APPENDIC.

APPENDIX A

Specifications of Thai biodiesel standards

A-1 Biodiesel standards for agricultural engines (Community biodiesel)

Property	Unit	Li	mits	Test Method
		Min	Max	
Density at 15 °C	kg/m ³	860	900	ASTM D 1298
Viscosity at 40 °C	cSt	1.9	8.0	ASTM D 445
Flash point	°C	120	-	ASTM D 93
Sulphur	%wt	ų -	0.0015	ASTM D 2622
Cetane number		47	-	ASTM D 613
Sulphated ash	%wt	_ _	0.02	ASTM D 874
Water and sediment	%wt	Ê	0.2	ASTM D 2709
Copper Strip Corrosion		-	No.3	ASTM D 130
Acid value	mg KOH/g	VF	0.50	ASTM D 664
Free glycerin	%wt	-	0.2	ASTM D 6584
Total glycerin	%wt	-	1.5	ASTM D 6584
Color			Purple	Test by eyes
Additive	To follow the p	permissio	n of the Di	rector General of
	the Departmen	t of Energ	gy Busines	^s Unive
	gy Business (2006)	0		

Property	Unit	J Li	mits	Test Method
		Min	Max	
Density at 15 °C	kg/m ³	860	900	ASTM D 1298
Viscosity at 40 °C	cSt	1.9	8.0	ASTM D 445
Flash point	°C	120	-	ASTM D 93
Sulphur	%wt	-	0.0015	ASTM D 2622
Cetane number		47	-	ASTM D 613
Sulphated ash	%wt	-	0.02	ASTM D 874
Water and sediment	%wt	-	0.2	ASTM D 2709
Copper Strip Corrosion	-)	No.3	ASTM D 130
Acid value	mg KOH/g	<u> </u>	0.50	ASTM D 664
Free glycerin	%wt	- /	0.2	ASTM D 6584
Total glycerin	%wt		1.5	ASTM D 6584
Color			Purple	Test by eyes
Additive	To follow the p	permissio	n of the Di	rector General o
	the Departmen	t of Energ	gy Busines:	S

A-2 Biodiesel standards for methyl ester (Community biodiesel)

Source: Department of Energy Business (2009)

ลิขสิทธิมหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

APPENDIX B

Community biodiesel descriptions

B-1 Community biodiesel descriptions in agricultural engine

No.	Code	Model/ Consultant	Production yield	Waste water treatment	Remark
			(L)		
1	UMO	DEDE	100	Waste water treatment tank	-
2	SAM	The Royal Thai Naval Dockyard	100	Waste water treatment station	-
3	SAN	The Royal Thai Naval Dockyard	100	Waste water storage tank	

^aDEDE; Department of Alternative Energy Development and Efficiency, Ministry of Energy

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

B-2 Community biodiesel descriptions in high speed diesel engine

No.	Code	Model	Production yield (L)	Waste water treatment	Remark
1	UOL	DEDE	100	Waste water treatment tank	-
2	UPO	DEDE	100	Waste water treatment tank	
3	СРО	DEDE	100	Waste water treatment tank	

^aDEDE; Department of Alternative Energy Development and Efficiency, Ministry of Energy

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

No.	Code	Feed stock	Filter	Starter (oil:alcohol:catalyst)	Mixing time (min)	Setting time (min)	Wash (time)	Water (L) and separated time(min)	Production tim (hr/production cycle)
1	UMO	Used palm oil	Yes	20 L Methanol (MeOH) + 1 kg Potassiumhydroxide (KOH) (5:1:50)	60	1,440	>4	100 L, 30 min	-
2	SAM	Mixed used oil	Yes	20 L MeOH+1.4 kg KOH (5:1:70)	90	3	3	75 L, 45 min	6
3	SAN	palm oil	Yes	20 L MeOH+1.4 kg KOH (5:1:70)	90	3	3	75 L, 45 min	6

No.	Code	Feed	Filter	on process descriptions of hig Starter	Mixing	Setting	Wash	Water (L) and	Production time
		stock		(oil:alcohol:catalyst)	time (min)	time (min)	(time)	separated time(min)	(hr/production cycle)
1	UOL	Mixed used oil	Yes	20 L MeOH+1.4 kg KOH (5:1:70)	90	3	3	75 L, 45 min	6
2	UPO	used palm oil	Yes	20 L MeOH+1.4 kg KOH (5:1:70)	90	3	3	75 L, 45 min	6
3	СРО	palm oil	Yes	20 L MeOH+1.4 kg KOH (5:1:70)	90	3	3	75 L, 45 min	6

APPENDIX C

Engine performance determination

C-1 Calculation of brake specific fuel consumption (BSFC) and thermal efficiency

To calculate the brake specific fuel consumption (BSFC) and thermal efficiency of agricultural diesel engine which is fueled with test fuel, the brake power output of the engine must be calculated.

1. Calculation the brake power (BP, kW) of engine which is equal to the force it exerts multiplied by its velocity using equation C1 and C2. In rotational systems, power is related to the torque (τ) and angular velocity (ω). The magnitude of torque depends on the force (F) applied and the length of the lever arm connecting the axis to the point of force application (r) which the length of the lever arm vector of test [76].

 $BP = \tau \times \omega$

or

BP

Where τ (Nm) = r × F ; r is the lever arm vector of test engine which is

τХ

0.24 meter for agricultural diesel engine, 0.25 meter in high speed diesel engine and F is the magnitude of the force applied which obtained from load applied.

2π N

(C1)

(C2)

N = engine speed (rpm)

2. Calculation the BSFC (kg/kWh) of fuel efficiency within a shaft reciprocating using equation 3 and thermal efficiency using equation C3.

92

 $BSFC = \frac{mf}{BP}$ (C3)

(C4)

Where mf = fuel consumption (kg/h) and BP is brake power as is defined

above.

3. Calculation the thermal efficiency (TE, %) which is the efficiency and completeness of combustion of the fuel usually perform as the ratio of the output or work done by the working substance in the cylinder in a given time to the input or heat energy of the fuel supplied during the same time [77], however; this study use the equation C4 which is the inverse of BSFC and heating value as below.

$$TE = \frac{3,600}{BSFC \times HHV} \times 100$$

Sample calculation of BSFC and TE

Fuel sample: UMO-1

Load = 5.1 kg, r = 0.24 m and Speed (N) = 1,794 rpm

1. To calculated the BP (kW) which that of calculated Torque was 12 Nm

$$BP = 12 \times \frac{2\pi \times 1,7}{60}$$

= 2.3 kW

2. To calculated the BSFC (kg/kWh) which that of fuel flow rate was 0.861 kg/h

SFC =
$$\frac{0.861}{2.3}$$

- = 0.38 kg/kWh
- 3. To calculated the TE (kg/kWh) which that of heating value was 38,348 kJ/kg fuel flow rate was 0.873 kg/h

$$TE = \frac{3,600}{0.38 \times 38,348} \times 100$$

= 25%

C-2 Engine performance data of tested fuel from agricultural diesel engine

Tested	Load	Speed	Torque	Brake	Fuel	Brake	Therma					
fuel	(kg)	(rpm)	(Nm) power		flow specific fuel		efficiency					
										(kW)	rate consumption	(%)
					(kg/h)	(kg/kWh)						
UMO	5.1	1,794	12	2.3	0.861	0.38	25					
	4.9	1,799	12	2.2	0.838	0.99	24					
	5.0	1,806	12	2.2	0.797	0.36	26					
SAM	5.7	1,807	13	2.5	0.958	0.38	24					
	5.7	1,800	13	2.5	0.943	0.37	25					
	5.5	1,797	13	2.4	0.953	0.39	24					
SAN	5.2	1,801	12	2.3	0.856	0.37	26					
	5.2	1,799	12	2.3	0.854	0.37	27					
	5.4	1,798	13	2.4	0.859	0.36	28					
DIE	5.9	1,805	14	2.6	0.736	0.28	29					
	5.9	1,806	14	2.6	0.750	0.28	29					
	5.9	1,805	-14	2.6	0.771	0.30	27					

Test	Load	Speed	Torque	Brake	Fuel	Brake	Thermal
fuel	(kg)	(rpm)	(Nm)	power	flow	specific fuel	efficiency
				(kW)	rate	consumption	(%)
					(kg/h)	(kg/kWh)	
PTT	5.8	1,804	14	2.6	0.787	0.30	28
B5	5.8	1,805	14	2.6	0.783	0.30	28
	5.8	1,805	14	2.6	0.785	0.30	28

C-2 Engine performance data of test fuel (Continued)

C-3 Engine performance data of test fuel from high speed diesel engine

Tested	Load	Speed	Torque	Brake	Fuel	Brake	Thermal
fuel	(kg)	(rpm)	(Nm)	power	flow	specific fuel	efficiency
				(kW)	rate	consumption	(%)
					(kg/h)	(kg/kWh)	
JOL	9.9	1,500	23	3.7	2.930	0.79	10
	9.7	1,500	23	3.6	2.966	0.82	10
	9.7	1,500	23	3.6	2.877	0.80	10
UPO	11.3	1,500	27	3.7	2.664	0.63	12
	11.1	1,500	26	3.6	2.539	0.61	13
	10.9	1,500	26	3.6	2.611	0.64	12
СРО	9.5	1,500	22	4.2	2.664	0.77	10
	11.4	1,500	22.	4.1	2.539	0.78	
	11.6	1,500	22	4.0	2.611	0.80	10

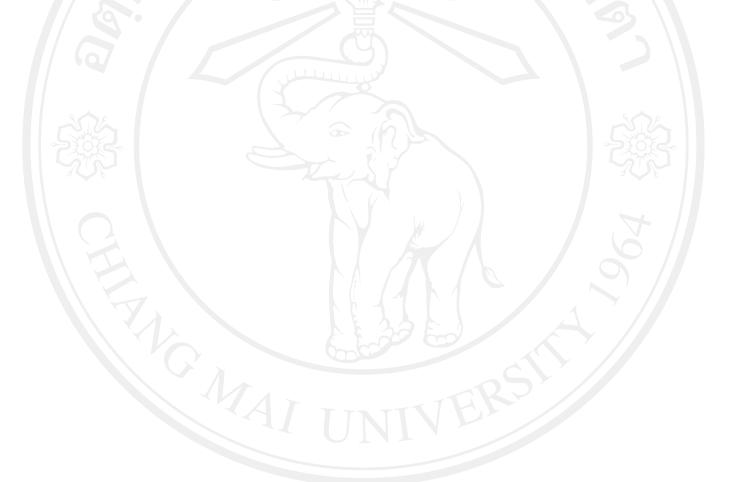
DIE100	11.4	1,500	27	4.2	2.464	0.58	13
	11.4	1,500	27	4.2	2.448	0.58	13
	11.6	1,500	27	4.3	2.481	0.57	13
PTT	11.6	1,500	27	4.2	2.587	0.60	12
B3	11.3	1,500	27	4.2	2.520	0.60	12
	11.7	1,500	27	4.3	2.520	0.58	12

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

VITA

Name Date of birth Education Miss Yaowatat Boongla

May 6, 1986


Bachelor degree of Science (Environmental and Soil

Research Management), Department of Soil Science, King Mongkut's Institue Technology Ladkrabang, 2009

List of Conferences

- Yaowatat Boongla, Thaneeya Chetiyanukornkul, Akira Toriba, Takayuki Kameda and Kazuichi Hayakawa. Emissions of Polycyclic Aromatic Hydrocarbons and their derivatives from a car diesel engine fueled with biodiesel fuels, Thailand. The 52th annual meeting of Japan society for atmospheric environment conference, September 14-16, 2011 at Nagasaki University, Nagasaki, Japan.
- 2. Yaowatat Boongla, Thaneeya Chetiyanukornkul, Kitipong Narkpakdee ,Charoen Chinwanitcharoen, Akira Toriba,Takayuki Kameda and Kazuichi Hayakawa.. Car emission of toxic and green house gasses running on biodiesel. The 2012 international and national conference for the sustainable community development of "Local community: the foundation of development in the ASEAN economic community (AEC)", Febuary 16-19, 2012 at Kosa hotel, Khonkaen, Thailand and Lao PDR.

3. Yaowatat Boongla, Thaneeya Chetiyanukornkul and Kitipong Narkpakdee. Determination of toxic and green house gasses from the combustion of high speed diesel engine operating on biodiesel fuels. Center of excellence on environmental health and toxicology conference, 30 June -1 July, 2012 at the Convention Center, Chulabhorn Research Institute, Bangkok, Thailand.

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved