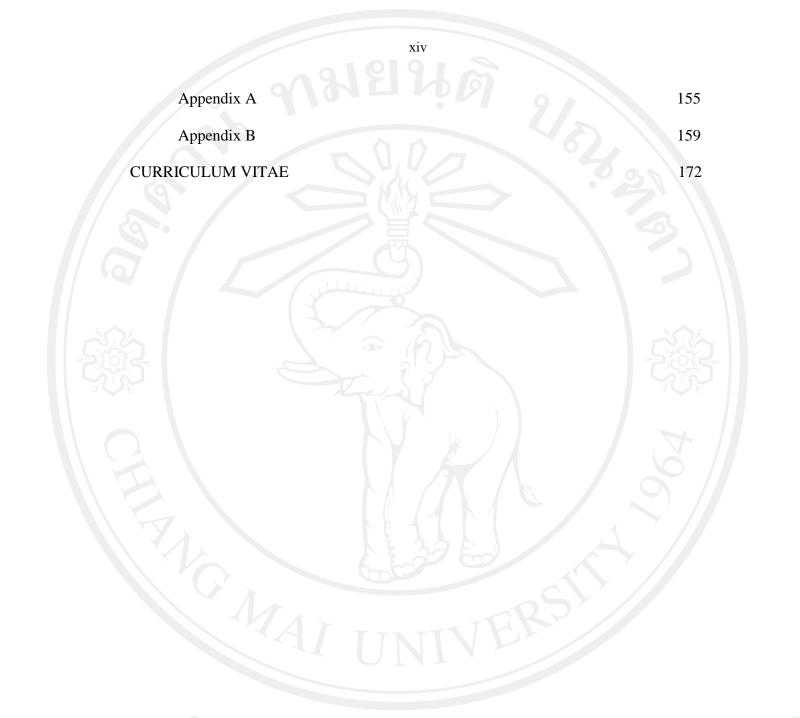
ix TABLE OF CONTENTS

			Page
ACKNOWLEI	OGEM	ENTS	iii
ENGLISH AB	STRA	CT (S)	iv
THAI ABSTR.	ACT		vii
LIST OF TAB	LES		xv
LIST OF FIGU	JRES		xviii
ABBREVIATI	ONS A	AND SYMBOLS	xxi
CHAPTER 1	INTR	DDUCTION	
	1.1	Air pollution; situation in Asia	
	1.2	Particulate Matter	5
	1.3	Polycyclic aromatic hydrocarbons (PAHs)	7
		1.3.1 Definition and sources	7
		1.3.2 Mechanisms and effects	12
	1.4	Biomass	16
		1.4.1 Biomass classification	16
		1.4.2 Biomass composition	18
	1.5	Sampling artifact	20
	1.6	Gas Chromatography Mass Spectrometry (GC-MS)	23
		for PAHs analysis	


x	
1.6.1 Chromatographic retention	28
1.7 Geographical background, population and economic	30
structure of Chiang Mai Province	
1.8 Emission of atmospheric PAHs from various sources	31
1.9 Chamber for burning experiment	36
1.10Research Objectives	38
CHAPTER 2 EXPERIMENTAL	39
2.1 Apparatus and chemicals	39
2.1.1 Instrument	39
2.1.2 Equipment and Apparatus	39
2.1.3 Chemicals	41
2.2 Experimental framework	42
2.3 Site description and collecting method for biomass samples	43
2.3.1 Sampling sites for biomass residues	43
2.3.2 Collecting and preparation of biomass	47
2.4 Biomass burning experiment	49
2.4.1 Design of a stainless steel chamber	49
for biomass burning	
2.4.2 Operation of the chamber	51
2.4.3 Preparation of biomass samples for	51
burning experiment	

	xi	
2.5 S	Sampling of PM10 in Ambient air	53
	2.5.1 PM10 sampling site	53
	2.5.2 Sampling duration	53
2.6 Prep	paration of PAH and internal standard solution	-55
	2.6.1 Preparation of mixed 16 PAHs standard solution	55
	2.6.2 Preparation of mixed internal standards	55
2.7 Opti	imization of ultrasonic extraction	56
2.8 PM	10 sample extraction and analysis	56
2.9 Opti	imization GC-MS condition	57
2.10Qua	ality control of PAHs analysis	59
	2.10.1 Use of standard reference materials (SRM)	59
	2.10.2 Use of spiking method	60
	2.10.3 Precision of analysis method	60
2.11 Dete	ection limit of GC-MS for 16-PAHs analysis	61
2.12 PM	10 and PAHs source determination	61
	2.12.1 Data analysis of ambient PM10 and PAHs	61
	2.12.2 Data analysis of PM10 and PAHs from	64
	biomass burning in the chamber	
CHAPTER 3 RES	SULTS AND DISCUSSION	65
3.1 Met	thod validation for PAHs analysis by GC-MS	65
	3.1.1 Accuracy of PAHs analysis by GC-MS	65

	xii	
3.1.2	Precision	67
3.1.3	Instrument detection limit	69
3.1.4	Standard calibration curve	71
3.2 Composition	of biomass samples	76
3.2.1	Moisture content	-76
3.2.2	C, H and N composition	76
3.3 PM10 and PA	Hs emitted from biomass burning	78
in the chamber		
3.3.1	PM10 and PM10-bound PAHs from	78
	biomass burning	
3.3.2	Correlation of PM10 and PAHs	81
3.3.3	Emission Factors of PM10 and PAHs	87
	from biomass burning	
3.3.4	PAHs profiles emitted from biomass burning	90
3.3.5	Diagnostic ratios of PAHs for biomass burning	93
3.3.6	Principle Component Analysis (PCA) of	95
	PAHs for biomass burning	
3.3.7	Emission rates (ERs) of PM10 and PAHs from	97
	open burning	
3.4 Ambient PM10) concentrations at CMU site	99
3.4.1	PM10 concentrations and their seasonal variation	99
3.4.2	Correlations between PM10 concentrations	105

			obtained from a minivolume air sampler	
			(SCB1-CMU) and AQM of PCD (CH and YP).	
	3.5 РМ10-b	ound P	PAHs	107
	3.6 Correlat	ions be	etween PM10 and PAHs concentrations;	113
	PM10 a	nd hot	spots	
		3.6.1	Correlations of PM10 and individual PAH	113
			in each season	
	-	3.6.2	Seasonal correlations between PM10 and its	118
			PAHs content (tPAHs, ncPAHs and cPAHs)	
		3.6.3	Correlations between PM10 and the number	118
			of hotspots	
	3.7 Assessm	ent of	possible health effects based on PAHs concentrations	121
		3.7.1	Toxicity equivalent concentration (TEQ) of PAHs	121
	G .	3.7.2	The inhalation lung cancer risk (ILCR) assessment	123
	3.8 Sources	apport	ionment of PM10- bound PAHs	124
		3.8.1	Diagnostics Ratios (DRs)	124
		3.8.2	Backward trajectory of air mass transfer	128
	c :	3.8.3	Principal Component Analysis (PCA) for	131
			ambient PM10-bound PAHs	
СНАРТ	TER 4 DISCU	SSION	NS	135
REFER	ENCES			138
APPEN	DICES			154

xiii

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table		Page
1.1	U.S. EPA priority 16-PAHs	11
2.1	General information of selected districts for biomass sampling	43
2.2	Sampling sites, sample types and sample numbers	46
2.3	Composition and function of the combustion chamber	50
2.4	General information of biomass burning in the combustion chamber	52
2.5	GC-MS conditions for 16-PAHs analysis	57
2.6	Characteristic ions for PAHs	58
2.7	Certified values of SRMs urban dust NIST 1649b	59
3.1	Percent recoveries of 16- PAHs from extraction of the SRM urban dust	67
	(NIST 1649b) and spiking method	
3.2	Repeatability of standard preparation measured by GC-MS	68
3.3	Reproducibility of standard preparation measured by GC-MS	69
3.4	Instrument detection limit of GC-MS	70
3.5	Calibration equations and variation coefficient of PAHs	73
3.6	Moisture content of biomass residues	76
3.7	C, H, N content of biomass residues	77
3.8	PM10 emitted from biomass burning in the combustion chamber	79
3.9	PM10-bound PAHs from biomass burning in the combustion chamber	80
3.10	Correlation coefficients of PM10 and PM10-bound PAHs (rice straw)	83
3.11	Correlation coefficients of PM10 and PM10-bound PAHs (maize	84
	residues)	

3.12	Correlation coefficients of PM10 and PM10-bound PAHs (leaf litter)	85
3.13	Correlation between PAHs and PM10 from biomass burning	86
3.14	Emission Factors of PM10 and PAHs from leaf litter, maize reside and	88
	rice straw burning in the chamber and TEQ of PAHs	
3.15	Diagnostics ratio form biomass burning from this study	95
3.16	PCA for biomass burning from biomass burning	96
3.17	Total area, burnt area and percentages of burnt area of forest, rice field	97
	and crop in Chiang Mai during dry season of 2010 and 2011	
3.18	PM10 and PAH emission rate from leaf litter, maize and rice straw in	98
	year of 2010 and 2011	
3.19	PM10 concentrations in each season	101
3.20	Monthly pressure, temperature, relative humidity, precipitation in this	103
	study period.	
3.21	Concentrations (ng/m ³) of PM10- bound PAHs in dry 2010, wet 2010	109
	and dry 2011	
3.22	Correlation coefficients of PM10, PM10-bound PAHs in dry season	113
	2010	
3.23	Correlation coefficients of PM10, PM10-bound PAHs in wet season	116
	2010	
3.24	Correlation coefficients of PM10, PM10-bound PAHs in dry season	117
	2011	
3.25	Correlations of PM10 and PAHs concentrations in each sampling	119
	period g h t s r e s e r	

3.26	Toxicity equivalent factors (TEF _i)	121
3.27	TEQs values of PAHs in ambient air of Chiang Mai	122
3.28	Yearly average of ILCR in Chiang Mai	123
3.29	PAHs diagnostic ratio from others studies	125
3.30	PCA for PM10-bound PAHs in dry and wet 2010 and dry 2011	134

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

xviii

LIST OF FIGURES

Figu	ire	Page
1.1	Mass and number distribution of particles	6
1.2	Structures of 16-PAHs compound	10
1.3	General formation schemes of PAHs, PCDDs, and PCDFs	14
1.4	Biomass structure	20
1.5	A schematic of GC-MS	24
1.6	A schematic of an ion source	25
1.7	A schematic of a quadrupole analyzer	26
1.8	Retention time	28
1.9	The calculation parameters of adjacent peak pair resolution	29
2.1	Diagram of experimental framework	42
2.2	Map of biomass sampling sites in Chiang Mai Province	45
2.3	Grid of biomass sample collection	47
2.4	Biomass sampling for (a) rice straw, (b) maize residues and (c) leaf litter	48
2.5	Schematic diagram of a chamber	49
2.6	Combustion chamber; (A) combustion part and (B) air pollutant storage	50
	part	
2.7	Biomass samples: rice straw (RS), maize residues (M) and leaf litter (L)	52
2.8	Location of sampling site (SCB1)	53
2.9	PM10 sampling by a Minivol air sampler at CMU	54
3.1	Percent recoveries of 16-PAHs from different extraction methods.	66

- 3.2 Chromatogram obtained with A; 0.08 µg/ml of 16-PAHs B; sample from 72 biomass burning in chamber C; sample from ambient air and 2 internal standards using GC-MS..
- 3.3 Standard calibration curves of 16-PAHs 74
- 3.4 PM10 samples on quartz fiber filter from burning of (a) rice straw, (b) 78maize residues and (c) leaf litter in the combustion chamber
- 3.5 Concentrations of tPAHs, ncPAHs and cPAHs and the relative percentage90 of ncPAHs and cPAHs from biomass burning.
- 3.6 Profiles of PAHs emitted from the burning of leaf litter in the chamber 91
- 3.7 Profiles of PAHs emitted from the burning of maize residues in the 92 chamber
- 3.8 Profiles of PAHs emitted from the burning of rice straw in the chamber 92
- 3.9 Relative percentages of PAHs emitted from leaf litter, maize residues and 93 rice straw burning

96

- 3.10 Loading scatter plot of PAHs from biomass burning
- 3.11 Comparison of PM10 concentrations in ambient air obtained from 100 minivolume air sampler (SCB1-CMU) and AQM stations (CH and YP)
- 3.12 Pattern of PM10 concentrations in Chiang Mai atmosphere obtained from 102City Hall station during 2006-2011.
- 3.13 Monthly precipitation and number of rainy day in 2010 and 2011 in 104 Chiang Mai
- 3.14 .Correlation between PM10 concentrations obtained from mini volume air 106 sampler (SCB1-CMU) and TEOM (AQM stations).

3.15	Concentrations of ambient PM10, PM10-bound PAHs and ratio of	110
	cPAHs and ncPAHs	
3.16	The ratio cPAHs and ncPAHs	111
3.17	The relative percentage of PAHs	111
3.18	Concentrations of PM10 and PM10-PAHs from ambient air samples	112
3.19	Scatter plots between PM10 concentrations and number of hotspots	120
3.20	Diagnostics ratio of PM10 - bound PAHs in dry season 2010, wet	127
	season 2010 and dry season 2011	
3.21	24-hours backward trajectory of clusters in dry season 2010	129
3.22	24-hours backward trajectories of clusters in wet season 2010	130
3.23	24-hours backward trajectories of clusters in dry season 2011	131

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

	ABB	REVIATIONS AND SYMBOLS
µg/m ³		Microgram per cubic meter
µg/mL	=	Microgram per liter
µg/gPM10	=	Microgram per gram of PM10
µg/kg _{dry}	43	Microgram per kilogram of biomass dry
μm	E	Micro-meter
μl	=	Micro-liter
ACE	=	Acenaphthylene
ACY	=	Acenaphthene
ANT	=	Anthracene
ASD	=	Asian dust storms
ATSDR	=	Agency for Toxic Substances and Disease Registry
AQM	Ę	Air Quality Monitoring
BaA		Benz[a]anthracene
BaP	=	Benzo[a]pyrene
BeP	=	Benzo[e]pyrene
BbF	=	Benzo[b]fluoranthene
BkF	=	Benzo[k]fluoranthene
BPER	QY	Benzo[k]fluoranthene Benzo[g,h,i]perylene
c r j o	=	Carbon Ca
CD	- 1	Chiang Dao district

CHR	=	Chrysene
CI	a (Chemical ionization
CMU	=	Chiang Mai University
СН	=	City Hall of Chiang Mai Province
СО	-	Carbon monoxide
COR	=	Coronene
cPAHs	=	Carcinogenic polycyclic aromatic hydrocarbons
СҮС	=	Cyclopenta[c,d]pyrene
DBA	=	Dibenz[a,h]anthracene
D ₁₀ -ACE		D ₁₀ -Acenaphthene
D ₁₂ -PER	=	D ₁₂ -Perylene
DK	=	Doi Saket district
DRs	=	Diagnostic ratios
EF	=	Emission factor
EI	=	Electron ionization
ERs	=	Emission rates
EPA	<u>_</u>	Environment Protection Agency
FBC	=	Fluidized bed combustion
FLA	=	Fluoranthene
FLU		Fluorene SAR
GC-MS	=	Gas chromatography mass spectrometry
Gg/y	QY	Gigagram per year
^H rio	ŧ	Hydrogen

xxii

HP	=	High purity
HYSPLIT	a ۱	Hybrid single particle langrangian integrated trajectory
ILCR	=	Inhalation lung cancer risk
IND	=	Indeno[1,2,3-cd]pyrene
IS	=	Internal standards
IARC	=	International Agency for Research on Cancer
km	=	kilometer
km ²	=3	Square kilometer
kg	Z	kilogram
L	=	Leaf litter
m	=	Meter
max	=	Maximum
min	=	Minimum
m/z	=	Mass per
ml	=	Milliliter
mg	E)	Milligram
mm	=	Millimeter
mm Hg	=	Millimeter of Mercury
M	Ē	Maize residues
MC	=	Mea Chaem
MW Mg	ΦŢ	Molecular weight Mega gram
MR	h	Mae Rim district
n	=	number of sample

xxiii

ncPAHs	=	Non carcinogenic polycyclic aromatic hydrocarbons
ng	c	Nanogram
ng/m ³	=	Nanogram per cubic meter
Ν	=	Nitrogen
NAAQS	=	Nation Ambient Air Quality Standard
NAP	=	Naphthalene
ND	=	Non detected
NO _x	=	Nitrogen Oxide
0	=	Oxygen
PAC		Polycyclic aromatic compounds
PAHs	=	Polycyclic aromatic hydrocarbons
PCA	=	Principal Component Analysis
PCD	=	Pollution control department
PCDFs	=	Polychlorinated dibenzofurans
PCDDs	=	Polychlorinated dibenzopdioxin
PHE	7=	Phenanthrene
РМ	4	Particulate matter
PM1.0	=	Particulate matter (diameter less than 1.0 µm)
PM2.5	=	Particulate matter (diameter less than 2.5 µm)
PM10	٢£١	Particulate matter (diameter less than 10 µm)
PR	.= .	Plain rice straw
PYR	hy	Pyrene lang Mai University
RDF		Refuse-derived fuel
RS	=	Rice straw

F	Rs	=	Resolution
S	SD		Standard deviation
S	SIM	=	Selected Ion Monitoring
S	SRM	=	Standard reference material
S	SCB1	-	Science complex building 1
S	SPSS	=	Statistical package for the social sciences
05	SO_2	=	Sulfur dioxide
]	ГЕF	-(1	The toxic equivalent factors
	ГЕQ	=	The toxicity equivalent concentration
	ГSP		Total Suspended Particulate matter
ť	PAHs	=	Total polycyclic aromatic hydrocarbons
ι	US	=	United States
1	VOCs	=	Volatile organic compounds
Ţ	WHO	=	World Health Organization
3	YP	=	Yuppraraj Wittayalai School

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

XXV