TABLE OF CONTENT

	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT IN ENGLISH	iv
ABSTRACT IN THAI	vi
TABLE OF CONTENT	viii
LIST OF TABLES	xiii
LIST OF FIGURES	XV
ABBREVIATIONS	XX
CHAPTER 1 INTRODUCTION	1
1.1 Current Energy Demand	1
1.2 Renewable Energy Sources	4
1.3 Importance of Biomass	5
1.4 Biomass Utilization Pathways	6
1.5 Gasification Technology	7
1.6 Problem statement	9
1.7 Research Objectives	10
1.8 Potential Benefits	niversity
1.9 Scope of the Study	
1.10 Outlines of Thesis	rweo

viii

CHAPTER 2 T	HEORY	13
2.	.1 Biomass Properties	13
-2.	.2 Thermogravimetric Analysis	17
	2.2.1 Definitions	17
	2.2.2 Reaction Kinetics	18
2.	.3 Gasification Process	19
2.	.4 Types of Gasification Reactor	23
	2.4.1 Fixed Bed	23
	2.4.2 Fluidized Bed	24
2.	.5 Gasification Process Modeling	25
	2.5.1 Introduction	25
	2.5.2 Model Formulation	27
2.	.6 Fixed and Fluid Beds	31
	2.6.1 Pressure Loss in Bed	33
	2.6.2 Minimum Fluidization	35
	2.6.3 Gas Distributor and Plenum	38
CHAPTER 3 L	ITERATURE REVIEW	40
3.	.1 Thermogravimetric Analysis	40
3113 .	.2 Effect of Feedstock Characteristics on Product Yields	48
	3.2.1 Biomass Size	48
	3.2.2 Biomass Moisture	49
	3.2.3 Lignocellulose Content	⁴⁹ e d

	3.3	Effect of Process Parameters on Product Yields	54
		3.3.1 Gasification Temperature	54
		3.3.2 Equivalent Ratio	58
		3.3.3 Steam to Biomass Ratio	61
	3.4	Effect of Catalyst on Product Yields	67
	3.5	Thermodynamic Equilibrium Modeling	68
CHAPTER 4	ME	THODOLOGY	71
	4.1	Biomass Analysis	71
	4.2	Thermogravimetric Analysis	74
	4.3	Fixed Bed Gasification	75
		4.3.1 Rig Setup	75
		4.3.2 Experimental Procedure	76
	4.4	Fluidized Bed Gasification	80
		4.4.1 Rig Setup	80
		4.4.2 Experimental Procedure	80
	4.5	Data Collection and Analysis	82
		4.5.1 Mass Balance	82
		4.5.2 Equivalent Ratio	83
		4.5.3 Stoichiometric Raito	83
		4.5.4 Product Gas Analysis and Conversion	83
		4.5.5 Carbon Conversion Efficiency	84
		4.5.6 Gas Heating Value	85

	4.5.7 Gasification Efficiency	85
4.6	Gasification Modeling	85
CHAPTER 5 RES	SULTS AND DISCUSSION	88
5.1	Fuel Properties of Biomass	88
5.2	Thermogravimetric Analysis	96
	5.2.1 Comparison with Different Atmospheres	96
	5.2.2 Thermal Degradation under N ₂ Atmosphere	98
	5.2.3 Thermal Degradation under Air Atmosphere	102
5.3	Fixed Bed Gasification	106
	5.3.1 Effect of Temperature on Product Yields	106
	5.3.2 Effect of Catalyst on Product Yields	118
5.4	Fluidized Bed Gasification	124
	5.4.1 Effect of Temperature on Product Yields	124
	5.4.2 Effect of Catalyst on Product Yields	130
5.5	Gasification Modeling	136
CHAPTER 6 CO	NCLUSION	139
6.1	Conclusion	139
adansu 6.2	Suggestion for Future Works	142
CODY REFERENCES		

APPENDICES	158
APPENDIX A Calculation Examples	159
APPENDIX B Experimental Data	163
APPENDIX C Gas Production Modeling Code	177
APPENDIX D Model Validation	203
APPENDIX E Publication	212
E.1 Paper in International Journal	212
E.2 Paper in International Conference	232
CURRICULUM VITAE	257

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Tab	le	Page
2.1	Structural analyses of selected biomass samples	13
2.2	Proximate analyses of selected biomass given in the literature (wt %	14
	of dry fuel)	
2.3	Ultimate analyses of typical fuel samples (wt. % of dry fuel with ash)	15
2.4	Coefficients of specific heat capacity for various gases	29
2.5	Coefficients of specific heat capacity for various gases	30
3.1	Carbon conversion in gasification between pyrolysis and air-steam	51
3.2	Chemical composition of uncalcined dolomite (wt.%)	67
4.1	Structural analysis standard method	73
4.2	Biomass fuel analysis methods	73
4.3	Gas standard composition and conversion	84
5.1	Properties of the air dried Mimosa stalk	89
5.2	Lignocellulosic properties and solubility of the air dried Mimosa stalk	93
5.3	Degradation characteristic of various biomass sources under nitrogen	100
	atmosphere	
5.4	Comparison of degradation characteristic of various biomass	103
	materials under air atmosphere	
5.5	Comparison of average combustion kinetic parameters between	105
	Mimosa and other biomass materials under air atmosphere	

- 5.6 Compared RMSE between model and adjusted model with 136 experiment 126
- 5.7 Compared RMSE between model and adjusted model with other 136 literature

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

LIST OF FIGURES				
Eigur		Dage		
Figur		Page		
1.1	World's rising population	2		
1.2	Rising global energy demand	3		
1.3	World's energy demand forecast	3		
1.4	World oil exports	5432		
1.5	Biomass resource conversion processes	7		
2.1	Molar ratios of hydrogen and oxygen to carbon in biomass	16		
2.2	Diagram showing compositional differences among biomass and	17		
	coals			
2.3	Fixed bed reactors	24		
2.4	Fluidized bed reactors	25		
2.5	Schematic representation of fluidized beds in different regimes	32		
2.6	Liquid and gas fluidized beds at various operating velocities.	33		
2.7	The bed pressure drop with superficial velocity	34		
2.8	Effect of temperature on minimum fluidization velocity	37		
2.9	The effect of pressure on minimum fluidization velocity	37		
2.10	Plenum configurations	39		
3.1	TGA and DTG curves for holocellulose and lignin	41		
3.2	TGA and DTG curves for biomass components	⁴¹ / e		

3.3	Four stages in pyrolysis of biomass	43
3.4	Pyrolysis profiles of fuel blend	45
3.5	TG and DTA of pulverized coal combustion in different	46
	environment	
3.6	TG and DTA of on pulverized coal combustion in different oxygen	46
	concentration	
3.7	Formation profiles of evolved gasses during combustion	47
3.8	Temperature modulated TGA analysis of lignin preparations	47
	measured with a constant heating rate	
3.9	TG profiles in each feed stock under air or nitrogen flow	52
3.10	Product yields of cellulose –lignin mixtures vs. cellulose and lignin	52
	contents	
3.11	Product yields as a function of cellulose, lignin, ash and silica	53
	contents	
3.12	Residual fraction of combustibles for several types of biomass,	55
	cellulose and lignin and their mixtures.	
3.13	Effects of SBR and ER on the energy conversion efficiency at	60
	gasification temperatures of (a) 650 °C and (b) 850 °C.	
3.14	Effect of SBR on the product compositions	66
3.15	Effect of SBR on the product gas yields	66
4.1	Hot air oven	71
4.2	The rotary grinder	72 815 11
4.3	Vibratory screen sieve machine	72

4.4	TGA/SDTA Mettler Toledo 851e Thermogravimetric Analyzer	74
4.5	Schematic diagram of a fixed bed reactor	76
4.6	Shimadzu Gas Chromatography model GC-8A. and C-R8A	78
	Chromatopac data processes	
4.7	Air, Pure Gases and mixtures standard	79
4.8	Shin Carbon ST Micropacked GC columns	79
4.9	Schematic diagram of a fluidized bed reactor	81
4.1	0 Gasification modeling diagram	87
5.1	Proximate analyses of selected biomass	90
5.2	Ultimate analyses of selected biomass	91
5.3	Compare fixed carbon with HHV selected biomass	92
5.4	Compare O:C ratio with HHV selected biomass	92
5.5	Structural analyses of selected biomass	94
5.6	Compare volatile with holocellulose of selected biomass	95
5.7	Compare fixed carbon with lignin of selected biomass	95
5.8	TG of Mimosa under N ₂ , Air and O ₂ atmosphere	97
5.9	DTG of Mimosa under N ₂ , Air and O ₂ atmosphere	97
5.1	0 Effect of heating rate on TG of Mimosa under nitrogen atmosphere	99
5.1	1 Effect of heating rate on DTG of Mimosa under nitrogen atmosphere	99
5.1	2 Relationships between the rate of conversion with temperature for	101
	conversions of 5–75%.	
Copyri _{5.1}	3 Effect of heating rate on TG of Mimosa under air atmosphere	102
5.1	4 Effect of heating rate on DTG of Mimosa under air atmosphere	103

xvii

5.15	Relationships between the rate of conversion with temperature for	104
	conversions of 5–80% under air atmosphere	
5.16	Effect of temperature on product yields of bamboo and mimosa	107
	gasification in a fixed bed reactor	
5.17	Effect of temperature on gas yields of bamboo and mimosa	108
	gasification in a fixed bed reactor	
5.18	Effect of temperature on gas yield in a fixed bed reactor	111
5.19	Effect of temperature on product gas ratio in a fixed bed reactor	112
5.20	Effect of temperature on gas heating value, gas yield and carbon	113
	conversion efficiency in a fixed bed reactor	
5.21	Effect of temperature on product yield in a fixed bed reactor	115
5.22	Effect of collection time on product gas composition at 800 °C in a	117
	fixed bed reactor	
5.23	Temperature profile of biomass in fixed bed during gasification	117
	process in a fixed bed reactor	
5.24	Effect of catalyst on biomass ratio on product yields in a fixed bed	120
	reactor	
5.25	Effect of catalyst on biomass ratio on gas yields in a fixed bed	121
	reactor	
5.26	Effect of catalyst to biomass ratio on gas ratio in a fixed bed reactor	122
5.27	Effect of catalyst to biomass ratio on gas heating value, gas yield	123
	and carbon conversion efficiency in a fixed bed reactor	
5.28	Effect of temperature on product yield in a fluidized bed reactor	125

5.29	Effect of temperature on gas composition in a fluidized bed reactor	126
5.30	Effect of temperature on gas ratio in a fluidized bed reactor	127
5.31	Effect of temperature on gas heating value, gas yields and carbon	129
	conversion efficiency in a fluidized bed reactor	
5.32	Effect of catalyst to biomass ratio on product yields in a fluidized	132
	bed reactor	
5.33	Effect of catalyst to biomass ratio on gas composition in a fluidized	133
	bed reactor	
5.34	Effect of catalyst to biomass ratio on gas ratio in a fluidized	134
	bed reactor	
5.35	Effect of catalyst to biomass ratio on gas heating value , gas yields	135
	and carbon conversion efficiency in a fluidized bed reactor	
5.36	Compared experimental result with model of mimosa gasification	137
5.37	Compared experimental result with model of bamboo gasification	138

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATION

Symbol	Meaning	Unit
А	Pre-exponential or frequency factor	s ⁻¹
A/F	Air to fuel ratio	
CV	Calorific value	J/kg
daf	Dry and ash free	30%
DTG	Differential thermogravimetry	533
d	Diameter	cm
DSC	Differential scanning calorimeter	A I
E _a	Activation energy	kJ/mol
ER	Equivalent ratio	<u>,</u> -//
FT-IR	Fourier transform infrared spectrometer	-
g	Gravitational force, 9.81 m/s ²	m/s ²
H/C	Hydrogen to carbon ratio	-
HHV	High heating value	kJ/mol
ICTAC	International Confederation for Thermal Analysis and	-
	Calorimetry	
L	Bed height	cm
LHV	Low heating value	kJ/mol
5 m	Mass	kg

MC	Martin	
MS	Mass spectrometer	-
MSW	Municipal solid waste	-
N	Number of data	
n	Order of reaction	Jon -
Р	Pressure	Pa
R	Universal gas constant in molar (8.3145)	J/mol.K
Re	Reynolds number	
S/C	Steam to carbon ratio	-
SBR	Steam to biomass ratio	502
SRC	Stream carbon ratio	202
Т	Temperature, Average temperature	K
t	Time	S
TG	Thermogravimetry	\sum
TGA	Thermogravimetric analysis	A' H
U	Gas superficial velocity	m/s
V	Volume	m ³
Greek letter	s UNIVE	
Symbol	Meaning	Unit
ε	Bed voidage	2.
Ø	Particle sphericity	BBOIN
μ	Gas viscosity	kg/ms
ρ	Density Chiang Mai	kg/m ³
$ ho_{gas}$	Density of gas products	m ³ /kg

Subscripts

Symbol	Meaning	

biomass Biomass

g, gas Gas production

- i Mol faction value of experiments
- liquid Liquid
- mf Minimum fluidization
- p Particle
- solid Solid

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

<mark>ລິບສີກຣົ້ນກາວົກຍາລັຍເຮີຍວໃหນ່</mark> Copyright[©] by Chiang Mai University All rights reserved

vii