  FSF   (3.17) 

 

where J  denotes Jacobian determinant of deformation gradient tensor which must 

satisfy the condition of conservation of mass whose value is greater than zero. 

The Cauchy stress tensor    could be expressed as the sum of two other stress tensors 

which are volumetric stress tensor  
vol  which tends to change the volume of the 

stressed body and stress deviator tensor    which tends to distort the stressed body 

that is 

 

vol    . (3.4) 

 

The equation of motion of a continuum derived by applying Newton’s law is in form 

 




 



G a

x
 (3.18) 

 

where G  denotes body force of arterial wall and  a  denoted its acceleration. 

The conservation of mass is expressed by 

 

t

  
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 
0

v

x
  (3.19) 
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where this    denotes density of arterial wall and v  denotes its velocity vector. 

The deformation of the arterial wall is related to the luminal pressure as applied load 

by blood flow in arterial lumen. The blood considered as an incompressible 

Newtonian fluid could be descripted by the Navier-Stokes equation as 

 

2. p
t

  


    


v
v v v f    (3.20) 

 

where this   denotes density of blood, v  denotes velocity vector, p  denoted luminal 

pressure,   denotes dynamic viscosity of blood and f  denotes its body force. 

Hence, the stress and strain distributions in arterial wall could be predicted and then 

used for rupture consideration. 

 

3.3.2.2. Computational model 

A three-dimension five-layer mechanical model is developed 

for prediction of stresses and strains distributions across arterial wall in a cardiac 

cycle. The schematic illustration of idealized artery geometry and boundary 

conditions under consideration is shown in Figure 3.10. 

 

a) Geometry of arterial wall 

The arterial geometry is idealized as a five concentric 

axisymmetric layers straight circular cylindrical nonlinear elastic tube. In reference 

configuration luminal radius  R  of 3.1 mm, longitudinal length L  of 124 mm (Yang 
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and Vafai, 2006) and thickness of each arterial wall layer is presented in Table 1 and 

the adventitia is assumed that occupies a half of the media. 

 

Figure 3.10 Schematic illustration of the geometric artery and boundary conditions 

 

Table 3.1 Thickness of each wall layer of artery (Yang and Vafai, 2006; Ai and 

Vafai, 2006; Yang and Vafai, 2008) 

Wall layer Symbol Thickness (  m) 

Endothelium      2.0 

Intima      10.0 

Internal elastic lamina (IEL)      2.0 

Media      200.0 

Adventitia      100.0 

 

b) Boundary conditions 

Since blood flows in the lumen of arterial as pulse, the blood 

pressure acted to inside arterial wall surface causes the wall movement which is 

assumed that the pressure is uniform in circumferential direction and perpendicular to 

arterial wall surface at certain longitudinal position. Pressure acted to outside arterial 
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wall surface is assumed as uniform pressure with magnitude of 30 mmHg. The 

geometries of the five layers are compatible which means that outside radius of the 

individual wall layer is the same as inside radius of its outward neighbour layer. 

 

3.3.2.3. Mechanical formulations 

There are six regions in present mechanical model, i.e. lumen 

and five arterial layers of endothelium, intima, internal elastic lamina, media and 

adventitia. As starting from continuum mechanics, the mathematical formulations for 

each region are following. 

 

a) Lumen 

Lumen region is considered to obtain luminal pressure 

variation acted on inside surface of artery and experimental data of pressure are 

required. The pressure profile from experimental data ( N =5852) at carotid artery of 

human supported by UEIL (Ultrasound and Elasticity Imaging Laboratory (UEIL), 

Biomedical Engineering and Radiology, Columbia University, NY, US) are shown in 

Figure 3.11. Blood flows through arterial lumen which the blood is considered as an 

incompressible Newtonian fluid could be descripted by the Navier-Stokes equation of 

Equation (3.20). The Navier-Stokes equation expressed in cylindrical coordinates 

could be expanded as 

 

2 2 2

2 2 2 2 2
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  (3.21) 
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2 2
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  (3.22) 
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 (3.23) 

 

where      r zu r, ,z u r, ,z u r, ,z     v , 
ru , u

 and 
zu  are components of 

velocity vector, 
rf , f  and 

zf  are components of body force by subscript r ,   and z  

refer to radial, circumferential and longitudinal directions, respectively. 

Blood flow is pulsatile and characterized by a fully develop or parabolic velocity 

profile at the inlet of the arterial lumen. The velocity profile is assumed to be 

axisymmetric as 
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1z cl

r
u U

R
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  (3.24) 

 

where 
clU  is the centerline velocity at the lumen inlet. 

The lumen is horizontal so that the gravity effect could be ignored and axisymmetric 

flow is assumed thus no tangential and radial velocities and the remaining quantities 

are independent of  . The Navier-Stokes expanding equations could be reduced to be 

as 
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The centerline velocity at the lumen inlet is specified by a simple time-dependent 

sinusoidal function as 

 

2
1 sincl o

t
U U

T




  
    

  
  (3.26) 

 

and then used to characterize pulsatile flow in the artery where T  is the period of the 

pulsatile blood flow,   is the parameter used to account for the fluctuation of the 

pulsatile flow during each cardiac cycle and oU  is reference bulk inflow velocity. 

Substituting equation of clU  as Equation (3.26) into equation of zu  as Equation (3.24) 

and then into reducing equation of Navier-Stokes in longitudinal direction as the third 

one of Equation (3.25), it could be obtained equation as 
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. (3.27) 

 

Pressure gradient at inside arterial wall could be easily determined by using r R , we 

have 
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Negative sign presents to pressure drop in lumen due to viscosity of blood. Pressure 

along a cardiac cycle and pressure variation with longitudinal direction  p z,t  could 

be consequently expressed as 

 

     2

2 2
1 sino

outlet outlet

U t
p z,t z z p t

R T

 


   
      

   
.  (3.29) 

 

Since            is time dependent. Equation of this pressure profile along a cardiac 

cycle could be obtained by curve fitting using Fourier approximation with mean 

squares error fit of a sinusoid with the experimental data of pressure. The equation 

form of this pressure profile (Chapra and Canale, 2010) is  
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where the coefficients while equally time step could be evaluated by 
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and 1 2, , ,NI , 1 2, , ,J k , N  is number of data points and k  is number of 

sinusoidal finite series. 

Mean square error 
pMSE  used to quantify the different between obtained outlet 

pressure equation and experimental pressure data could be determined by 
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It should be noted that in the event of number of sinusoidal finite series k  is equal to 

number of data points N , it is approach to the continuous Fourier series. 

 

Figure 3.11 Mean square error 
pMSE  and number of sinusoidal finite series k  

relationship plotted in semi-log scale 

 

Because there is a large number of data point, it results to large number of terms in 

outlet pressure equation. Hence, the pressure profile is attempted to be fit with k  

only in range of 1 to 100 by additional reason of computational time as well. In order 

to find suitable number of sinusoidal finite series k , mean square error 
pMSE  and 

number of sinusoidal finite series k  relationship should be plotted  in semi-log scale 

as Figure 3.11. It is clear that it is not necessary to use number of sinusoidal finite 

series k  equal to number of data points N  because nearly constant in order of 
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magnitude of 
pMSE  is obtained in range of number of sinusoidal finite series about 

30 to 100. Thus, suitable number of sinusoidal finite series k  could be obtained as 

30. Therefore, the equation of the pressure profile could be expressed by using 

suitable number of sinusoidal finite series k  as 
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)  

   . (3.33) 

 

There are three parameters served to characterize the equation of this pressure profile; 

the mean value    sets the average height above the abscissa, the amplitudes    and 

   specifies the height of the oscillation and the angular frequency 
2

T


 characterizes 

how often the cycles occur. Two additional parameters   and   is thus used in the 

equation of the pressure profile to quantify fold values of mean,               , 

and amplitude,               , respected to this experimental data where MBP  

is mean blood pressure and SBP  is systolic blood pressure. The equation could be 

written as  
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Finally, pressure along a cardiac cycle and pressure variation with longitudinal 

direction,  p z,t , could be expressed as 
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 p z,t  is then used in this study by using blood viscosity   of 0.0037 
g

mm.s
, 

reference bulk inflow velocity oU  of 169 
mm

s
, fluctuation of pulsatile flow parameter 

  of 1, period of a cardiac time T  of 0.8 s , parameters   and   are equal to unity, 

parameter    of 12011.1954 Pa,     and    as in Table 3.2.  

 

Table 3.2 Parameters    and    in unit of Pascal 

        

   -307.802     -8.0677     -14.8198    2472.354     6.7722     -0.7861 

   -1152.17     44.5415     -35.7354    899.1454     -21.8575     4.3848 

   -904.308     22.2471     -5.9142    141.6018     40.6469     -19.529 

   -472.175     -30.1193     4.3074    -162.328     -5.9916     -17.2017 

   -376.189     18.2471     -1.4468    -319.284     -3.3656     -20.3007 

   -12.2606     21.6265     22.4666    -490.187     33.2005     -15.6279 

   196.7156     9.0006     14.0872    -193.917     11.1883     6.0502 

   93.4258     7.895     8.5244    -52.9216     21.7935     -2.0939 

   76.1842     -14.0034     8.0986    -44.6953     37.0081     -0.6531 

    70.6487     -20.9844     6.8244     58.292     7.7842     9.3357 

 

b) Arterial layers 

Geometry and boundary conditions show in Figure 3.10 is in 

reference configuration. Continuum mechanics applied to biological tissue could 

systemically understand by reviewing in literatures of Fung and Humphrey (Fung, 

1990; Fung, 1997; Fung, 1993; Fung, 2001; Humphrey, 2002). Kinematics of the 
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artery in cylindrical coordinate, deformation equations (Holzapfel et al., 2000) are as 

following. 

 

 
2 2

2i
i

z

R R
r r

k


  , (3.5) 

k Z
L


   , (3.6) 

  zz Z  (3.7) 

 

where 
2

2
k



 



, z  is stretch ratio in longitudinal direction which the value of 1.1 

is applied (Delfino et al., 1997) for every layer,   and L  are opening angle and 

overall length of artery in reference configuration and subscript i  in Equation (3.5) 

refers to inside. The artery deformed under extension and inflation and without 

residual strain is considered in this study.   

For endothelium and internal elastic lamina, the strain energy function of neo-

Hookean has been used to determine nonlinear response. The strain energy function 

for incompressible neo-Hookean material is 

 

 1 3
2

j
j

c
I    (3.36) 

 

where 0jc   is  stress-like parameter, 1I  is the first principal invariant of C  and 

subscript j  refer to endothelium and internal elastic lamina (IEL). There is only one 

parameter of c  for each layer. 
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For intima, media and adventitia, according to the artery structure composted of fibers 

and non-collagen matrix of material, fiber reinforced strain energy function suggested 

by Holzapfel et al. (2000) has been suitable used to relate stress and strain. The major 

reason that this fiber reinforced strain energy function is suitable used is not only it 

takes account of architecture of the arterial wall but also it is relevant relatively small 

number of parameters (Khakpour and Vafai, 2008; Holzapfel et al., 2004; Holzapfel 

et al., 2005). The strain energy function could be written in two terms of isotropic and 

anisotropic as Equation (3.8). 
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  (3.8) 

 

where 0jc  , 
1 0jk   are stress-like parameter and 

2 0jk   is dimensionless 

parameter, subscript j  refer to intima, media and adventitia layers and subscript i  

refer to index number of invariants. In Equation (3.8), 1I  is the first principal 

invariant of C  and the definitions of the invariants in Equation (3.9) associate with 

the anisotropic deformation of arterial wall. 

 

4 1:j jI C A , 6 2:j jI C A   (3.9) 

 

The collagen fibers are assumed that it do not support compressive stress. Thus, in 

case of 4 1I   and 6 1I   the response is similar to the response of rubber like material 
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that descripted by Neo-Hookean functions. The tensor 
1 jA  and 

2 jA  characterizing the 

structure are given by Equation (3.10). 

 

1 1 1j o j o j A a a , 
2 2 2j o j o j A a a   (3.10) 

 

Component of the direction vector 
1o ja  and 

2o ja  in cylindrical coordinate system are 

in forms as Equation (3.11). 
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where 
j  is the angle between the collagen fibers and circumferential direction. 

Three different values of 5, 7 and 49 degree (Holzapfel et al., 2002) are applied for 

the three major layers of intima, media and adventitia, respectively. 

Hence, the stress in Eulerian description could be determined by the expression in 

Equation (3.12). 
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response function i.e.  ̅     (  ̅   ) (   (  (  ̅   )
 
))  and  ̅   

  (  ̅   ) (   (  (  ̅   )
 
)). Additionally, it should be noted that 

 1 3/JF I F , 
T

C F F  and 
T

b F F . While incompressibility of arterial wall is 

applied, F F , C C  and b b  are obtained. There are only three parameters of c

, 
1k  and 

2k  for each layer. 

 

3.3.2.4. Determination constitutive parameters 

In order to estimate involving parameters, luminal pressure 

and diameter of artery are required. Methodology to obtain the pressure of artery had 

already explained. The diameter profile from experimental data ( N =404) at carotid 

artery of human supported by UEIL (Ultrasound and Elasticity Imaging Laboratory 

(UEIL), Biomedical Engineering and Radiology, Columbia University, NY, US) are 

shown in Figure 3.9. The minima and maxima of the pressure and diameter 

waveforms are aligned and matched over a cardiac cycle. The viscosity effect is hence 

ignored. Arterial wall is considered as an incompressible material and in horizontal so 

the gravity effect could be ignored. The equilibrium equation in Equation (3.13) is 

used with boundary conditions.  
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Luminal pressure could be determined by 
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 
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p p

r
     (3.37) 

where P
   , 

rrrr P    and P  is Lagrange multiplier used to enforce 

incompressibility constrain. 

There are only one parameter for each layer of endothelium and internal elastic 

lamina (IEL) and only three parameters for each layer of intima, media and adventitia. 

Although continuum mechanics provides non complicate equations, mathematics 

approach to the solution is quit complexity. It is different from engineering material 

acted as rigid body while it is subjected by pressure load. Biological tissue is moved 

with the pressure load changed by time. Moving boundary has faced for solving the 

solution in the five-layer model. Normalizing the moving boundary is employed. 

Numerical integration of three-point Gaussian quadrature which has accuracy order of 

five is employed to discrete Equation (3.37) and used with the boundary conditions. 

Nonlinear least square method is used to estimate these relevant parameters by 

minimize function of mean square error 
parMSE  of luminal pressures called 

‘Objective function’ in form as Equation (3.14). 
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The Equation for the Pearson product moment correlation coefficient 
parr  is 

  

   
1

2 2

1 1

N

i ,mod el i ,experimenti ,mod el i ,experiment
i

par
N N

i ,mod el i ,experimenti ,mod el i ,experiment
i i

p p p p
r

p p p p



 

 


  

 (3.15) 



 

 

66 

 

where N  is number of longitudinal data points and i  is index for summation over the 

whole data points. 

 

3.3.2.5. Arterial rupture 

The artery is subjected by luminal pressure which acts on the 

inside surface of arterial wall resulting to the arterial wall movement. The luminal 

pressure and the wall movement are involved with the stress and the strain of arterial 

wall. If the pressure is high and the artery has inappropriate deformation, the rupture 

of arterial wall would occur. There are a number of researchers who study ultimate 

tensile stress and associated stretch in normal human artery (Holzapfel, 2001; Zohdi 

et al., 2004; Franceschini et al., 2006; Sommer et al., 2008; Mohan and Melvin, 1982; 

Mohan and Melvin, 1983). In recent decade ultimate values of separated layers has 

been studied (Sommer et al., 2008; Holzapfel et al., 2005; Holzapfel, 2009; Zhao et 

al., 2008; Sommer, 2010; Holzapfel et al., 2004). The ultimate tensile stress and 

associated ultimate stretch (Holzapfel et al., 2004) shown in Table 3.3 in 

circumferential and longitudinal directions of intima, media and adventitia are used as 

criterions for rupture of arterial wall in present study. 
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Table 3.3 The ultimate tensile stress and associated ultimate stretch 

Layer Direction Ultimate tensile stress Ultimate stretch 

Adventitia Circumferential direction 1031.6 kPa 1.44 

 

Longitudinal direction 951.8 kPa 1.353 

Media Circumferential direction 202 kPa 1.27 

 

Longitudinal direction 188.8 kPa 1.536 

Intima Circumferential direction 488.6 kPa 1.331 

 

Longitudinal direction 943.7 kPa 1.255 

 

The equivalent tensile stress 
v  and strain 

vE  could be computed from the Cauchy 

stress tensor and the Green-Lagrange strain tensor as 
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The ultimate tensile stress and associated ultimate stretch in Table 3.3 are determined 

for critical equivalent tensile stress 
vj ,cri  and strain 

vj ,criE . In this study, the local 

failure is defined global failure or rupture since it is the beginning of completed 

failure. It is difficult to separate responses of arterial wall resulting from stress and 

strain since both of stress and stain are significant in showing the characteristics of the 

material of the vessel. Hence, it is difficult to change one thing without affecting 

another. Strategy to identify rupture area of arterial wall is that area of arterial wall 
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where local equivalent tensile stress and associated local equivalent strain exceed the 

critical values is defined to be rupture area and if it is not, it is defined to be no 

rupture area. Estimation of rupture risk has been referred to the local equivalent stress 

and strain approach. The percentage of rupture risk of arterial wall 
riskP  is defined as 

 

100 * *

risk j jP E   (3.40) 

 

where 
*

j  and 
*

jE  are normalized values which have consistent to 

 

if 1, ;if 1, 1* * * *v v v
j j j j

vj ,cri vj ,cri vj ,cri

  
   

  

  
    

  

,  (3.41) 

if 1, ;if 1, 1* * * *v v v
j j j j

vj ,cri vj ,cri vj ,cri

E E E
E E E E

E E E

  
    

  

. (3.42) 

 

It still lacks data for endothelium and internal elastic lamina (IEL), critical values of 

intima are applied in these two layers.  

Results from these methodologies are shown and discussed in next chapter. 

 


