TABLE OF CONTENTS

	Page
ACKNOWLEDGMENTS	· · 2\ii
ABSTRACT (ENGLISH)	v
ABSTRACT (THAI)	viii
ABBREVIATIONS AND SYMBOLS	xx
CHAPTER 1 INTRODUCTION	51 2
1.1 The statement and significance of the problem	1
1.1.1 Pesticides in Thailand	1-1
1.1.2 Organophosphate and carbamate pesticide statem	ent and
significance	3
1.1.3 Synthetic pyrethroid pesticide statement and sign	ificance 6
1.2 Research Objectives	9
1.3 Definitions	11
CHAPTER 2 LITERATURE REVIEWS	13
2.1 Classification of pesticides	13
2.2 Non-persistent pesticides	13
2.2.1 Organophosphate pesticides poisoning	14
2.2.2 Carbamate pesticides poisoning	17
2.2.3 The synthetic pyrethroid characterize	17

	Page
2.3 Biological monitoring of pesticide exposure	24
2.3.1 Blood and salivary cholinesterase enzyme	24
2.3.2 Plasma 3-PBA and urine 3-PBA	28
2.4 Method for measurement of biomarkers	33
2.4.1 Cholinesterase enzyme activity measurement	33
2.4.2 Enzyme-linked immunosorbent assay (ELISA)	34
2.4.2.1 The step of ELISA development	35
2.4.2.2 Design and synthesis of hapten	35
2.4.2.3 Preparation of immunogen and coating antigen	36
2.4.2.4 Production of antibody	37
2.4.2.5 Immunoassay formats	41
CHAPTER 3 EXPERIMENTAL	45
3.1 Materials and Chemicals	45
3.1.1 Chemicals and reagents	45
3.1.1.1 Chemicals	45
3.1.1.2 Immunological reagents	46
3.1.1.3 Disposable products	46
3.1.2 Equipments	47
3.2 Methods	47

	Page
3.2.1 Organophosphate and carbamate pesticide experimental	47
3.2.1.1 Study site and population characteristics	47
3.2.1.2 Sample collection and preparation	49
3.2.1.3 Developing of human salivary cholinesterase assay	50
3.2.1.4 Quality assurance and control	52
3.2.1.4.1 The intra- and inter-assay coefficients of	
variation (%CV)	52
3.2.1.4.2 Limit of blank, limit of detection and limit of	
quantitation	53
3.2.1.5 Statistic analysis	54
3.2.2 Synthetic pyrethroid pesticides experimental	55
3.2.2.1 Study site and population characteristics	55
3.2.2.2 Developing of sample preparation step and sensitivity	
ELISA method	55
3.2.2.1 Sample collection	55
3.2.2.2.2 Plasma sample preparation	55
3.2.2.3 Urine samples preparation	58
3.2.2.2.4 Competitive indirect enzyme-linked	
immunosorbent assay	58
3.2.2.2.4.1 Immunoreagents	58

	Page
3.2.2.2.4.2 Competitive indirect enzyme-linked	
immunosorbent assay	59
3.2.2.3 Quality assurance and control	60
3.2.2.4 Statistic analysis	60
3.2.2.5 High-performance liquid chromatography /time-of-	
flight mass spectrometry (HPLC/TOFMS)	61
3.2.2.5.1 High resolution mass spectrometry	61
3.2.2.5.2 Ion source conditions	61
3.2.2.5.3 TOF calibration and lock-mass set up	62
3.2.2.5.4 HPLC separation	63
3.2.2.5.5 Mobile phase, gradient	63
3.2.2.5.6 Column	63
3.2.2.5.7 UV-VIS detector	63
3.2.2.5.8 Data processing	63
CHAPTERS 4 RESULTS AND DISCUSSION	64
4.1 Organophosphate and carbamate pesticide results and discussion	64
4.1.1 Developing of human salivary cholinesterase assay	64
4.1.2 Application of developed methods to detect activities of BChE	
and AChE in saliva	64

xiii

	Pa
4.1.3 Examination of the relationship between activities of BChE and	
AChE in saliva and blood	67
4.2 Synthetic pyrethroid pesticide	69
4.2.1 Developing of sample preparation step and sensitivity ELISA	
method	69
4.2.1.1 Sample preparation	69
4.2.1.2 Optimization of the ELISA method	74
4.2.1.3 Quality assurance and control	76
4.2.2 Application developed methods to detect plasma 3-PBA	76
4.2.3 Examination the relationship between plasma 3-PBA and urine	
3-PBA	79
CHAPTER 5 CONCLUSION	82
5.1 Organophosphate and Carbamate pesticides	82
5.2 Synthetic pyrethroid pesticides	83
REFERENCES	84
APPENDIX	10
CURRICULUM VITAE	10

LIST OF TABLES

Table	Page
2.1 Classification of major pesticides according to persistence into	
environment	13
2.2 Symptoms and sign of OP pesticide poisoning	14
2.3 Acute oral toxicities of pyrethroids to rats	21
3.1 Participant distribution through 4 sub-districts in the Fang district of	
Chiang Mai, Thailand	48
3.2 The optimal condition for ChE measuring in saliva and blood	54
4.1 The within-day %CV for pooled saliva and blood in each batch	
(3 controls; intra-assay) and the between-day %CV of control	
concentrations in all batches (60 controls; intra-assay) for 200 samples	65
4.2 Limit of blank (LOB), limit of detection (LOD) and limit of	
quantitation (LOQ) of methods for measurement of ChE activities	66
4.3 Factors affecting variability from the status of diseases	
to activity of all ChE	70
4.4 Recoveries after hydrolysis, LLE, SPE and ELISA	
analysis of spiked free-3-PBA and 3-PBA-BSA (10 ng/mL)	
in fetal bovine serum, done in duplicate in two days.	72

LIST OF TABLES (CONT.)

	Page
4.5 Retention time (RT), found mass, mass increment and number	
of 3-PBA to BSA for characterization of 3-PBA-BSA	
(Molecular mass for calculation in this study of BSA and	
3-PBA are 66,433Da and 196Da, respectively)	72
4.6 Recoveries after hydrolysis, extraction and ELISA analysis	
of 3-PBA spiked in fetal bovine serum and urine containing	
no detectable 3-PBA by ELISA in duplicate $(n=2)$ on the same day.	73
4.7 Limit of blank (LOB), limit of detection (LOD) and limit of	
quantitation (LOQ) of methods for measurement of plasma	
3-PBA and urinary 3-PBA	74
4.8 Intra- and inter-assay variation of pooled controls for plasma and	
urine	77
4.9 Descriptive analytical data for plasma 3-PBA and urinary 3-PBA	
detected in human plasma between consumers (n=100)	
and farmers (n=100)	78
4.10 The % detection of plasma 3-PBA and urinary 3-PBA	
	00

LIST OF FIGURES

Figure	Page
1.1 Conceptual framework of the present study	10
2.1 Typical structures of OP pesticides	15
2.2 Metabolic pathway of methyl parathion in the body representative of	
organophosphate pesticide metabolism (Barr and Needham, 2002).	16
2.3 Structures of the six natural pyrethrins (Soderlund et al., 2002)	18
2.4 Structures of synthetic pyrethroids registered for use in the United	
States	19
2.5 Schematic structure of cholinesterase active site of human PBChE	
monomer (Ekholm and Konschin, 1999; Masson et al., 2001; 2003)	26
2.6 Metabolism of permethrin in mammals	30
2.7 Adduct formation of acyl glucoronides with proteins by transacylation	
mechanism	31
2.8 Adduct formation of acyl glucoronides via glycation mechanism	31
2.9 (A) Structure of IgG antibody and its fragments. V_L is the variable	
regions of light chain, $V_{\rm H}$ is the variable regions of heavy chain, $C_{\rm L}$	
is the constant regions on light chain, and C_H1 , C_H2 , C_H3 are the	
constant regions on heavy chain. (B) Fragments contained the	
antigen binding sites such as $F(ab)$, $F(ab')$ and $F(ab')_2$ (Abcam,	
2012).	38

xviii

LIST OF FIGURES (CONT.)

Figure	Page
2.10 The principle of antibody production. B cell are triggered to	
mature into plasma cells that produce a specific kind of antibody	
when the B cell encounters a specific antigen (www.niaid.nih.gov)	40
2.11 ELISA format (<u>www.thermoscientific.com</u>)	42
3.1 Bivariate scattergram of SAChE and SBChE activities between	
using the spitted samples and the cotton wool-collected samples	
were significantly correlated for SAChE ($r = 0.763$, $P < 0.01$, $n = 20$)	
and SBChE (r = 0.803, P < 0.01, n = 20).	51
3.2 Forms of 3-PBA in the plasma sample during alkaline hydrolysis	
and the LLE method	56
3.3 The target molecule (3-PBA) linked to dual mode SPE	
(C8 and anionic exchange) cartridge	57
3.4 Comparison between 3-PBA (A) and hapten (B)	
in this study (Shan et al., 2004)	58
4.1 Bivariate scattergram of SBChE activities (mU/mL)	
and PBChE activities (U/mL) found correlation ($r = 0.232$, $P = 0.020$)	
between activities of SBChE and PBChE in consumers.	68
4.2 ELISA inhibition curve for plasma 3-PBA (A) and urine 3-PBA	
(B) using antiserum 294 (diluted 1 : 7,000, final dilution in well),	
coating antigen 3-PBA-BSA (0.5 µg/mL), and GAR-HRP (1 : 10,000)	75

LIST OF FIGURES (CONT.)

Figure

Page

4.3 The concentrations of urinary 3-PBA in farmers in Chiang Mai province at Mae Rim district (N = 40; Panuwet *et al.* (2004) and Mae Taeng District (N = 69; Panuwet *et al.* (2008) at selected percentile values compared to the present study (Fang district).

81

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

ng/mL	Nanogram
°C	Degree celsius
1.811	Milliliter
mL	WIIIIIIICI
g	Gram
Geo-mean	Geometric mean
Mg	Milligram
Kg	Kilogram
Max	Maximum
Min	Minimum
Ν	Sample size
SD	Standard deviation
U.S.A.	United States of America
WHO	World Health Organization
U.S.EPA	United States Environmental Protection Agency

adansunnaneueleeleelee Copyright[©] by Chiang Mai University All rights reserved

XX