CHAPTER 3

METHODOLOGY

General methodology for simulation of physiology modeling is introduced
first in this chapter to explain how to relate system modeling, such as parametric
model, model validation, governing equation, boundary condition setting and equation
solving, to physiological system. Two methodologies for stresses and strains
distributions of murine aortic vessel in three-dimension three-layer abdominal aortic
wall based on in vivo ultrasound imaging and stresses and strains distributions of
human aortic vessel in three-dimension five-layer aortic wall based on in vivo
ultrasound imaging are then expressed.

We had firstly applied mechanical modeling of blood vessel to murine aortic
vessel experimental data. The new mechanical modeling of aortic vessel can
determine stress and strain distributions in all principal three directions of
longitudinal, circumferential and radial directions and in multilayer. More realistic
properties of aortic which well known to be as anisotropic and nonlinear material are
also included in this study. Fiber-reinforced constitutive equation is suitable employed
for all three major layers of aortic wall separated by considering histology of each
aortic layer. Advantages of in vivo noninvasive ultrasound imaging provide important
data of aortic wall movement along cardiac cycle time. Stress and strain distributions
can be illustrated and interpreted. This advantage of combination of three-dimension
three-layer fiber-reinforced aortic vessel modeling for stress and strain predictions and

in vivo noninvasive experimental data has been first proposed on this study.
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Consequently, the new mechanical modeling has been extend to use with more
realistic aortic vessel by involve with more number of aortic layers and more
constitutive equations and to then use as implement to predict and illustrate rupturing
of the aortic vessel which has also been firstly introduced on this study. The new
developed model is applied to determine stresses and strains distributions of human
aortic vessel in three-dimension five-layer aortic wall based on in vivo ultrasound
imaging. Two constitutive equations are suitable employed for all five layers of aortic
wall separated by considering histology of each aortic layer. Stress and strain
distributions can be illustrated and interpreted. Mapping of rupture area and rupture
risk of aortic wall subjected by various luminal pressures can be performed by using
critical stress and strain criterion.

To derive equations involving with the modeling from governing equation,
authors would reasonably like to use notation for equations in from of tensor to allow
reader easier understand global system of the modeling and can follow complexity of
equations system. There are a number of basics tensor operations that may be conduct
tensors and again produce a tensor. These tensor operations are not expressed on this
chapter. One of several ways to find out these tensor operations is by using advanced
mathematics books.

Methodology for simulation of physiology modeling to construct constitutive
equation for three dimensional stress and strain relationship model and predict stress
and strain distribution in aortic vessel wall is show as schematic chart in Figure 3.1

and could be explained as following.
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3.1. Simulation of physiology modeling

Simulation of physiology modeling is the process of solving the model (the
equations that are the realization of the model) to examine its output behavior. This
process typically involves examining one or more of the parameters thus performing
computer is needed to experiment on the model. During model building, simulation
could be performed to clarify aspects of system behavior to determine whether a
proposed model representation is appropriate. This is done by comparison of the
model output with experimental data from the same situation. When carried out on a
complete, validation model, simulation vyields output responses that provide
information on system behavior. Depending on the modeling purpose, this
information assists in describing the system, predicting behavior, or yielding
additional insights.

Complete mathematical model is firstly needed. All its parameters are
specified and initial conditions are defined for all the variables. If the model is not
complete, there has unspecified parameter values, parameter estimation technique
must be employed. Once a complete model is available, it is implemented on the
computer. If model equations cannot be solved analytically, a numerical solution of
the system is needed.

Methodology for physiology modeling construction consists of 2 parts, is
shown in Figure 3.1, which are collecting physiological data of physiological system
of aortic vessel (physiological experiment) and modeling the system (data analysis).

Collecting physiological data of physiological system Physiological
experiment data can represent physiological behavior. Experimental data from in

vivo-noninvasive aortic vessel imaging technique using experimental data in animal
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such as rat are used. The qualitative data, the imaging data, then must be conversed to
be quantitative data, displacement data. This quantitative data are used to consider in
the system modeling.

Modeling the system Model of the system is physiologically based by
mathematically explanation that can describe directly to physiology of aortic vessel.

Hence, a prior knowledge and reasonable assumptions are required.

3.1.1. Modeling the system (data analysis)

To perform physiological data for modeling the system, both a model
structure and fully determined parameters corresponding to that structure are required.
In the other word, a complete model is required. However, such a model has not yet
established. Therefore, at least one candidate model is selected. A model is
incomplete; it will be due to some unknown parameter value.

The solution from this problem requires data. The input and output data
from experiment must contain that part of model with the unknown parameter values.
In the process, data are mapped into parameter values by the model, where error can
occur in both the data and model. Modeling the system is also called mechanical

modeling.

3.1.2. Parametric model
The experimental data must be rich enough to estimate all the unknown
parameters. Problem is a mismatch between the complexity of the model and the
richness of the data which mean that model is too complex or too many unknown

parameters for available data or the data are not sufficient for the model provided.
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31

Existed techniques for parameter estimation are most widely adopted such as linear or
nonlinear least squares. These require for a prior knowledge or assumptions regarding

the statistics of the situation being model.
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Figure 3.2 Modeling the system

3.1.3. Model validation
Validating a model is essentially whether the model is good enough in
relation to its intended purpose. A valid model is one that has successfully passed
through the validation process. Validation is integral to the overall modeling process.
At the stage of validity testing during the process of model formulation, the model is

assumed that the model is complete. That is, it has no unspecified parameters. The
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essence of the validation process at this stage is shown in Figure 3.1 and Figure 3.2.
The process is dependent upon model propose. That might be testing the
appropriateness of model structure in relation to any intended use for hypothesis
testing parameters that would be meaningful in the context of specific disease.
Changing in parameter values could correspond to the change from a healthy state to a
diseased state. Dependent upon propose, features of the model and system data must
corresponded sufficiently for the same input, there have an acceptably small
difference between them. In the other word, within the necessary domain of validity,
there is testing whether the model is credible. The validation process is to compare the
model and physiological behavior by estimate relevant parameters by minimizes
function of mean square error of pressures. Any mismatch between them should be
analyzed for plausibility of behavior. Additional explanation of modeling the system
or mechanical modeling in the parts of governing equation setting, boundary

conditions setting and equation solving showing in Figure 3.3 can be described.

3.1.4. Governing equation
Setting Knowledge of continuum mechanics is required to construct
mechanical modeling using elasticity and deformation theory. Mechanical modeling is
shown in Figure 3.3. Governing equation consist of five equations which are
conservation equation of mass, conservation equation of momentum, conservation
equation of energy, deformation equation and constitutive equation.
Deformation equation usually well known as strain and displacement

relationship including Lagrangian coordinate, Spatial coordinate, Deformation
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gradient, Green’s deformation tensor, Cauchy deformation tensor, Lagrangian finite
strain tensor, Eulerian finite strain tensor.

Geometry and coordination are considered to appropriate with anatomy
of aortic vessel. The geometry of aortic vessel might be considered as symmetry or
asymmetry in longitudinal axis and coordination might be considered either Cartesian
coordination (X,Y,Z) or cylindrical coordination (R, ©,2).

Strain and displacement relationship equation is also called motion
equation. Motion equation is the mapping equation which describes motion and
deformation of aortic vessel that is assumed to satisfy the following conditions; the
function is continuously differentiable, the function is one-to-one and the jacobian
determinant satisfies (J=det F) the condition J>0.

Constitutive equation is equation which describes aortic vessel behavior
and relates stress to correspond with deformation. The formulation of constitutive
equation consist of five steps which are delineation of general characteristics of
interest, establishing an appropriate theoretical framework quantification,
identification of specific functional forms of the constitutive equation, calculation of
the value of the associated material parameters, evaluation of the predictive capability
of the final relation. Assumptions of properties of aortic vessel regard to anatomy and
physiology, might be selected from these; homogeneous/ heterogeneous/ composite
material, compressible/ incompressible material, isotropic/ anisotropic material,
hyperelastic/ pseudoelastic/ ramdomly elastic/ poroelastic/ viscoelastic material.

Stress and strain relationship can be written in form of equation which

is importance to represent aortic vessel behavior. Differentiation of strain energy



34

density function respect to strain with lowest potential energy method is obtained

stress function. Constitutive equation could be obtained.
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Figure 3.3 Mechanical Modeling

3.1.5. Boundary condition setting
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Boundary condition is pressure load from blood flow inside aortic

vessel subjected to inside wall of aortic vessel and depend on physiology to obtain

specific equations.
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3.1.6. Equation solving

This stage is to solve the problem by selecting the suitable method. An
analytical solution is one of method. In some case, analytical solution requires the
solution of ordinary or partial differential equations which are not usually obtainable
because of the complication geometry, loading, and material properties. Hence,
numerical methods could be reliability, such as finite element method, for acceptable
solutions.

Conclusions of the research will be obtained which are constitutive
equation for three dimensional stress and strain relationship model of aortic vessel and

prediction of stress and strain distribution across aortic vessel.

3.2. Mechanical modeling of blood vessel for murine aortic vessel

Vascular system has the aorta which acts as both conduit and an elastic
chamber. The elastic of aorta serves to convert pulsatile flow pumped by heart to
steady flow in peripheral vessels. Atherosclerosis, the common disease of arterial
wall, is a disease usually located within large arteries (Yang and Vafai, 2006) and
buildup of atherosclerosis plaque usually associates with pathological changes of
intimal component of vascular layers (Holzapfel and Gasser, 2001; Holzapfel, 2001).
One of the implications of the structural changes is the change in mechanical
properties of the blood vessel. Stress and strain are used to represent the mechanical
properties. As mention, it could be observed that disease location associates with
position on artery tree and inside wall. So, stress and strain distribution in
multidimensional and multilayers should be predicted. In order to friendly for patient,

advantage of imaging technology should be used as additional data, especially the
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ultrasound scanning. Ultrasound scanning is non-invasive medical test that has no
needles or injections and is usually painless. Hence, this section proposes to predict
stresses and strains distributions in coordinate of three dimensions and in three major

layers of abdominal aortic wall based on in vivo ultrasound imaging.

3.2.1. Experimental data harvest

3.2.1.1. Luminal pressure

Luminal pressure acted to the inside wall causes vascular wall
movement. Wild-type C57BL/6 male mouse is obtained from the Jackson (Bar
Harbor, ME) and Taconic (German town, NY) Laboratories. All procedures are
approved by the Institutional Animal Care and use committee of Columbia
University. Abdominal aorta of mouse is canulated using an ultraminiature pressure
catheter through the mouse carotid artery and introduces into the abdominal aortic
region to provide both of luminal pressure and ECG signals (see Figure 3.4- Figure

3.6).

Visualsonics.
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Figure 3.4 The system set up of mouse experiments (Danpinid, 2010)
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A. 30 MHz ultrasound probe

Figure 3.5 A. 30 MHz ultrasound probe B. Mouse platform (left) and heart rate and
temperature recorder (right) C. Experimental assembly with Vevo 770 (VisualSonics),

30 MHz ultrasound probe, mouse platform (Danpinid, 2010)
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3.2.1.2. Displacement

Five wild-type C57BL/6 male mice (7-10 month old) are
obtained from the Jackson (Bar Harbor, ME) and Taconic (German town, NY)
Laboratories. All procedures are approved by the Institutional Animal Care and use
committee of Columbia University. The inside and outside aortic diameters of
abdominal aortic wall are clearly obtained through manual tracing on the B-mode
image of ultrasound imaging with higher frame rate of 8 MHz. Then, the radial
incremental displacements of the inside and outside walls are determined which then
accumulate to obtain the wall diameter variation over a cardiac cycle. The luminal
pressure and aortic wall diameter variations are matched using the corresponding
ECG by align the maximum and minimum peaks of the luminal pressure and diameter
variations. All experimental data based on ultrasound then are used as importance
inputs in mechanical model (see more details in Danpinid (2010), Danpinid et al.
(2010) and Fujikura et al. (2007)). (Experimental data had supported from Ultrasound
and Elasticity Imaging Laboratory (UEIL), Biomedical Engineering and Radiology,

Columbia University, New York, USA).
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Figure 3.6 Experimental methodology with healthy mouse in abdomen
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3.2.2. Mechanical modeling

3.2.2.1. Continuum mechanics
The mathematical description of deformation, the body occupy
in the reference configuration Q,. When the body is deformed, every particle at point
X (R, 09, Z) transforms to new position at point x(r, 8, z) in deformed configuration Q.
Configurations of artery are shown in Figure 2.8. R,0 and Z are radial, angular
(circumferential) and longitudinal positions in reference configuration and r, 6 and z
are radial, angular (circumferential) and longitudinal positions in deformed (current)

configuration  The transformation gradient could be determined by following

equation.
dx
F==2 (3.1)

Right and left Cauchy Green tensor associate with F as following.

C=F"F b=FF" (3.2)

So, the Green-Lagrange strain tensor could be introduced as Equation (3.3).

E=-(C-1) (3.3)

where I denotes the second order unit tensor.
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For stress response of the artery, Cauchy stress tensor o

relates to Green-Lagrange strain tensor E via transformation (¢ = J"1FSFT) the

Piola Kirchhoff stress tensor S which is the first derivative (g—:) of strain energy

function ¥ respected to Green-Lagrange strain tensor E. ] is Jacobien determinant of
deformation gradient tensor. Cauchy stress tensor o could be expressed as the sum of
two other stress tensors which are volumetric stress tensor a,,; and stress deviator

tensor @ as Equation (3.4).
06=0,,,+0 (3.4)

where a,,; = pI and p is Lagrange multiplier to descript the incompressibility of the

artery wall (Shigley and Mischke, 2001; Fung, 1994; Fung, 1985; Fung, 1990).
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Figure 3.7 Boundary conditions
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3.2.2.2. Computational model
Boundary conditions shows in Figure 3.7. Thickness ratio of
media and adventitia is set as 2:1 (Holzapfel and Gasser, 2000) and thickness ratio of

intima and media is set as 1:20 (Yang and Vafai, 2006).

3.2.2.3. Mechanical formulations
Kinematics of the artery in cylindrical coordinate, deformation

equations (Holzapfel and Gasser, 2000; Holzapfel, 2001) are as following.

r = Tzl + T'l-z, (35)
0]

0=ko+22 (3.6)
L

z=A1,Z (3.7)

where k = (zi—fa) A, 1s stretch ratio in longitudinal direction, ® and L are opening

angle and overall length of artery in reference configuration and subscript i in
Equation (3.5) refers to inside.

According to the artery structure composted of fiber and non-collagen matrix of
material, fiber reinforced strain energy function suggested by G.A.Holzapfel (2000)
had been suitable used to relate stress and strain. The strain energy function could be

written in two terms of isotropic and anisotropic deformations as Equation (3.8).

P =2 = 3) + 3 T fexp [y (1 = 1)7] - 1] W
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where ¢; >0, kq; >0 are stress-like parameter and k,; > 0 is dimensionless
parameter, subscript j refer to intima, media and adventitia layers (see Figure 3.7) and
subscript i refer to index number of invariants. In Equation (3.8), I; is the first
principal invariant of € and the definitions of the invariants in Equation (3.9)

associate with the anisotropic deformation of arterial wall.

1_4_]' — Z‘:Alj’ 1_6] = EAZ] (39)

The collagen fiber is assumed that it do not support compressive stress. Thus, in case

of 1_4]- < land f6j < 1 the response is similar to the response of rubber like material
that descripted by Neo-Hookean functions. The tensor A,; and A,; characterizing the

structure are given by Equation (3.10).

Aqj = ap1;Qagj, A2j = Ag2j@agy; (3.10)

Component of the direction vector ag,; and agy; in cylindrical coordinate system are

in forms as Equation (3.11).

0 0
Agyj = cos B |, Qgzj = cos f; (3.11)
sin f3; —sin f3;

where g; is the angle between the collagen fibers and circumferential direction.
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Hence, the stress in Eulerian description could be determined by the expression in

Equation (3.12).
0j = Cj devb + Y46 29, dev(ai]-®a,-j) (3.12)

alpaniso

where #;; = o denotes as response function and a;; = Fa,,,-,- denotes as Eulerian
ij

counter part of a,;;. The equilibrium equation in cylindrical coordination in equation
(3.13) is used with boundary equations. Inside pressure from the model and the

equations to predict stresses distributions are provided.

do
-0 (3.13)
3.2.2.4. Determination constitutive parameters
There are three parameters in each arterial layers which must
be estimated to apply in equations of stresses. Nonlinear lease square method is used

to estimate these relevant parameters by minimizes function of mean square error

(MSE) of pressures in form as Equation (3.14)

1 2
MSEpar 3 ﬁ {Vzl(pi,model - pi,experiment) (3-14)

where N is number of longitudinal data points.
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The Pearson product moment correlation coefficient r . through the data points in
Pimoder AN P oerimens 1S USEd for the agreement of fit. The Equation for the Pearson

product moment correlation coefficient r_ is

(P Pursa ) (Prowrion = s (315)

2 N —

par 7 — 2
\/Zi( pl model pi,mod el ) Zi( pi experiment pi,experiment)
1= 1=

where N is number of longitudinal data points and i is index for summation over the

whole data points.

3.3. Mechanical modeling of blood vessel for human aortic vessel

Cardiovascular system has a heart acted as a pump, arteries system served to
convert pulsatile flow pumped by heart to steady flow in peripheral vessels and vein
system acted as reservoir of returned blood before return to the heart to complete
cycle of cardiovascular blood flow. To normally serve fresh blood to body, artery is
important role. The pressure resulting from blood flow acts in endothelium cells of
artery. The endothelium cells response to the stress and to strain by inflation or
contraction and extension. To prevent unrequired failure of artery, the initiation and
propagation of rupture area should be predicted and assessment of rupture area should
be qualitatively observed. Mechanical properties of stress and strain of the arterial
wall have received more attention in recent. Several constitutive models have been
proposed (Holzapfel et al., 2000; Delfino et al., 1997; Fung, 1990; Fung, 1997; Fung,

1993). Monolayer homogenous arterial wall is simple way to study. However, it is
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well known the arterial wall is non-homogeneous material. A better approach is to
model heterogeneity of the arterial wall by considering as multi-layer according to its
histology. The arterial wall is modelled as several different layers, i.e. endothelium,
intima, internal elastic lamina, media and adventitia and this model couples the blood
flow through lumen causing pressure acted on inside surface of arterial wall. Stress
and strain are mechanical concept based on continuum model developed to interpret
concentration of force and deformation of arterial wall. There are many definitions of
stress and strain (Fung, 1969; Fung, 1994; Fung, 2001). In present study, the Cauchy
stress and the Green-Lagrange strain are used to refer force acted on deformed area
and ratio of inflation and extension. These are for simple physics quantify.

Although, biological tissue might not directly to the stress and strain in that it
might be excited by various basic quantities such as chemical action which are
generally difficult to measure, measured stress and strain are therefore quantitatively
important. By monitoring stress and strain during a cyclic load experiment, the
response of the artery could be clearly identified that the load and unloading paths
show only small hysteresis (Holzapfel at al., 2004). Stress and strain behavior of
arterial wall hence involve with elastic deformation under the pressure load. The main
purpose of this section is to develop three-dimension five-layer model for study effect
of pressure on arterial failure. In particular, levels of pressure are studied and rupture

area is consequently predicted.
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3.3.1. Experimental data harvest

3.3.1.1. Luminal pressure
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Figure 3.8 The pressure profile along a cardiac cycle at carotid artery of human (Male,
Time step=0.140014 ms, N =5852 points, Cardiac cycle time=Time step*(N -
1)=0.8192 s, Heart rate=73.240 bpm). Experimental data are supported by Ultrasound

and Elasticity Imaging Laboratory (UEIL), Biomedical Engineering and Radiology,

Columbia University, New York, USA.

Lumen region is considered to obtain luminal pressure
variation acted on inside surface of artery and experimental data of pressure are
required. Experimental data is examined from healthy American volunteer with age of
28 year old. The pressure profile from experimental data (N =5852) at carotid artery

of human supported by UEIL (Ultrasound and Elasticity Imaging Laboratory (UEIL),
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Biomedical Engineering and Radiology, Columbia University, New York, USA) are
shown in Figure 3.8. Methodology to obtain the pressure (Khamdaeng et al., 2011) is
briefly explained as following. To obtain pressure wave form, the applanation
tonometer (Millar SPT-301 probe; Millar Instruments, Houston, TX) is placed on the
subject at wrist against the radial artery and the strongest pulse signal is manually
detected. Since diastolic blood pressure ( DBP ) and systolic blood pressure (SBP) are
equal to those of the brachial artery (Payne at el., 2007), the radial pressure waveform
is calibrated via a SphygmoCor system (AtCor medical, Sydney, NSW, Australia)
using the brachial blood pressure measured by a sphygmomanometer. To obtain
magnitude of pressure waveform, a sensor is placed perpendicularly on the carotid
artery and measures the mean blood pressure (MBP) and diastolic blood pressure

(DBP). The pressure profile is then obtained.

3.3.1.2. Displacement

The diameter profile from experimental data (N =404) at
carotid artery of human supported by UEIL (Ultrasound and Elasticity Imaging
Laboratory (UEIL), Biomedical Engineering and Radiology, Columbia University,
New York, USA) are shown in Figure 3.9. Methodology to obtain the diameter is
briefly explained as following. The ultrasound probe is placed on the skin at the
carotid position. Ultrasound gel is used as a coupling medium to acquire RF signals.
High temporal resolution RF frames of the carotid are obtained by using 10-MHz
linear array transducer and clinical ultrasound system (Sonix TOUCH; Ultrasonix
Medical, Burnaby, British Columbia, Canada). Cross-correlation technique (Luo and

Konofagou, 2010) is used to estimate the wall displacement from the ultrasound radio
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frequency (RF) signals acquired at a frame rate of 505 Hz and determined between
consecutive RF frames acquired at a sampling frequency of 20 MHz, depth of 30 mm,
width of 38 mm, and a line density from 16 to 32 beams. Regarding cross-correlation
technique, the cumulative displacement was calculated. The diameter of the carotid

artery could be obtained.
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Figure 3.9. The diameter profile along a cardiac cycle at carotid artery of human
(Time step= 1/505 ms, N = 404 points, Cardiac cycle time= Time step*(N -1)=
0.7980 sec, Heart rate= 75.186 bpm). Experimental data are supported by Ultrasound
and Elasticity Imaging Laboratory (UEIL), Biomedical Engineering and Radiology,

Columbia University, New York, USA.
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3.3.2. Mechanical modeling

3.3.2.1. Continuum mechanics

Continuum mechanics Equations provide us to descript
properties of stress and strain responses of the arterial wall. Continuum mechanics
knowledge is excellently reviewed by Y. C. Fung (Fung, 1969; Fung, 1994). The
stress is always understood to be the force acted on arterial wall per unit area and
related to deformation of the arterial wall described by strain. Classical knowledge of
conservation equations, strain-displacement equations and appropriated constitutive
equation are applied with boundary conditions to determine these stress and strain
responses that are afterward important to consider rupture of arterial wall.

The mathematical description of deformation is interested in
movement of the arterial wall. Once the arterial wall is moved every particle of
arterial medium is going to new position. Consider the body of arterial wall in the

reference configuration «,, every material particle point in cylindrical coordinate is
given as X(R,®,Z). By the time that the body of arterial wall is deformed, the

material point X (R,®,Z) transforms to position x(r,0,z) or its inverse in deformed

configuration 2. The features of transformation described the deformation are given
by the first partial derivatives of these two configurations relationships called the

deformation gradient tensor F and written as

dax
F=2 (3.1)
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The deformation gradients could be used to describe the distance between two
neighboring points in these two configurations and the Green-Lagrange strain tensor

E could be introduced as equation

E:%(C—I). (3.3)

This form of the Green-Lagrange strain tensor E is in terms of the right Cauchy

Green tensor C which is

C=F'F (3.2)

and | denotes identity tensor.

The internal force reacted to external force and acting within deformed body per unit
area could be measured as stress. To describe the hyperelastic stress response of
arterial wall, appropriate strain energy function ¥ is chosen to describe physical

behavior of arterial wall. The force in the reference configuration 2, to area in the
reference configuration 2, well-known as the second Piola—Kirchhoff stress tensor s

could be determined by performing the first derivative of strain energy function ¥

respected to the Green-Lagrange strain tensor E as

A d gl (3.16)
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The Piola—Kirchhoff stress tensor could be transformed to the Cauchy stress tensor

via relationship of

o=J"'FSF' (3.17)

where J denotes Jacobian determinant of deformation gradient tensor which must
satisfy the condition of conservation of mass whose value is greater than zero.
The Cauchy stress tensor o could be expressed as the sum of two other stress tensors

which are volumetric stress tensor o, which tends to change the volume of the

stressed body and stress deviator tensor & which tends to distort the stressed body

that is

oc=0,+0. (3.4

vol

The equation of motion of a continuum derived by applying Newton’s law is in form

9% G=pa (3.18)
OX

where G denotes body force of arterial wall and a denoted its acceleration.

The conservation of mass is expressed by

9P o _g (3.19)
ot ox
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where this p denotes density of arterial wall and v denotes its velocity vector.

The deformation of the arterial wall is related to the luminal pressure as applied load
by blood flow in arterial lumen. The blood considered as an incompressible

Newtonian fluid could be descripted by the Navier-Stokes equation as
ov 2
pa+pV.VV=—Vp+,uV v+ f (3.20)

where this p denotes density of blood, v denotes velocity vector, p denoted luminal
pressure, u denotes dynamic viscosity of blood and f denotes its body force.

Hence, the stress and strain distributions in arterial wall could be predicted and then

used for rupture consideration.

3.3.2.2. Computational model
A three-dimension five-layer mechanical model is developed
for prediction of stresses and strains distributions across arterial wall in a cardiac
cycle. The schematic illustration of idealized artery geometry and boundary

conditions under consideration is shown in Figure 3.10.

a) Geometry of arterial wall
The arterial geometry is idealized as a five concentric
axisymmetric layers straight circular cylindrical nonlinear elastic tube. In reference

configuration luminal radius R of 3.1 mm, longitudinal length L of 124 mm (Yang
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and Vafai, 2006) and thickness of each arterial wall layer is presented in Table 1 and

the adventitia is assumed that occupies a half of the media.
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Figure 3.10 Schematic illustration of the geometric artery and boundary conditions

Table 3.1 Thickness of each wall layer of artery (Yang and Vafai, 2006; Ai and

Vafai, 2006; Yang and Vafai, 2008)

Wall layer Symbol Thickness (xm)
Endothelium Hepna 2.0

Intima Hine 10.0

Internal elastic lamina (IEL) H; 2.0

Media Hpeaq 200.0
Adventitia Hgqy 100.0

b) Boundary conditions
Since blood flows in the lumen of arterial as pulse, the blood
pressure acted to inside arterial wall surface causes the wall movement which is
assumed that the pressure is uniform in circumferential direction and perpendicular to

arterial wall surface at certain longitudinal position. Pressure acted to outside arterial
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wall surface is assumed as uniform pressure with magnitude of 30 mmHg. The
geometries of the five layers are compatible which means that outside radius of the

individual wall layer is the same as inside radius of its outward neighbour layer.

3.3.2.3. Mechanical formulations
There are six regions in present mechanical model, i.e. lumen
and five arterial layers of endothelium, intima, internal elastic lamina, media and
adventitia. As starting from continuum mechanics, the mathematical formulations for

each region are following.

a) Lumen

Lumen region is considered to obtain luminal pressure
variation acted on inside surface of artery and experimental data of pressure are
required. The pressure profile from experimental data (N =5852) at carotid artery of
human supported by UEIL (Ultrasound and Elasticity Imaging Laboratory (UEIL),
Biomedical Engineering and Radiology, Columbia University, NY, US) are shown in
Figure 3.11. Blood flows through arterial lumen which the blood is considered as an
incompressible Newtonian fluid could be descripted by the Navier-Stokes equation of
Equation (3.20). The Navier-Stokes equation expressed in cylindrical coordinates

could be expanded as

ou, ou, u,ou, ou, Ul op 16 ( 8urj 10%, 0%, u, 2du,
ol —f+u —+L Ly =Ty | + +pf,
ot o r 06 oz r or ror\_ or
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ot "or ro® ‘o r roo “lrar or ) P o? a2 rroo
(3.22)
ou ou, u,aou ou op 10( ou 10u, du
LU+ Lt oy L =t | | r == |+ L+ —F |+ pf 3.23
p[at “or 1 00 Zazj oz ‘{rar( 6rj Y A M (3.23)

where v=[u,(r.0,z) u,(r.6,z) u,(r.6,z)], u, u, and u, are components of

velocity vector, f,, f, and f, are components of body force by subscript r, ¢ and z
refer to radial, circumferential and longitudinal directions, respectively.

Blood flow is pulsatile and characterized by a fully develop or parabolic velocity
profile at the inlet of the arterial lumen. The velocity profile is assumed to be

axisymmetric as

r 2
u, =U, (1—&} } (3.24)

where U, is the centerline velocity at the lumen inlet.
The lumen is horizontal so that the gravity effect could be ignored and axisymmetric
flow is assumed thus no tangential and radial velocities and the remaining quantities

are independent of #. The Navier-Stokes expanding equations could be reduced to be

as

op op ou, ou, op ou, 04,

—+ -0, =0, +U, =—— 4 + . 3.25
or 00 5 ot oz oz H or? o oz7° (3.25)
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The centerline velocity at the lumen inlet is specified by a simple time-dependent

sinusoidal function as
U, -U, (1+ 5sin(@jj (3.26)

and then used to characterize pulsatile flow in the artery where T is the period of the
pulsatile blood flow, & is the parameter used to account for the fluctuation of the
pulsatile flow during each cardiac cycle and U, is reference bulk inflow velocity.

Substituting equation of U, as Equation (3.26) into equation of u, as Equation (3.24)

and then into reducing equation of Navier-Stokes in longitudinal direction as the third

one of Equation (3.25), it could be obtained equation as

rY | of27) (27t)  op 2, (2t
pU{l—(EJ Jé(?jcos(Tj_ =¥ ot (1+§sm[ = D (3.27)

Pressure gradient at inside arterial wall could be easily determined by using r=R, we

have

o __ 21, (y&m(@n. (3.28)

o R
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Negative sign presents to pressure drop in lumen due to viscosity of blood. Pressure

along a cardiac cycle and pressure variation with longitudinal direction p(z,t) could

be consequently expressed as

p(z.t)= ( ZIF:LZJo (1+ osin (?D](zouﬂet —Z)+ Pougec (1) - (3.29)

Since poyier () is time dependent. Equation of this pressure profile along a cardiac
cycle could be obtained by curve fitting using Fourier approximation with mean
squares error fit of a sinusoid with the experimental data of pressure. The equation

form of this pressure profile (Chapra and Canale, 2010) is

Pouttet (t) = Ay + A;cos (?) + B;sin (%) + A,cos (2 * %)

+B,sin (2 * %) + -+ A cos (;’ * %) + B,sin (j * %) (3.30)
where the coefficients while equally time step could be evaluated by

v 2 . 2mt 2 . (. o2mt
Ao = =212 Ay = 23N pcos (7 + ), B, = 2 21, pisin (4 + ) (3.31)

and 1 =1,2,...,N, J =1,2,...,k , N is number of data points and k is number of
sinusoidal finite series.

Mean square error MSE, used to quantify the different between obtained outlet

pressure equation and experimental pressure data could be determined by
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MSE, = =¥ {pi = |Ao + 2k, Acos (4 + Z2) + Bysin (4 + %)]}2 (3.32)

It should be noted that in the event of number of sinusoidal finite series k is equal to

number of data points N , it is approach to the continuous Fourier series.

The mean square error

10’

10°

Figure 3.11 Mean square error MSE, and number of sinusoidal
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Because there is a large number of data point, it results to large number of terms in

outlet pressure equation. Hence, the pressure profile is attempted to be fit with k

only in range of 1 to 100 by additional reason of computational time as well. In order

to find suitable number of sinusoidal finite series k , mean square error MSE_ and

number of sinusoidal finite series k relationship should be plotted in semi-log scale

as Figure 3.11. It is clear that it is not necessary to use number of sinusoidal finite

series k equal to number of data points N because nearly constant in order of
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magnitude of MSE_ is obtained in range of number of sinusoidal finite series about

30 to 100. Thus, suitable number of sinusoidal finite series k could be obtained as
30. Therefore, the equation of the pressure profile could be expressed by using

suitable number of sinusoidal finite series k as

Poutiee(t) = Ag + 3%, Aycos (7 + 25) + Bsin (7 « 2). (3.33)

There are three parameters served to characterize the equation of this pressure profile;

the mean value A, sets the average height above the abscissa, the amplitudes A; and
B, specifies the height of the oscillation and the angular frequency 2z characterizes
T

how often the cycles occur. Two additional parameters ¢ and & is thus used in the

equation of the pressure profile to quantify fold values of mean, ((3MBP) + SBP) /4,
and amplitude, (3/4)(SBP — MBP), respected to this experimental data where MBP
is mean blood pressure and SBP is systolic blood pressure. The equation could be

written as

Pouttet (£) = (¢ * Ag) + & X3, Acos (4 + ) + Bysin (7 + =), (3:34)

Finally, pressure along a cardiac cycle and pressure variation with longitudinal

direction, p(z,t), could be expressed as
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Z,UUO
R2

p(.t) = (1 + sin (@)) Coutter = 2) + (¢ * Ao)

+&X32, A cos (j * %) + B;sin (j * %) (3.35)

p(z,t) is then used in this study by using blood viscosity  of 0.0037 9 :

mm.s

reference bulk inflow velocity U  of 169 MM fluctuation of pulsatile flow parameter
S

o of 1, period of a cardiac time T of 0.8 s, parameters £ and & are equal to unity,

parameter A, of 12011.1954 Pa, A; and B; as in Table 3.2.

Table 3.2 Parameters A and B, in unit of Pascal

B,
A, 307802 A,, -80677 A,, -148198 | B, 247235 B,, 67722 B,, -0.7861
A, 115217 A,, 445415 A,, -357354 | B, 899.1454 B, -218575 B,,  4.3848
A, 904308 A,, 222471 A,, 59142 | B, 1416018 [B,, 406469 [DB,,  -19.529
A, 472175 A,, -301193 A,, 43074 | B, -162328 B,, 5916 B,, -17.2017
A 376189 A, 182471 A,; -14468 | By -319.284 DB,  -33656 [DB,5 -20.3007
A 122606 A,y 216265 A,, 224666 | B, -490.187 DB, 332005 B, -15.6279

A, 1967156 A,, 90006 A,, 140872 | B, -193917 B,, 111883 [B,,  6.0502

Ay 934258 A, 7895 A,, 85244 | By -529216 B,, 217935 B,, -2.0939
A, 761842 A, -140034 A,, 80986 | B, -446953 B, 37.0081 B,, -0.6531
A, 706487 A,, -209844 A,, 68244 | B,, 58292 BB, 77842 DB,  9.3357

b) Arterial layers
Geometry and boundary conditions show in Figure 3.10 is in
reference configuration. Continuum mechanics applied to biological tissue could
systemically understand by reviewing in literatures of Fung and Humphrey (Fung,

1990; Fung, 1997; Fung, 1993; Fung, 2001; Humphrey, 2002). Kinematics of the
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artery in cylindrical coordinate, deformation equations (Holzapfel et al., 2000) are as

following.

2 (3.5)

(3.6)

2= (3.7)

where k =

, A, is stretch ratio in longitudinal direction which the value of 1.1

Z
2r—«o

is applied (Delfino et al., 1997) for every layer, @ and L are opening angle and
overall length of artery in reference configuration and subscript i in Equation (3.5)
refers to inside. The artery deformed under extension and inflation and without
residual strain is considered in this study.

For endothelium and internal elastic lamina, the strain energy function of neo-
Hookean has been used to determine nonlinear response. The strain energy function

for incompressible neo-Hookean material is

_ C. —
=], =
T¢_2(h @ (3.36)
where ¢, >0 is stress-like parameter, 11 is the first principal invariant of C and

subscript j refer to endothelium and internal elastic lamina (IEL). There is only one

parameter of C for each layer.
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For intima, media and adventitia, according to the artery structure composted of fibers
and non-collagen matrix of material, fiber reinforced strain energy function suggested
by Holzapfel et al. (2000) has been suitable used to relate stress and strain. The major
reason that this fiber reinforced strain energy function is suitable used is not only it
takes account of architecture of the arterial wall but also it is relevant relatively small
number of parameters (Khakpour and Vafai, 2008; Holzapfel et al., 2004; Holzapfel
et al., 2005). The strain energy function could be written in two terms of isotropic and

anisotropic as Equation (3.8).

_ c. - k. — 2
(T, — 1j 1) =
y/J—z(ll 3)+22j i_;ﬁ{exp[kz,-(lu 1)} 1} (3.8)
where ¢; >0, k;>0 are stress-like parameter and k,; >0 is dimensionless

parameter, subscript | refer to intima, media and adventitia layers and subscript i

refer to index number of invariants. In Equation (3.8), 1. is the first principal
invariant of C and the definitions of the invariants in Equation (3.9) associate with
the anisotropic deformation of arterial wall.

(3.9)

l45 =

Ol
P
ol
r
Ol
&

The collagen fibers are assumed that it do not support compressive stress. Thus, in

case of 14 <1 and 1 <1 the response is similar to the response of rubber like material
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that descripted by Neo-Hookean functions. The tensor A; and A,; characterizing the

structure are given by Equation (3.10).

Aij :a‘olj ®a01j' Azj Za‘ozj ®a‘02j (3'10)

Component of the direction vector a_,; and a,; in cylindrical coordinate system are

in forms as Equation (3.11).

0 0
ayj =| COSP; |, Ayy; =| COSPB, (3.11)
sing, -sing,

where g, is the angle between the collagen fibers and circumferential direction.

Three different values of 5, 7 and 49 degree (Holzapfel et al., 2002) are applied for
the three major layers of intima, media and adventitia, respectively.
Hence, the stress in Eulerian description could be determined by the expression in

Equation (3.12).

o =c,devb+ ¥ 2¥dev(a; ®a;) (3.12)
i=4,6
devb = b—~[ b: d L -
where evb = —5[ .I}I , ev(aij®aij)=(aij®aij)—§[(aij®aij). I}I :
r . — a?aniso
a; = Fa,; denotes as Eulerian counter part of a; and ¥i=——= denotes as

ij
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response function ie. @,; =k (l,; —1) (exp (kz (I; - 1)2)) and ¥g; =
k(I — 1) (exp (k2 (Is; — 1)2)). Additionally, it should be noted that
F=(3"1)F, C=F F and b=FF . While incompressibility of arterial wall is

applied, F=F, C=C and b=b are obtained. There are only three parameters of ¢

, k, and k, for each layer.

3.3.2.4. Determination constitutive parameters

In order to estimate involving parameters, luminal pressure
and diameter of artery are required. Methodology to obtain the pressure of artery had
already explained. The diameter profile from experimental data (N =404) at carotid
artery of human supported by UEIL (Ultrasound and Elasticity Imaging Laboratory
(UEIL), Biomedical Engineering and Radiology, Columbia University, NY, US) are
shown in Figure 3.9. The minima and maxima of the pressure and diameter
waveforms are aligned and matched over a cardiac cycle. The viscosity effect is hence
ignored. Arterial wall is considered as an incompressible material and in horizontal so
the gravity effect could be ignored. The equilibrium equation in Equation (3.13) is

used with boundary conditions.
—=0 (3.13)

Luminal pressure could be determined by
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p, = T(E% —E”)d—rr+ D, (3.37)

i

where o,,=P+0,, o, =P+0c, and P is Lagrange multiplier used to enforce

incompressibility constrain.

There are only one parameter for each layer of endothelium and internal elastic
lamina (IEL) and only three parameters for each layer of intima, media and adventitia.
Although continuum mechanics provides non complicate equations, mathematics
approach to the solution is quit complexity. It is different from engineering material
acted as rigid body while it is subjected by pressure load. Biological tissue is moved
with the pressure load changed by time. Moving boundary has faced for solving the
solution in the five-layer model. Normalizing the moving boundary is employed.
Numerical integration of three-point Gaussian quadrature which has accuracy order of
five is employed to discrete Equation (3.37) and used with the boundary conditions.
Nonlinear least square method is used to estimate these relevant parameters by

minimize function of mean square error MSE_, of luminal pressures called

‘Objective function’ in form as Equation (3.14).

2

1N
MSEpar = N Z:( P model — b ,experiment) (314)

i=1

The Equation for the Pearson product moment correlation coefficient r is

N -

D Ei( Pi model _Ei,mod el )( Pi experiment — Pi experiment ) (3.15)

par N — 2 N — 2
g( pi model pi,mod el ) z( pi experiment pi,experiment)

i=1 i=1
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where N is number of longitudinal data points and i is index for summation over the

whole data points.

3.3.2.5. Arterial rupture

The artery is subjected by luminal pressure which acts on the
inside surface of arterial wall resulting to the arterial wall movement. The luminal
pressure and the wall movement are involved with the stress and the strain of arterial
wall. If the pressure is high and the artery has inappropriate deformation, the rupture
of arterial wall would occur. There are a number of researchers who study ultimate
tensile stress and associated stretch in normal human artery (Holzapfel, 2001; Zohdi
et al., 2004; Franceschini et al., 2006; Sommer et al., 2008; Mohan and Melvin, 1982;
Mohan and Melvin, 1983). In recent decade ultimate values of separated layers has
been studied (Sommer et al., 2008; Holzapfel et al., 2005; Holzapfel, 2009; Zhao et
al., 2008; Sommer, 2010; Holzapfel et al., 2004). The ultimate tensile stress and
associated ultimate stretch (Holzapfel et al., 2004) shown in Table 3.3 in
circumferential and longitudinal directions of intima, media and adventitia are used as

criterions for rupture of arterial wall in present study.
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Table 3.3 The ultimate tensile stress and associated ultimate stretch

Layer Direction Ultimate tensile stress Ultimate stretch
Adventitia  Circumferential direction 1031.6 kPa 1.44
Longitudinal direction 951.8 kPa 1.353
Media Circumferential direction 202 kPa 1.27
Longitudinal direction 188.8 kPa 1.536
Intima Circumferential direction 488.6 kPa 1.331
Longitudinal direction 943.7 kPa 1.255

The equivalent tensile stress &, and strain E, could be computed from the Cauchy

stress tensor and the Green-Lagrange strain tensor as

o= 3 oio- 19 ] (3.38)
2 3

E - |3 E:E—(”E)z]. (3.39)
2 3

The ultimate tensile stress and associated ultimate stretch in Table 3.3 are determined

for critical equivalent tensile stress o, . and strain E, .. In this study, the local

vj cri vj cri

failure is defined global failure or rupture since it is the beginning of completed
failure. It is difficult to separate responses of arterial wall resulting from stress and
strain since both of stress and stain are significant in showing the characteristics of the
material of the vessel. Hence, it is difficult to change one thing without affecting

another. Strategy to identify rupture area of arterial wall is that area of arterial wall
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where local equivalent tensile stress and associated local equivalent strain exceed the
critical values is defined to be rupture area and if it is not, it is defined to be no
rupture area. Estimation of rupture risk has been referred to the local equivalent stress

and strain approach. The percentage of rupture risk of arterial wall P, is defined as

P.s =1005E;

(3.40)
where a’; and E’; are normalized values which have consistent to
o 10 fif 2 <1,0) =2 if 2 >107 =11, (3.41)
ij cri O-vj cri O-vj cri
EJ{EJ if E, <1 E’j’ = E, :if EEV >1, E].‘ =1}. (3.42)
vj Cri vj Cri vj cri

It still lacks data for endothelium and internal elastic lamina (IEL), critical values of

intima are applied in these two layers.

Results from these methodologies are shown and discussed in next chapter.



