CHAPTER 4 RESULTS

Part 1 Evaluation of male sterility in chili and improvement of parental lines

Experiment 1 Evaluation of male sterility in chili by fertility scoring method

 F_1 hybrid seeds between the germplasm and male sterile chilies were grown for fertility scoring. Thirty eight F_1 hybrids were evaluated. They were classified into three groups (Table 3) according to their pollen viability (Figure 2). Nine accessions showed fertile pollen. This group consisted of: PEPAC30-4 × CA597-2, PEPAC32-5 × CA598-1, PEPAC36-16 × CA1274-2, PEPAC36-3 × CA1321-3, PEPAC36-15 × CA1428-F-1, PEPAC36-16 × CA1428-G-1, PEPAC32-18 × CA1447-4-12, PEPAC 36-9 × CA1574-5 and PEPAC38-1 × CA006-1. Accordingly, the male parental accessions: CA006-1, CA597-2, CA598-1, CA1274-2, CA1321-3, CA1428-F-1, CA 1428-G-1, CA1447-4-12 and CA1574-5 and should have genotypes of N/S *RfRf*.

Seven accessions showed no pollen on some plants and fertile pollen on other plants in the same accession. This group consisted of: PEPAC32-9 \times CA683-1, PEPAC36-3 \times CA614-A-4, PEPAC36-11 \times CA1038, PEPAC36-7 \times CA1395-A-2, PEPAC36-10 \times CA1403-7, PEPAC36-1 \times CA042-5 and PEPAC32-7 \times CA1448-5-13. Accordingly, the male parental accessions: CA683-1, CA614-A-4, CA1038, CA 1395-A-2, CA 1403-7, CA 042-5 and CA1448-5-13 should all have genotypes of N/S *Rfrf*.

Twenty two accessions showed no pollen or some non-viable pollen. This group consisted of: PEPAC30-6 \times CA254-6, PEPAC30-18 \times CA489-2, PEPAC34-2 \times CA1159-3, PEPAC36-16 \times CA443-1, PEPAC36-5 \times CA617-D-6, PEPAC36-5 \times CA633-2, PEPAC36-1 \times CA646-5, PEPAC36-8 \times CA720-3, PEPAC36-8 \times CA780-6, PEPAC36-2 \times CA1303-1, PEPAC36-5 \times CA1374-4, PEPAC36-3 \times CA1377-D-2, PEPAC36-8 \times CA1401-1, PEPAC36-17 \times CA1440-6, PEPAC36-8 \times CA1441-1, PEPAC38-11 \times CA1445-1, PEPAC32-37 \times CA1449-3-9, PEPAC36-17 \times CA1450-7,

PEPAC38-1 \times CA005-1, PEPAC38-1 \times CA319-1, PEPAC38-15 \times CA1442-1 and PEPAC38-16 \times CA1442-F-7. Accordingly, the male parental accessions: CA254-6, CA489-2, CA1159-3, CA443-1, CA617-D-6, CA633-2, CA646-5, CA720-3, CA780-6, CA1303-1, CA1374-4, CA1377-D-2, CA1401-1, CA1440-6, CA1441-1, CA1445-1, CA1449-3-9, CA1450-7, CA005-1, CA319-1, CA1442-1 and CA1442-F-7 should have genotypes of N *rfrf*.

Table 3 Fertility scoring of pollen of F_1 hybrids and prospective genotype of the F_1 hybrids and the male parents

No.	F ₁ hybrid	Viability of pollen (No. of plant)		Prospective genotype		
		Fertile	Sterile	F ₁ hybrid	Male parent	
1	PEPAC30-4 × CA597-2	30	0	S Rfrf	N/S RfRf	
2	PEPAC32-5 × CA598-1	30	0	S Rfrf	N/S RfRf	
3	PEPAC36-16 × CA1274-2	30	0	S Rfrf	N/S RfRf	
4	PEPAC36-3 × CA1321-3	17	12(I)	S Rfrf	N/S RfRf	
5	PEPAC36-15 × CA1428-F-1	30	0	S Rfrf	N/S RfRf	
6	PEPAC36-16 × CA1428-G-1	30	0	S Rfrf	N/S RfRf	
7	PEPAC32-18 × CA1447-4-12	30	0	S Rfrf	N/S RfRf	
8	PEPAC36-9 × CA1574-5	30	0	S Rfrf	N/S RfRf	
9	PEPAC38-1 × CA006-1	30	0	S Rfrf	N/S RfRf	
10	PEPAC32-9 × CA683-1	11	6+5(I)	S Rfrf: S rfrf	N/S Rfrf	
11	PEPAC36-3 × CA614-A-4	12	8(I)	S Rfrf : S rfrf	N/S Rfrf	
12	PEPAC36-11 × CA1038	4	3+4(I)	S Rfrf : S rfrf	N/S Rfrf	
13	PEPAC36-7 × CA1395-A-2	20	6(I)	S Rfrf: S rfrf	N/S Rfrf	
14	PEPAC36-10 × CA1403-7	2	6+7(I)	S Rfrf: S rfrf	N/S Rfrf	
15	PEPAC36-1 × CA042-5	3	16	S Rfrf: S rfrf	N/S Rfrf	
16	PEPAC32-7 × CA1448-5-13	6	12	S Rfrf: S rfrf	N/S Rfrf	
17	PEPAC30-6 \times CA254-6	0	30	S rfrf	N rfrf	
18	PEPAC30-18 × CA489-2	0	30	S rfrf	N rfrf	
19	PEPAC34-2 × CA1159-3	0	10+13(I)	S rfrf	N rfrf	
20	PEPAC36-16 × CA443-1	0	14	S rfrf	N rfrf	
21	PEPAC36-5 × CA617-D-6	0	30	S rfrf	N rfrf	
22	PEPAC36-5 × CA633-2	0	30	S rfrf	N rfrf	
23	PEPAC36-1 × CA646-5	0	15+2(I)	S rfrf	N rfrf	
24	PEPAC36-8 × CA720-3	0	30	S rfrf	N rfrf	
25	PEPAC36-8 × CA780-6	0	30	S rfrf	N rfrf	
26	PEPAC36-2 × CA1303-1	0	30	S rfrf	N rfrf	

I = fertile pollen on some plants and sterile pollen on some plants of the same hybrid

Table 3 Fertility scoring of pollen of F_1 hybrids and prospective genotype of the F_1 hybrids and the male parents (continued)

No.	F ₁ hybrid	Viability of pollen (No. of plant)		Prospective genotype		
	a b	Fertile	Sterile	F ₁ hybrid	Male parent	
27	PEPAC36-5 × CA1374-4	0	30	S rfrf	N rfrf	
28	PEPAC36-3 × CA1377-D-2	1	22	S rfrf	N rfrf	
29	PEPAC36-8 × CA1401-1	0	21	S rfrf	N rfrf	
30	PEPAC36-17 × CA1440-6	0	30	S rfrf	N rfrf	
31	PEPAC36-8 × CA1441-1	0	21	S rfrf	N rfrf	
32	PEPAC38-11 × CA1445-1	0	30	S rfrf	N rfrf	
33	PEPAC32-37 × CA1449-3-9	0	30	S rfrf	N rfrf	
34	PEPAC36-17 × CA1450-7	0	30	S rfrf	N rfrf	
35	PEPAC38-1 × CA005-1	0	28	S rfrf	N rfrf	
36	PEPAC38-1 × CA319-1	a 0	22(I)	S rfrf	N rfrf	
37	PEPAC38-15 × CA1442-1	0	30	S rfrf	N rfrf	
38	PEPAC38-16 × CA1442-F-7	0	30	S rfrf	N rfrf	

I = fertile pollen on some plants and sterile pollen on some plants of the same hybrid

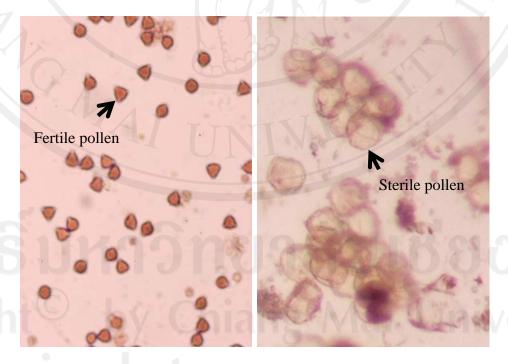


Figure 2 Fertile pollen with red stained and sterile pollen with white color

Experiment 2 Molecular markers of male sterility genes of chili

Evaluation of male sterility of chili was based on PCR reaction using primer developed from CAPS DNA marker by Kim (2005). Different procedures were tested to get suitable conditions for each chili variety in the following aspects: PCR composition (quantity adjustment), PCR reaction stages (temperature, time, and cycle adjustment). The condition that allows DNA amplification, is 20 μl PCR composition encompassing DNA template 1 μl, *Taq* polymerase (5 unit/μl) 0.1μl, *Taq* buffer (10x) 2μl, dNTP mix (2 mM) 0.5 μl, MgCl₂ (25 mM) 1.2 μl, forward primer (10 μM) 0.4 μl, reverse primer (10 μM) 0.4 μl, and ddH₂O 14.4 μl. PCR result showed amplified DNA band, not precisely clear, and cannot tell apart among the sampled chilies (Figure 3). Then amplified DNA was consequently truncated by *Rsa* I or *Mse* I enzymes, which are four-base pair restriction enzymes (RE). However, both enzymes could not cut the amplified DNA, thus it was not possible to discriminate male sterility of chili based on this DNA.

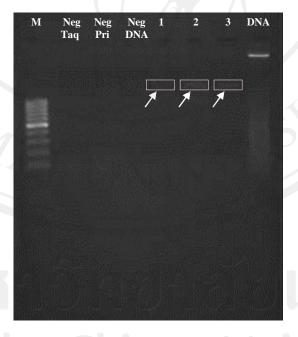


Figure 3 DNA amplification by PCR technique (Arrows pointing to DNA bands from samples of three chili varieties)

For the study of DNA markers associated with phenotype characteristics, DNA amplification was endeavored by RAPD technique for sample chilies. From

OPF 01 - 12 primer screening, OPF01-05, OPF09 and OPF10 were found to be able to increase DNA magnitude but only OPF01 was observed to provide a band with intense clarity (Figure 4).

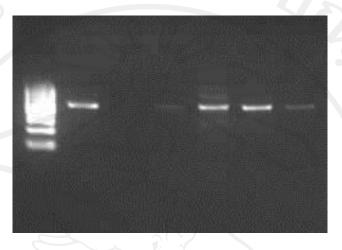


Figure 4 DNA amplification by OPF01 primer

Experiment 3 Improvement of parental lines

A male sterile chili variety, KY16, was crossed with 3 good chili maintainers. The F_1 hybrids were backcrossed with respective male parents for 2 generations. Three backcrossed male sterile chilies were obtained. The list BC₂KY16 varieties shown in Table 4. A male sterile chili variety, PEPAC32, was crossed with 3 good chili maintainers. The F_1 hybrids were backcrossed with respective male parents for 2 generations. The second backcrossed male sterile chilies were obtained. The list BC₂PEPAC 32 varieties shown in Table 4.

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

Table 4 List of BC₂KY16 and BC₂ PEPAC32 varieties of chilies

No.	Male sterile variety	Maintainer variety	Backcross variety		
1	KY16	CA1445-7-8	BC ₂ KY16 × CA1445-7-8		
2	KY16	CA1449-2-4	$BC_2 KY16 \times CA1449-2-4$		
3	KY16	CA1450-7-10	$BC_2 KY16 \times CA1450-7-10$		
4	PEPAC32	CA1445-7-8	BC_2 PEPAC32 × CA1445-7-8		
5	PEPAC32	CA1449-2-4	BC_2 PEPAC32 × CA1449-2-4		
6	PEPAC32	CA1450-7-10	BC_2 PEPAC32 × CA1450-7-10		

Part 2 Combining ability study in chili maintainers (B line)

2.1 Comparative study of 9 F_1 hybrids, parental varieties and standard varieties in green chili, winter 2010

Plant height

All 9 F_1 hybrids had plant height in 57.33 - 78.78 cm range with obvious variation among them at statistically significant level (Table 5). The F_1 hybrid $CA1450 \times CA1448$ exhibited the minimum plant height while the F_1 hybrid $CA1449 \times CA1448$ possessed the maximum. Many F_1 hybrids got plant height not statistically significantly different from the levels of their 3 maternal parents which were maintainer varieties, namely CA1445, CA1449 and CA1450.

The F_1 hybrid CA1449 \times CA1448 which yielded the maximum plant height among the 9 F_1 hybrids. The height was not statistically significantly different in comparison with the maintainer varieties, CA1445 and CA1449 (Table 5). However it differed statistically significantly when compared with the CA1450 variety. Many F_1 hybrids showed plant height at levels not statistically significantly different from those of their male parents, CA1447 and CA1448 (Table 5).

The F_1 hybrid CA1449 \times CA1448 which had the highest plant height compared with other F_1 hybrids in the experiment. It was higher statistically significant in comparison with its CA1447 and CA1448 male parents but not different from CA683 male parent at statistically significant level (Table 5).

The F_1 hybrids CA1450 \times CA1448, CA1450 \times CA1447 and CA1445 \times CA1448 which got the minimum plant heights among all the 9 F_1 hybrids were not different at statistically significant level from their CA1447 and CA1448 male parents (Table 5) but different at statistically significant level from their CA683 male parent in this aspect.

Canopy width

The 9 F_1 hybrids obtained the canopy width in 64.22 - 80.78 cm range which were not different from one another's at statistically significant level (Table 5; Figure 5). The F_1 hybrid CA1450 × CA683 exhibited the smallest canopy width while the F_1 hybrid CA1449 × CA683 gave the largest canopy width. However, canopy widths of all F_1 hybrids were not different at statistically significant levels when compared with those of their female parents, male parents, as well as the 3 commercial varieties.

Yield

Yields of the F_1 hybrids under experiment varied in the range of 2.346 - 6.794 t/rai and differed from one another at statistically significant level (Table 5). The F_1 hybrid CA1449 × CA1448 performed the poorest while the F_1 hybrid CA1450 × CA1448 was most productive in yield. These minimum and maximum levels differed statistically significant in comparison with those of the female parents, male parents and commercial varieties. The F_1 hybrids CA1450 × CA1447 and CA1450 × CA1448 while they were not different statistically significant from each other in terms of yield level but they differed at statistically significant level in the productivity performance when compared with their female parents, male parents and YokSiam variety but they were not different statistically significantly when compared with JomThong 2 and Jakkrapat varieties. Most F_1 hybrids performed not statistically significantly different from the commercial varieties in terms of output per rai.

The female parents, CA1445, CA1449 and CA1450 varieties, produced 2.735 - 4.551 t/rai (Table 5) with differences at statistically significant level. Variety CA1450 produced the highest yield while variety CA1445 produced the lowest. Most maintainer varieties, or the female parents, obtained yield at levels not different at statistically significant level from those of the commercial varieties. Some F_1 hybrids

appeared superior to the female parent varieties at statistically significant level in terms of yield. However, the majority of the F_1 hybrids under this study did not differ at statistically significant level from the female parent varieties in output performance.

The male parent varieties, CA683, CA1447 and CA1448, yielded output in the range of 2.583 - 4.542 t/rai (Table 5) and the levels differed statistically significant among them. Variety CA1448 was most productive while variety CA683 appeared the poorest in output performance, compared with the commercial varieties, the male parent varieties in this study generally were not different at statistically significant levels in terms of yield levels. A few F₁ hybrids produced yield at statistically significant levels and higher than those of the male parent varieties but in most cases the differences in yield levels were not statistically significant.

Fruit weight per plant

The 9 F_1 hybrids under experiment produced fruit weight per plant at levels different statistically significantly ranging from 0.37 to 1.06 kg/plant (Table 5). The F_1 hybrid CA1449 × CA1448 was the poorest while the F_1 hybrid CA1450 × CA1448 was the best in this nature, in consonance with their output per rai levels, the poorest and the highest respectively, from the present experiment. The F_1 hybrids CA1450 × CA1448 and CA1450 × CA1447 were not different at statistically significant level between them in their fruit weight per plant but they performed better than their female and male parents and the differences were statistically significant. The F_1 hybrid CA1450 × CA1448 was significantly different from all commercial varieties while the F_1 hybrid CA1450 × CA1447 was not different from two commercial varieties in terms of fruit weight per plant. Most of the F_1 hybrids appeared not significantly different from the female and male parental varieties as well as the commercial varieties regarding this yield component.

Number of fruits per plant

The 9 F_1 hybrids exhibited statistically significant differences in their number of fruits per plant ranging from 15 to 42 fruits/plant. The F_1 hybrid CA1450 × CA683 yielded the least while the F_1 hybrid CA1445 × CA683 got the most number of fruits per plant and their feature in this aspect differed from that of all female parents and all

male parents at statistically significant level but did not differ statistically significantly when compared with two commercial varieties. The majority of F_1 hybrids were not significantly different from the female, male parental varieties and Jakkrapat variety in the number of fruits per plant. Most of the F_1 hybrids gave lower number of fruits per plant than JomThong 2 and YokSiam varieties. The differences were statistically significant.

Fruit weight

Fruit weight of the 9 F_1 hybrids, varied from 20.53 to 51.17 g/fruit, the differences were statistically significant (Table 5). Fruit weight of the F_1 hybrid CA1449 × CA1448 was the lowest and those of F_1 hybrids CA1450 × CA1448 and CA1450 × CA1447 were the highest from the present experiment. The latter two varieties outperformed all other F_1 hybrids, all female parental varieties, all commercial varieties, and one male parental variety under study. Many F_1 hybrids produced relatively better fruit weight than all commercial varieties, at statistically significant level.

Fruit width

The 9 F_1 hybrids differed significantly in fruit width in the 2.16 - 3.27 cm range (Table 5; Figure 5-9). The F_1 hybrid CA1445 × CA683 produced minimum while the F_1 hybrids CA1450 × CA1448, CA1450 × CA1447 and CA1449 × CA1447 yielded maximum fruit width which were significantly higher than the rest of F_1 hybrid varieties and all the commercial varieties. However, they were not significantly different from most female and most male parental varieties. Most F_1 hybrid varieties, produced larger fruit width than all commercial varieties. The differences were significantly different. However, they were smaller than most female and male parental varieties and the differences were significantly different.

Apart from the color and the peppery hotness, the size of green chili fruits for making northern Thai styled chili dip does matter. The individual green chili fruit should be large, with great fruit width and length as well as pericarp thickness such that it can be peeled easily after being grilled.

Fruit length

The 9 F_1 hybrids obtained fruit length differently at statistically significant level in 14.45 - 19.91 cm range (Table 5; Figure 5-9). The F_1 hybrid CA1450 \times CA683 variety produced the shortest while the F_1 hybrids CA1445 \times CA1448, CA1449 \times CA683, CA1450 \times CA1448, CA1450 \times CA1447 and CA1445 \times CA1447 obtained the longest fruit length. The differences were statistically significant in comparison with almost all the other F_1 hybrids, all female parental varieties, one male parental variety and two commercial varieties. Most F_1 hybrid varieties performed better in terms of greater fruit length, statistically significant, in comparison with their female parents and some commercial varieties, but not statistically significantly different from most male parental varieties.

Pericarp thickness

Pericarp thickness of the 9 F_1 hybrids differed statistically significantly in 0.20 - 0.29 mm range (Table 5). The F_1 hybrid CA1449 × CA1448 had the minimum while the F_1 hybrids CA1450 × CA1448 and CA1450 × CA1447 got the maximum pericarp thickness from the present experiment. They were significantly different from those of the other F_1 hybrids, two female parents, one male parent and all commercial varieties. In other words, most F_1 hybrids produced fruits with lesser pericarp thickness in comparison with most male parental varieties at statistically significant difference level but no statistically significant differences were found in their comparison with most female parents and all commercial varieties.

Table 5 Yield components and horticultural characteristics of F_1 hybrids, male parents, female parents and commercial varieties, winter 2010

Variety/Cultivar	Plant height (cm)	Canopy width (cm)	Yield (t/rai)	Fruit weight/ plant (kg/plant)
F ₁ Hybrid	FI	10/7	0,	4
CA1445 × CA683	74.89 a-d ^{1/}	79.22	4.734 cde	0.740 cde
CA1445 × CA1447	63.56 d-h	80.22	4.677 cde	0.731 cde
CA1445 × CA1448	59.89 gh	77.33	5.033 bcd	0.786 bcd
CA1449 × CA683	74.45 a-e	80.78	4.066 def	0.635 def
CA1449 × CA1447	62.78 e-h	77.67	5.059 bcd	0.791 bcd
CA1449 × CA1448	78.78 ab	70.33	2.346 h	0.367 h
CA1450 × CA683	64.78 c-h	64.22	3.412 fg	0.533 fg
CA1450 × CA1447	59.11 gh	77.11	5.912 ab	0.924 ab
CA1450 × CA1448	57.33 h	79.78	6.794 a	1.061 a
Male Parent		Y		76
CA683	80.89 ab	72.22	2.583 gh	0.404 gh
CA1447	62.11 fgh	76.11	4.127 def	0.645 def
CA1448	58.56 gh	66.89	4.542 cde	0.710 cde
Female Parent	(C)	(0)		Y ///
CA1445	69.33 b-g	79.78	2.735 gh	0.428 gh
CA1449	72.45 a-f	74.33	3.899 ef	0.609 ef
CA1450	52.89 h	76.22	4.551 cde	0.711 cde
Commercial				
Jakkrapat	76.00 abc	73.67	5.026 bcd	0.785 bcd
JomThong 2	81.78 a	78.78	5.412 bc	0.846 bc
YokSiam	74.22 a-e	76.22	4.169 def	0.652 def
C.V. (%)	9.11	9.29	12.44	12.34

 $^{^{1/}}$ Means within column with different letters differ significantly at P<0.05 according to DMRT.

Table 5 Yield components and horticultural characteristics of F_1 hybrids, male parents, female parents and commercial varieties, winter 2010 (continued)

	Number of _	1 M	Fruit		Pericarp	
Variety/Cultivar	fruit per plant	Weight (g)	Width (cm)	Length (cm)	thickness (mm)	
F ₁ Hybrid		JU		3		
CA1445 × CA683	$41.67a^{1/}$	20.93 gh	2.16c	15.84 e	0.22 def	
CA1445 × CA1447	28.17b	32.93 cd	2.52 b	19.13 ab	0.22 de	
CA1445 × CA1448	27.13 bc	32.87 cd	2.52b	19.91 a	0.23 de	
CA1449 × CA683	24.70bc	36.90c	2.73 b	19.70 a	0.24 d	
CA1449 × CA1447	22.13 cd	43.70b	3.18a	18.22 bcd	0.24 cd	
CA1449 × CA1448	15.03e	20.53 gh	2.20 c	14.50 fg	0.20 fg	
CA1450 × CA683	14.83 e	28.63 def	2.60b	14.45 fg	0.22 def	
CA1450 × CA1447	25.53 bc	51.17a	3.19 a	19.21 ab	0.28 ab	
CA1450 × CA1448	25.93 bc	50.20 a	3.27 a	19.23 ab	0.29 a	
Male Parent						
CA683	26.82 bc	16.53 h	2.00 c	14.20 fg	$0.19\mathrm{g}$	
CA1447	24.97 bc	47.50 ab	3.16a	18.92 abc	0.26 bc	
CA1448	17.83 de	46.77 ab	3.20 a	19.26 ab	0.28 ab	
Female Parent						
CA1445	28.33b	17.93h	2.12 c	13.65 g	0.21 efg	
CA1449	27.87 bc	32.23 d	3.05 a	13.86 g	0.25 cd	
CA1450	24.32 bc	44.33 b	3.26a	15.38 ef	0.29 ab	
Control						
Jakkrapat	25.90 bc	30.23 de	2.15 c	18.74 abc	0.23 de	
JomThong 2	37.48 a	27.67 ef	2.20 c	17.79 cd	0.24 cd	
YokSiam	37.23 a	24.83 fg	2.07 c	17.09 d	0.19 g	
C.V. (%)	11.15	7.45	4.82	4.09	5.88	

^{1/} Means within column with different letters differ significantly at P<0.05 according to DMRT.

reserve

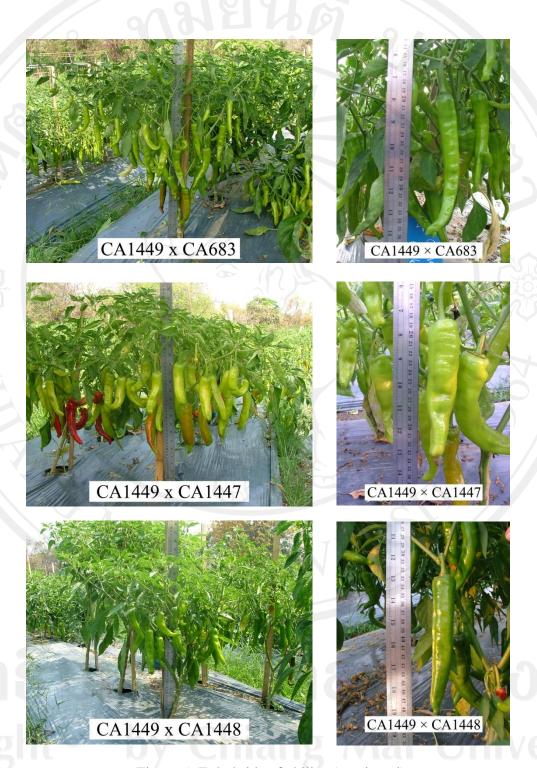


Figure 5 F_1 hybrids of chilies (continued)

Figure 6 Male parental varieties of chilies

Figure 7 Female parental varieties of chilies

Figure 8 Commercial varieties of chilies

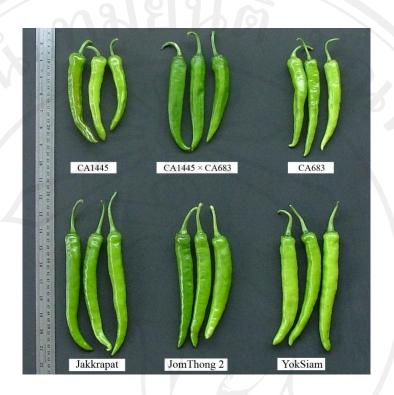


Figure 9 Fruits of F₁ hybrids, male parents, female parents and commercial varieties of chilies

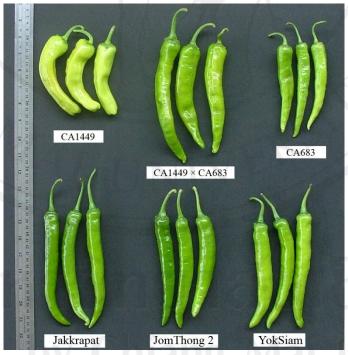



Figure 9 Fruits of F_1 hybrids, male parents, female parents and commercial varieties of chilies (continued)

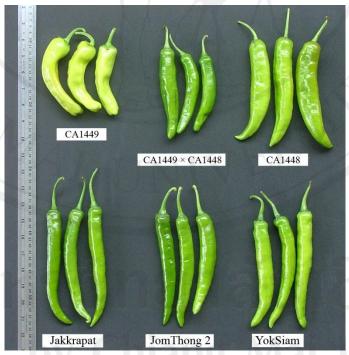
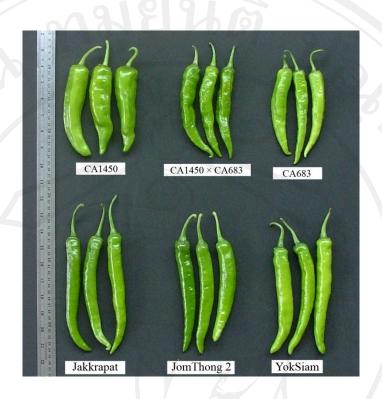



Figure 9 Fruits of F_1 hybrids, male parents, female parents and commercial varieties of chilies (continued)

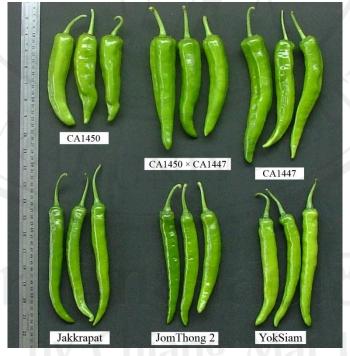


Figure 9 Fruits of F_1 hybrids, male parents, female parents and commercial varieties of chilies (continued)

Figure 9 Fruits of F₁ hybrids, male parents, female parents and commercial varieties of chilies (continued)

2.2 Assessment of F₁ heterosis

Heterosis in horticultural characteristics

Plant height

Among the nine F_1 hybrids tested, only the F_1 hybrid CA1449 \times CA1448 had heterosis overmidparent and none showed the extent of heterobeltiosis in plant height characteristics when assessed at statistically significant level (Table 6).

Canopy width

No F₁ hybrids had heterosis overmidparent nor heterobeltiosis over high parent in canopy width characteristics when tested for differences at statistically significant level (Table 6).

Fruit weight per plant

The heterosis overmidparent and the heterobeltissis values of most F_1 hybrid regarding fruit weight per plant in most cases came out at statistically significant level (Table 6).

Number of fruits per plant

Among the 9 F_1 hybrids, four F_1 hybrids appeared to have heterosis overmidparent at statistically significant difference level while three F_1 hybrids showed heterobeltiosis over high parent at statistically significant level (Table 6).

Fruit weight

In term of fruit weight, the heterosis overmidparent exhibited in six F_1 hybrids and heterobeltiosis showed in three F_1 hybrids with the differences at statistically significant level (Table 6).

Fruit width

Four F_1 hybrids had heterosis overmidparent while two other varieties had heterobeltiosis over high parent in fruit width with the differences at statistically significant level (Table 6).

Fruit length

Among the nine F_1 hybrids, seven F_1 hybrids had heterosis overmidparent and F_1 hybrids four had heterobeltiosis over high parent in this characteristics, with differences at statistically significant level (Table 6).

Pericarp thickness

In terms of pericarp thickness, five F_1 hybrids showed heterosis overmidparent and only one F_1 hybrids appeared to have heterobeltiosis over high parent and the differences were at statistically significant level (Table 6).

It can be concluded that a number of F_1 hybrids from crossing CA1445, CA1449 and CA1450 (B-line) with male parents (C-line) exhibited positive heterosis in some horticultural characteristic such as number of fruits per plant, fruit weight per plant, fruit weight, fruit length and pericarp thickness.

Table 6 Heterosis and heterobeltiosis in horticultural characteristics of F₁ hybrids, winter 2010

F ₁ Hybrid	Plant he	ight (cm)	Plant width (cm)		
	%Н	%Hb	%Н	%Hb	
CA1445 × CA683	-0.30	-7.42	4.24	-0.69	
CA1445 × CA1447	-3.29	-8.33	2.93	0.56	
CA1445 × CA1448	-6.35 *	-13.62 **	5.45	-3.06	
CA1449 × CA683	-2.90	-7.97	10.24	8.67	
CA1449 × CA1447	-6.69	-13.35*	3.25	2.05	
CA1449 × CA1448	20.27 *	8.74	-0.39	-5.38	
CA1450 × CA683	-3.16	-19.92 **	-13.47	-15.74	
CA1450 × CA1447	2.81	-4.82	1.24	1.17	
CA1450 × CA1448	2.89	-2.09	11.49 *	4.67	

H=Heterosis; Hb=Heterobeltiosis

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

^{*, **} significant difference at P<0.05 and P<0.01 levels, respectively.

Table 6 Heterosis and heterobeltiosis in horticultural characteristics of F₁ hybrids, winter 2010 (continued) ~ 1 O I O I

F ₁ Hybrid	Fruit weigh (kg/p		Yield (t/rai)		
	%Н	%Hb	%Н	%Hb	
CA1445 × CA683	78.03 **	73.03 **	77.94 **	72.96 **	
CA1445 × CA1447	36.28 **	13.34 **	36.28 **	13.33 **	
CA1445 × CA1448	38.28 **	10.80 **	38.19 **	10.71 **	
CA1449 × CA683	25.37 **	4.21 **	25.45 **	4.27 **	
CA1449 × CA1447	26.10 **	22.65 **	26.00 **	22.54 **	
CA1449 × CA1448	-44.40 **	-48.33 **	-44.41 **	-48.35 **	
CA1450 × CA683	-4.33 **	-25.02 **	-4.39 **	-25.05 **	
CA1450 × CA1447	36.23 **	29.85 **	36.23 **	29.89 **	
CA1450 × CA1448	49.43 **	49.25 **	49.41 **	49.30 **	

H=Heterosis; Hb=Heterobeltiosis

Table 6 Heterosis and heterobeltiosis in horticultural characteristics of F₁ hybrids, winter 2010 (continued)

F ₁ Hybrid	Number per p		Fruit Weight (g)		
	%H	%Hb	%Н	%Hb	
CA1445 × CA683	51.09 **	47.06 **	21.47 **	16.73 **	
CA1445 × CA1447	5.69	-0.59	0.66	-30.67 **	
CA1445 × CA1448	17.56 **	-4.24	1.60	-29.72 **	
$CA1449 \times CA683$	-9.67 **	-11.37 **	51.33 **	14.48 **	
CA1449 × CA1447	-16.22 **	-20.58 **	9.62 **	-8.00 *	
CA1449 × CA1448	-34.20 **	-46.06 **	-48.02 **	-56.09 **	
$CA1450 \times CA683$	-41.99 **	-44.69 **	-5.91 *	-35.41 **	
CA1450 × CA1447	3.60 **	2.27 **	11.43 **	7.72 **	
CA1450 × CA1448	23.02 **	6.59 *	10.21 *	7.34	

^{*, **} significant difference at P<0.05 and P<0.01 levels, respectively.

H=Heterosis; Hb=Heterobeltiosis
*, ** significant difference at P<0.05 and P<0.01 levels, respectively.

Table 6 Heterosis and heterobeltiosis in horticultural characteristics of F_1 hybrids, winter 2010 (continued)

F ₁ Hybrid	Fruit width (cm)		Fruit length (cm)		Pericarp thickness (mm)	
	%H	%Hb	%Н	%Hb	%Н	%Hb
CA1445 × CA683	4.85 **	1.88 **	13.78 **	11.55 **	15.73 **	10.75 **
CA1445 × CA1447	-4.61 **	-20.25 **	17.49 **	1.11 *	-5.94 **	-18.25 **
CA1445 × CA1448	-5.51 **	-21.44 **	20.99 **	3.36 **	-3.96 **	-18.66 **
CA1449 × CA683	7.92 **	-10.60 **	40.36 **	38.68 **	10.34 **	-5.08 **
CA1449 × CA1447	2.52 **	0.74 **	11.12 **	-3.73 **	-6.56 **	-9.52 **
CA1449 × CA1448	-29.64 **	-31.32 **	-12.43 **	-24.70 **	-29.37 **	-33.58 **
CA1450 × CA683	-1.14 **	-20.22 **	-2.34 **	-6.09 **	-7.62 **	-25.36 **
CA1450 × CA1447	-0.67 **	-2.25 **	11.97 **	1.50	2.27 **	-2.17 **
CA1450 × CA1448	1.13 **	0.20	11.00 **	-0.17	0.74 **	-0.72 **

H=Heterosis; Hb=Heterobeltiosis

Heterosis in physico-chemical properties of F₁ hybrids

Skin color

From L* value criteria, three F_1 hybrids had heterosis overmidparent while two F_1 hybrids had heterobeltiosis over high parent with differences at statistically significant level (Table 7). From Chroma value criteria, three F_1 hybrids showed heterosis overmidparent at statistically significant level while all nine F_1 hybrids under experiment appeared to have heterobeltiosis over high parent but the differences were not statistically significant (Table 7). However, judging from the Hue angle values, the heterosis overmidparent and heterobeltiosis over high parent of all F_1 hybrids were not statistically significant (Table 7).

Moisture content

In terms of moisture content, the CA1450 \times CA1447 F_1 hybrid had heterosis overmidparent with difference at statistically significant level while the remaining

^{*, **} significant difference at P<0.05 and P<0.01 levels, respectively.

eight F_1 hybrids demonstrated the heterobeltiosis over high parent but the differences were not significant statistically (Table 7).

Total soluble solids content

For this characteristics, only three F_1 hybrids showed heterosis overmidparent and one F_1 hybrid exhibited heterobeltiosis over high parent, however, all the differences were statistically significant (Table 7).

Vitamin C content

Four F_1 hybrids demonstrated heterosis overmidparent and one F_1 hybrid had heterobeltiosis over high parent regarding vitamin C content, at statistically significant level (Table 7).

Capsaicin content

No statistically significant differences were revealed to indicate the heterosis overmidparent nor the heterobeltiosis over high parent of the nine F₁ hybrids under trial concerning capsaicin content (Table 7).

Chlorophyll content

In terms of chlorophyll a content, seven F_1 hybrids had heterosis overmidparent and three F_1 hybrids showed heterobeltiosis over high parent at statistically significant difference level (Table 7). For chlorophyll b content, eight F_1 hybrids had heterosis overmidparent and six F_1 hybrids showed heterobeltiosis with differences at statistically significant level (Table 7).

The assessment of total chlorophyll contents indicated heterosis overmidparent and heterobeltiosis over high parent occurred in seven and four F_1 hybrids respectively, at statistically significant difference level (Table 7).

The assessment results provided the conclusion that a number of F_1 hybrids from crossing CA1445, CA1449 and CA1450 (B-line) with various male parents (C-line) showed positive heterosis in some physico-chemical properties such as the L* value, Chroma value, total soluble solids content, vitamin C content, chlorophyll a and b contents, as well as total chlorophyll content.

Table 7 Heterosis and heterobeltiosis in physico-chemical properties of F₁ hybrids, winter 2010

F ₁ Hybrid			Chroma		Hu	ıe
11 Hybrid	%Н	%Hb	%Н	%Hb	%Н	%Hb
CA1445 × CA683	-8.94 **	-13.83 **	-10.87 **	-16.93 **	1.84	0.12
CA1445 × CA1447	4.15 *	3.87 *	3.18	1.91	-0.91	-1.11
$CA1445 \times CA1448$	-1.70	-3.66	-3.33	-6.44 *	-0.39	-0.55
CA1449 × CA683	3.44 *	-6.04 **	7.86 **	3.57	-1.72 **	-4.65 **
CA1449 × CA1447	6.79 **	1.99 *	3.53 *	1.57	-1.12	-2.24 *
CA1449 × CA1448	-13.82 **	-19.05 **	-7.17 *	-7.31 *	4.16	2.62
CA1450 × CA683	-4.30	-6.16 *	-4.01	-4.21	0.42	-0.84
CA1450 × CA1447	-3.29 **	-6.49 *	-6.01 **	-11.20 **	0.92	0.27
CA1450 × CA1448	-2.97	-4.57	-3.01	-6.54 *	0.82	0.53

H=Heterosis; Hb=Heterobeltiosis

Table 7 Heterosis and heterobeltiosis in physico-chemical properties of F₁ hybrids, winter 2010 (continued)

F ₁ Hybrid	Moistur	re (%)	Total Soluble Solids (%)		
	%Н	%Hb	%Н	%Hb	
CA1445 × CA683	-1.07	-1.83	10.00 **	-4.35 **	
CA1445 × CA1447	0.72	-2.59 **	-20.92 **	-25.48 **	
CA1445 × CA1448	0.57	-2.55 **	-18.60 **	-19.25 **	
CA1449 × CA683	0.68	-0.35	24.40 **	16.77 **	
CA1449 × CA1447	0.57	-1.00 *	2.48 **	-10.58 **	
CA1449 × CA1448	-4.33 **	-5.64 **	-4.68 **	-12.83 **	
CA1450 × CA683	-3.85 **	-6.10 **	-8.42 **	-8.76 **	
CA1450 × CA1447	0.63 *	0.40	-29.28 **	-41.35 **	
CA1450 × CA1448	0.40	0.37	0.62	-12.83 **	

^{*, **} significant difference at P<0.05 and P<0.01 levels, respectively.

H=Heterosis; Hb=Heterobeltiosis
*, ** significant difference at P<0.05 and P<0.01 levels, respectively.

Table 7 Heterosis and heterobeltiosis in physico-chemical properties of F_1 hybrids, winter 2010 (continued)

F ₁ Hybrid	Vitamin C		Chlorophyll a (mg/100 g fresh weight)		Chlorophyll b (mg/100 g fresh weight)	
	%Н	%Hb	%Н	%Hb	%Н	%Hb
CA1445 × CA683	14.25 **	0.00	54.63 **	19.55 **	76.41 **	24.39 **
CA1445 × CA1447	-11.09 **	-19.97 **	63.22 **	16.93 **	94.66 **	30.81 **
CA1445 × CA1448	-11.09 **	-19.97 **	-17.92 **	-22.10 **	-21.19 **	-24.66 **
CA1449 × CA683	14.25 **	0.00	17.72 **	-6.25 **	17.66 **	-12.86 **
CA1449 × CA1447	-11.09 **	-19.97 **	28.61 **	-5.49 **	45.02 **	1.77 **
CA1449 × CA1448	-11.09 **	-19.97 **	10.81 **	1.25 **	13.68 **	1.03 **
CA1450 × CA683	24.95 **	0.00	31.94 **	-2.02 **	72.68 **	19.86 **
CA1450 × CA1447	20.02 **	20.02 **	20.27 **	-16.74 **	68.42 **	11.63 **
CA1450 × CA1448	0.00	0.00	-15.51 **	-15.97 **	1.49 **	-0.34 **

H=Heterosis; Hb=Heterobeltiosis

Table 7 Heterosis and heterobeltiosis in physico-chemical properties of F_1 hybrids, winter 2010 (continued)

F ₁ Hybrid	Total Chlo (mg/100 g fro		Capsaicin (Scoville unit)	
	%H	%Hb	%H	%Hb
CA1445 × CA683	51.49 **	18.88 **	1.32	-45.61
CA1445 × CA1447	62.53 **	20.44 **	-4.08	-44.71
CA1445 × CA1448	-16.84 **	-20.40 **	122.22	92.31
CA1449 × CA683	15.25 **	-6.48 **	-83.12	-84.99
CA1449 × CA1447	27.82 **	-2.39 **	-45.62	-56.00
CA1449 × CA1448	10.33 **	1.28 **	1.36	-45.82
CA1450 × CA683	39.40 **	5.99 **	-98.31 **	-98.58 *
CA1450 × CA1447	34.46 **	-3.14 **	181.08	141.35
CA1450 × CA1448	-6.85 **	-6.85 **	172.66	47.26

H=Heterosis; Hb=Heterobeltiosis

^{*, **} significant difference at P<0.05 and P<0.01 levels, respectively.

^{*, **} significant difference at P<0.05 and P<0.01 levels, respectively.

2.3 Assessment of general combining ability and specific combining ability

General combining ability and specific combining ability of green chili grown in winter 2010

General combining abilities for different horticultural characteristics showed that among the B-line parents: CA1445, CA1449 and CA1450. CA1445 was superior in terms of number of fruits per plant, CA1449 was good for plant height and CA1450 had good effects regarding yield, fruit weight per plant, average fruit weight, fruit width and fruit length, all at statistically significant differences from 0 level (Table 8).

It was found that general combining abilities in physico-chemical properties of the B line parents were at statistically significant difference from 0 level. The CA1445 parent showed statistically significant differences from 0 level in chlorophyll a, b and total chlorophyll. The CA1449 showed statistically significant differences from 0 level in L*, Chroma and total soluble solids while CA1450 showed statistically significant differences from 0 level in moisture content, vitamin C content, capsaicin content, chlorophyll b and total chlorophyll content.

Specific combining abilities of the three F_1 hybrids which CA1445 were female parents, showed statistically significant differences from 0 level in number of fruits per plant, fruit weight and fruit length. Specific combining abilities of the three F_1 hybrids which CA1449 was the female parent showed statistically significant differences from 0 level in plant height, yield, fruit weight, fruit width, fruit length and pericarp thickness and specific combining abilities of the three F_1 hybrids which CA1450 was the female parent showed statistically significant differences from 0 level in fruit weight per plant, yield, number of fruits per plant, fruit weight, fruit width, fruit length and pericarp thickness.

Specific combining abilities of the three F_1 hybrids which CA1445 was the female parent showed statistically significant differences from 0 level in L*, Hue angle, total soluble solids, chlorophyll a, chlorophyll b, total chlorophyll and capsaicin content. Specific combining abilities of the three F_1 hybrids which CA1449 was the female parent showed statistically significant difference from 0 level in L*,

Chroma, Hue angle, total soluble solids, moisture, chlorophyll a, chlorophyll b, total chlorophyll and capsaicin content. Specific combining abilities of the three F_1 hybrids which CA1450 was the female parent showed statistically significant differences from 0 level in L value, total soluble solids, moisture, chlorophyll a, chlorophyll b, total chlorophyll and capsaicin content.

Table 8 General combining abilities and specific combining abilities in horticultural characteristics and physico-chemical properties of male parents, female parents and F_1 hybrids chilies, winter 2010

Variety/Lines	Plant height (cm)	Plant width (cm)	Fruit weight per plant (kg/plant)
General combining ability	@ (A)		
Lines			
CA1445	-0.06	2.63	0.023
CA1449	5.83 **	-0.04	-0.132 **
CA1450	-5.77 *	-2.59	0.110 **
Testers			
CA683	5.20 *	-1.56	-0.094 **
CA1447	-4.36 *	2.04	0.085 **
CA1448	-0.84	-0.48	0.008
Specific combining ability			
CA1445 × CA683	3.58	1.85	0.081
CA1445 × CA1447	1.80	-0.74	-0.107 *
CA1445 × CA1448	-5.38	-1.11	0.026
CA1449 × CA683	-2.75	6.07	0.131 *
CA1449 × CA1447	-4.87	-0.63	0.108 *
CA1449 × CA1448	7.62 *	-5.44	-0.239 **
CA1450 × CA683	-0.83	-7.93	-0.213 **
CA1450 × CA1447	3.06	1.37	-0.001
CA1450 × CA1448	-2.23	6.56	0.214 **

^{*, **} significant difference at P<0.05 and P<0.01 levels, respectively.

Table 8 General combining abilities and specific combining abilities in horticultural characteristics and physico-chemical properties of male parents, female parents and F_1 hybrids chilies, winter 2010 (continued)

Variety/Lines	Yield (t/rai)	Number of fruits per plant	Fruit weight (g)
General combining ability			3001
Lines			
CA1445	0.144	7.31 **	-6.41 **
CA1449	-0.846 **	-4.39 **	-1.61
CA1450	0.702 **	-2.92 **	8.02 **
Testers			
CA683	-0.599 **	2.05 *	-6.50 **
CA1447	0.545 **	0.26	7.28 **
CA1448	0.054	-2.32 *	-0.79
Specific combining ability			
CA1445 × CA683	0.519	7.29 **	-1.48
CA1445 × CA1447	-0.682 *	-4.42 *	-3.26 *
CA1445 × CA1448	0.163	-2.87	4.74 **
CA1449 × CA683	0.843 *	2.03	9.69 **
CA1449 × CA1447	0.688 *	1.25	2.71
CA1449 × CA1448	-1.153 **	-3.27	-12.39 **
CA1450 × CA683	-1.362 **	-9.32 **	-8.20 **
CA1450 × CA1447	-0.006	3.17	0.55
CA1450 × CA1448	1.368 **	6.15 **	7.65 **

^{*, **} significant difference at P<0.05 and P<0.01 levels, respectively.

Table 8 General combining abilities and specific combining abilities in horticultural characteristics and physico-chemical properties of male parents, female parents and F_1 hybrids chilies, winter 2010 (continued)

Variety/Lines	Fruit width (cm)	Fruit length (cm)	Pericarp thickness (mm)	
General combining ability			000	
Lines				
CA1445	-0.308 **	0.497	-0.022 *	
CA1449	-0.005	-0.326	-0.022 *	
CA1450	0.313 **	-0.171	0.044 **	
Testers				
CA683	-0.210 **	-1.136 **	-0.019	
CA1447	0.256 **	1.054 **	0.019	
CA1448	-0.046	0.081	0.000	
Specific combining ability				
CA1445 × CA683	-0.026	-1.316 **	0.012	
CA1445 × CA1447	-0.136	-0.216	-0.026	
CA1445 × CA1448	0.163	1.531 **	0.013	
CA1449 × CA683	0.234 **	3.360 **	0.042 *	
CA1449 × CA1447	0.224 **	-0.310	0.011	
CA1449 × CA1448	-0.457 **	-3.050 **	-0.053 **	
CA1450 × CA683	-0.207 *	-2.044 **	-0.054 **	
CA1450 × CA1447	-0.087	0.526	0.014	
CA1450 × CA1448	0.295 **	1.519 **	0.040 *	

^{*, **} significant difference at P<0.05 and P<0.01 levels, respectively.

Table 8 General combining abilities and specific combining abilities in horticultural characteristics and physico-chemical properties of male parents, female parents and F_1 hybrids chilies, winter 2010 (continued)

Variety/Lines	L		Hue angle	Total soluble solids (%)	Moisture (%)
General combining abi	lity				2111
Lines					
CA1445	-0.10	0.92	0.04	0.09	-0.81 **
CA1449	2.81 **	1.69 *	-1.33 *	0.62 **	-0.24
CA1450	-2.72 **	-2.61 **	1.29 *	-0.71 **	1.04 **
Testers					
CA683	-1.96 **	-1.59	1.16 *	0.09	-2.14 **
CA1447	3.84 **	2.41 **	-1.99 **	-0.12	1.93 **
CA1448	-1.88 **	-0.82	0.83	0.03	0.21
Specific combining abi	lity				
CA1445 × CA683	-3.04 **	-3.25 *	2.44 **	0.42 *	-0.30
CA1445 × CA1447	0.69	2.08	-0.36	-0.07	-0.56
CA1445 × CA1448	2.36 *	1.18	-2.08 *	-0.36	0.86
CA1449 × CA683	2.94 *	2.96 *	-2.39 **	0.06	2.16 **
CA1449 × CA1447	1.86	-0.11	-0.91	0.43 *	0.30
CA1449 × CA1448	-4.80 **	-2.85	3.30 **	-0.49 **	-2.46 **
CA1450 × CA683	0.10	0.29	-0.05	-0.48 *	-1.87 **
CA1450 × CA1447	-2.55 *	-1.97	1.27	-0.37 *	0.26
CA1450 × CA1448	2.44 *	1.68	-1.22	0.84 **	1.60 **

^{*, **} significant difference at P<0.05 and P<0.01 levels, respectively.

Table 8 General combining abilities and specific combining abilities in horticultural characteristics and physico-chemical properties of male parents, female parents and F₁ hybrids chilies, winter 2010 (continued)

Variety/Lines	Vitamin C (mg/100 g fresh weight)	Chlorophyll a ¹ (mg/100 g fresh weight)	Chlorophyll b ¹ (mg/100 g fresh weight)	Total chlorophyll 1 (mg/100 g fresh weight)	Capsaicin (Scoville unit)
General combining a	bility			7	911
Lines					
CA1445	-0.57 **	0.131 **	0.098 **	0.103 **	-641.11 **
CA1449	-0.57 **	-0.105 **	-0.290 **	-0.188 **	-684.44 **
CA1450	1.14 **	-0.026	0.192 **	0.084 **	1325.56 **
Testers					
CA683	-0.14	0.086 **	0.024	0.060 **	-927.78 **
CA1447	0.29	-0.031 *	0.084 **	0.027	862.22 **
CA1448	-0.14	-0.055 **	-0.109 **	-0.087 **	65.56
Specific comb	bining ability				
CA1445 × CA683	0.14	0.139 **	0.183 **	0.156 **	1727.78 **
CA1445 × CA1447	-0.29	0.207 **	0.237 **	0.222 **	-1042.22 **
CA1445 × CA1448	0.14	-0.346 **	-0.420 **	-0.378 **	-685.56 **
CA1449 × CA683	0.14	-0.259 **	-0.312 **	-0.267 **	381.11 **
CA1449 × CA1447	-0.29	-0.127 **	-0.152 **	-0.153 **	-728.89 **
CA1449 × CA1448	0.14	0.386 **	0.464 **	0.420 **	347.78 **
$CA1450 \times CA683$	-0.29	0.119 **	0.129 **	0.111 **	-2108.89 **
CA1450 × CA1447	0.57	-0.080 **	-0.084 **	-0.069 *	1771.11 **
$CA1450 \times CA1448$	-0.29	-0.040	-0.044	-0.042	337.78 **

Transformed data by log(x)+4.
*, ** significant difference at P<0.05 and P<0.01 levels, respectively.

2.4 Records of horticultural characteristics following IBPGR descriptor (1995)

Horticultural characteristics

Observations on horticultural characteristics of the F_1 hybrids, female parents, male parents and commercial varieties of green chili were recorded according to IBPGR (1995) on plant development, inflorescence, fruit and performances; plant height, plant canopy width, plant growth habit, days to 50% flowering, flower position, corolla color, fruit weight, fruit length and fruit width fruit wall or pericarp thickness (Table 9).

Table 9 Horticultural characteristics of male parents, female parents, F_1 hybrid and commercial of chilies, winter $2010\,$

Descriptors for Capsicum (1995)	CA683	CA1447	CA1448
1. Plant descriptors	•	- 	
1.1 Stem color	Green	Green	Green
1.2 Nodal anthocyanin	Purple	Purple	Purple
1.3 Stem shape	Cylindrical	Cylindrical	Cylindrical
1.4 Stem pubescence	Sparse	Sparse	Sparse
1.5 Plant growth habit	Erect	Compact	Compact
1.6 Branching habit	Sparse	Sparse	Intermediate
1.7 Leaf density	Dense	Intermediate	Intermediate
1.8 Leaf color	Green	Green	Green
1.9 Leaf shape	Lanceolate	Lanceolate	Lanceolate
1.10 Lamina margin	Entire	Entire	Entire
1.11 Leaf pubescence	Sparse	Sparse	Sparse
1.12 Plant height (cm)	80.89±6.74	62.11±5.40	58.56±2.22
1.13 Plant canopy width (cm)	72.22±7.19	76.11±7.24	66.89±1.02
1.14 Stem length (cm)	27.11±2.27	24.89±0.19	23.11±1.35
1.15 Mature leaf length (cm)	20.52±3.62	18.26±1.18	16.97±1.52
1.16 Mature leaf width (cm)	5.36±0.95	6.87±0.59	6.21±0.66
2. Inflorescence descriptors	3.30±0.73	0.07±0.57	0.21±0.00
2.1 Days to flowering	72	69	69
2.2 Flower position	Pendant	Pendant	Pendant
2.3 Corolla color	White	White	White
2.4 Corolla spot color	non	non	
2.5 Corolla shape	Rotate	Rotate	non Rotate
· ` -	Absent	Absent	Absent
2.6 Male sterility			
2.7 Calyx pigmentation	Absent Intermediate	Absent Intermediate	Absent Intermediate
2.8 Calyx margin	Absent	Present	Present
2.9 Calyx annular constriction	Absent	Present	Present
3. Fruit descriptors	1 1 22 6	A1 .	41.
3.1 Anthocyanin spots or strips	Absent	Absent	Absent Green
3.2 Fruit color at intermediate stage	Green	Green	
3.3 Fruit set	High	Intermediate	Intermediate
3.4 Fruit color at mature stage	Red	Red	Red
3.5 Fruit shape	Elongate	Elongate	Elongate
3.6 Fruit shape at pedicel attachment	Obtuse	Truncate	Obtuse
3.7 Neck at base of fruit	Absent	Present	Absent
3.8 Fruit shape at blossom end	Pointed	Pointed	Pointed
3.9 Fruit blossom end appendage	Absent)	Absent	Absent
3.10 Fruit cross-sectional corrugation		Intermediate	Slightly corrugated
3.11 Fruit surface	Smooth	Semiwrinkled	Semiwrinkled
3.12 Placenta length	>1/2 fruit length	>1/2 fruit length	>1/2 fruit length
3.13 Number of locules	2-3	2-3	2-3
3.14 Fruit length (cm)	14.20±0.30	18.92±0.28	19.26±0.67
3.15 Fruit width (cm)	2.00±0.08	3.16 ± 0.10	3.20±0.10
3.16 Fruit weight (g)	16.53 ± 2.70	47.50 ± 3.35	46.77 ± 2.10
3.17 Fruit pedicel length (cm)	5.92±0.04	5.40 ± 0.10	4.99 ± 0.20
3.18 Fruit wall thickness (mm)	0.19±0.01	0.26 ± 0.01	0.28±0.02
4. Seed descriptors			
4.1 Seed color	Straw	Straw	Straw
4.2 Seed surface	Smooth	Smooth	Smooth
4.3 1000-seed weight (g)	6.66	6.09	5.03
4.4 Number of seed per fruit	>50)	>50	>50

Table 9 Horticultural characteristics of male parents, female parents, F_1 hybrid and commercial of chilies, winter 2010 (continued)

Descriptors for Capsicum (1995)	CA1445	CA1449	CA1450	
1. Plant descriptors	•	' ' ' / /		
1.1 Stem color	Green	Green	Green	
1.2 Nodal anthocyanin	Purple	Green	Green	
1.3 Stem shape	Cylindrical	Cylindrical	Cylindrical	
1.4 Stem pubescence	Sparse	Sparse	Sparse	
1.5 Plant growth habit	Erect	Compact	Prostrate	
1.6 Branching habit	Intermediate	Sparse	Intermediate	
1.7 Leaf density	Intermediate	Intermediate	Intermediate	
1.8 Leaf color	Green	Green	Green	
1.9 Leaf shape	Lanceolate	Lanceolate	Lanceolate	
1.10 Lamina margin	Entire	Entire	Entire	
1.11 Leaf pubescence	Sparse	Sparse	Sparse	
1.12 Plant height (cm)	69.33±2.40	72.45±8.28	52.89±1.02	
1.13 Plant canopy width (cm)	79.78±5.09	74.33±8.45	76.22±7.07	
1.14 Stem length (cm)	23.78±1.02	19.33±1.86	21.33±1.45	
1.15 Mature leaf length (cm)	14.83±1.56	17.48±1.49	13.86±3.50	
1.16 Mature leaf width (cm)	5.40±0.40	6.48±1.10	5.48±1.13	
2. Inflorescence descriptors				
2.1 Days to flowering	71	72	69	
2.2 Flower position	Pendant	Pendant	Pendant	
2.3 Corolla color	White	White	White	
2.4 Corolla spot color	non	non	non	
2.5 Corolla shape	Rotate	Rotate	Rotate	
2.6 Male sterility	Absent	Absent	Absent	
2.7 Calyx pigmentation	Absent	Absent	Absent	
2.8 Calyx margin	Intermediate	Intermediate	Intermediate	
2.9 Calyx annular constriction	Present	Present	Present	
3. Fruit descriptors	resent	Tresent	Tresent	
3.1 Anthocyanin spots or strips	Absent	Absent	Absent	
3.2 Fruit color at intermediate stage	Green	Green	Green	
3.3 Fruit set	High	High	Intermediate	
3.4 Fruit color at mature stage	Red	Red	Red	
3.5 Fruit shape	Elongate	Elongate	Elongate	
3.6 Fruit shape at pedicel attachment	Truncate	Truncate	Truncate	
3.7 Neck at base of fruit	Present	Present	Present	
3.8 Fruit shape at blossom end	Pointed	Blunt	Pointed	
3.9 Fruit blossom end appendage	Absent	Absent	Absent	
3.10 Fruit cross-sectional corrugation	Slightly corrugated	Intermediate	Slightly corrugate	
3.11 Fruit surface	Semiwrinkled	Semiwrinkled	Semiwrinkled	
3.12 Placenta length	>1/2 fruit length	>1/2 fruit length	>1/2 fruit length	
3.13 Number of locules	_	2-3	2-3	
3.14 Fruit length (cm)	2-3 13.65±0.49			
<u> </u>		13.86±0.84	15.38±0.71	
3.15 Fruit width (cm)	2.12±0.06	3.05 ± 0.15	3.26±0.16	
3.16 Fruit weight (g)3.17 Fruit pedicel length (cm)	17.93±0.51	32.23±1.58	44.33±0.25	
	4.01±0.24	4.60 ± 0.12	5.34±0.64	
3.18 Fruit wall thickness (mm)	0.21±0.01	0.25 ± 0.01	0.29 ± 0.02	
4. Seed descriptors				
4.1 Seed color	Straw	Straw	Straw	
4.2 Seed surface	Smooth	Smooth	Smooth	
4.3 1000-seed weight (g)	4.76	7.22	5.48	
4.4 Number of seed per fruit	>50	>50	>50	

Table 9 Horticultural characteristics of male parents, female parents, F_1 hybrid and commercial of chilies, winter 2010 (continued)

Descriptors for Capsicum (1995)	CA1445 × CA683	CA1445 × CA1447	CA1448 × CA1448	
1. Plant descriptors				
1.1 Stem color	Green	Green	Green	
1.2 Nodal anthocyanin	Purple	Purple	Purple	
1.3 Stem shape	Cylindrical	Cylindrical	Cylindrical	
1.4 Stem pubescence	Sparse	Sparse	Sparse	
1.5 Plant growth habit	Erect	Compact	Compact	
1.6 Branching habit	Intermediate	Intermediate	Sparse	
1.7 Leaf density	Dense	Intermediate	Intermediate	
1.8 Leaf color	Green	Green	Green	
1.9 Leaf shape	Lanceolate	Lanceolate	Lanceolate	
1.10 Lamina margin	Entire	Entire	Entire	
1.11 Leaf pubescence	Sparse	Sparse	Sparse	
1.12 Plant height (cm)	74.89±8.92	63.56±4.55	59.89±2.50	
1.13 Plant canopy width (cm)	79.22±2.91	80.22±6.87	77.33±8.17	
1.14 Stem length (cm)	27.56±0.84	22.67±0.88	21.22±1.02	
1.15 Mature leaf length (cm)	17.44±1.50	17.24±1.23	13.55±0.88	
1.16 Mature leaf width (cm)	5.06±0.20	6.31±0.14	5.17±0.33	
. Inflorescence descriptors				
2.1 Days to flowering	72	69	69	
2.2 Flower position	Pendant	Pendant	Pendant	
2.3 Corolla color	White	White	White	
2.4 Corolla spot color	non	non	non	
2.5 Corolla shape	Rotate	Rotate	Rotate	
2.6 Male sterility	Absent	Absent	Absent	
2.7 Calyx pigmentation	Absent	Absent	Absent	
2.8 Calyx margin	Intermediate	Intermediate	Intermediate	
2.9 Calyx annular constriction	Absent	Present	Present	
Fruit descriptors	Hosent	Tresent	Tresent	
3.1 Anthocyanin spots or strips	Absent	Absent	Absent	
3.2 Fruit color at intermediate stage	Green	Green	Green	
3.3 Fruit set	High	High	High	
3.4 Fruit color at mature stage	Red	Red	Red	
3.5 Fruit shape	Elongate	Elongate	Elongate	
3.6 Fruit shape at pedicel attachment	Obtuse	Truncate	Obtuse	
3.7 Neck at base of fruit	Absent	Present	Absent	
3.8 Fruit shape at blossom end	Pointed	Pointed	Pointed	
3.9 Fruit blossom end appendage	Absent	Absent		
		Slightly corrugated	Absent	
3.10 Fruit cross-sectional corrugation	Slightly corrugated Smooth		Slightly corrugate Semiwrinkled	
3.11 Fruit surface		Semiwrinkled		
3.12 Placenta length	>1/2 fruit length	>1/2 fruit length	>1/2 fruit length	
3.13 Number of locules	2-3	2-3	2-3	
3.14 Fruit length (cm)	15.84±0.73	19.13±0.44	19.91±1.15	
3.15 Fruit width (cm)	2.16±0.13	2.52±0.08	2.52±0.07	
3.16 Fruit weight (g)	20.93 ± 2.60	32.93±1.76	32.87±3.05	
3.17 Fruit pedicel length (cm)	5.35±0.12	4.79±0.25	4.76±0.29	
3.18 Fruit wall thickness (mm)	0.22±0.02	0.22 ± 0.01	0.23±0.00	
. Seed descriptors		IVICUI		
4.1 Seed color	Straw	Straw	Straw	
4.2 Seed surface	Smooth	Smooth	Smooth	
4.3 1000-seed weight (g)	4.82	5.51	5.19	
4.4 Number of seed per fruit	>50	>50	>50	

Table 9 Horticultural characteristics of male parents, female parents, F_1 hybrid and commercial of chilies, winter 2010 (continued)

Descriptors for Capsicum (1995)	CA1449 × CA683	CA1449 × CA1447	CA1449 × CA1448	
1. Plant descriptors		7/		
1.1 Stem color	Green	Green	Green	
1.2 Nodal anthocyanin	Purple	Purple	Purple	
1.3 Stem shape	Cylindrical	Cylindrical	Cylindrical	
1.4 Stem pubescence	Sparse	Sparse	Sparse	
1.5 Plant growth habit	Erect	Compact	Erect	
1.6 Branching habit	Sparse	Sparse	Intermediate	
1.7 Leaf density	Dense	Intermediate	Dense	
1.8 Leaf color	Green	Green	Green	
1.9 Leaf shape	Lanceolate	Lanceolate	Lanceolate	
1.10 Lamina margin	Entire	Entire	Entire	
1.11 Leaf pubescence	Sparse	Sparse	Sparse	
1.12 Plant height (cm)	74.45±11.42	62.78±3.86	78.78±10.42	
1.13 Plant canopy width (cm)	80.78±10.31	77.67±6.23	70.33±4.98	
1.14 Stem length (cm)	24.34±1.53	23.78±3.02	19.44±2.14	
1.15 Mature leaf length (cm)	19.15±1.02	19.98±0.51	18.49±5.27	
1.16 Mature leaf width (cm)	5.65±0.77	7.42±0.43	5.67±1.07	
. Inflorescence descriptors				
2.1 Days to flowering	72	69	72	
2.2 Flower position	Pendant	Pendant	Pendant	
2.3 Corolla color	White	White	White	
2.4 Corolla spot color	non	non	non	
2.5 Corolla shape	Rotate	Rotate	Rotate	
2.6 Male sterility	Absent	Absent	Absent	
2.7 Calyx pigmentation	Absent	Absent	Absent	
2.8 Calyx margin	Intermediate	Intermediate	Intermediate	
2.9 Calyx annular constriction	Absent	Present	Present	
. Fruit descriptors		Tresent	110,000	
3.1 Anthocyanin spots or strips	Absent	Absent	Absent	
3.2 Fruit color at intermediate stage	Green	Green	Green	
3.3 Fruit set	Intermediate	Intermediate	Intermediate	
3.4 Fruit color at mature stage	Red	Red	Red	
3.5 Fruit shape	Elongate	Elongate	Elongate	
3.6 Fruit shape at pedicel attachment	Truncate	Truncate	Truncate	
3.7 Neck at base of fruit	Present	Present	Present	
3.8 Fruit shape at blossom end	Pointed	Pointed	Pointed	
3.9 Fruit blossom end appendage	Absent	Absent	Absent	
3.10 Fruit cross-sectional corrugation	Slightly corrugated	Intermediate	Slightly corrugate	
3.11 Fruit surface	Semiwrinkled	Smooth	Semiwrinkled	
3.12 Placenta length	>1/2 fruit length	>1/2 fruit length	>1/2 fruit length	
3.13 Number of locules	2-3	2-3	2-3	
3.14 Fruit length (cm)	19.70±1.02	18.22±0.91	14.50±1.17	
3.15 Fruit width (cm)	2.73±0.21	3.18±0.09	2.20±0.07	
3.16 Fruit width (cm) 3.16 Fruit weight (g)	36.90±2.19	43.70±3.73		
3.17 Fruit weight (g) 3.17 Fruit pedicel length (cm)			20.53±1.80 4.12±0.15	
	5.37±0.53 0.24±0.02	5.35±0.21	4.12±0.13 0.20±0.01	
3.18 Fruit wall thickness (mm)	0.24±0.02	0.24 ± 0.02	0.20±0.01	
. Seed descriptors			C+	
4.1 Seed color	Straw	Straw	Straw	
4.2 Seed surface	Smooth	Smooth	Smooth	
4.3 1000-seed weight (g)	5.67	5.37	6.46	
4.4 Number of seed per fruit	>50	>50	>50	

Table 9 Horticultural characteristics of male parents, female parents, F_1 hybrid and commercial of chilies, winter 2010 (continued)

Descriptors for Capsicum (1995)	CA1450 × CA683	CA1450 × CA1447	CA1450 × CA144	
1. Plant descriptors	•	7/		
1.1 Stem color	Green	Green	Green	
1.2 Nodal anthocyanin	Purple	Green	Purple	
1.3 Stem shape	Cylindrical	Cylindrical	Cylindrical	
1.4 Stem pubescence	Sparse	Sparse	Sparse	
1.5 Plant growth habit	Erect	Compact	Compact	
1.6 Branching habit	Sparse	Intermediate	Sparse	
1.7 Leaf density	Intermediate	Intermediate	Intermediate	
1.8 Leaf color	Green	Green	Green	
1.9 Leaf shape	Lanceolate	Lanceolate	Lanceolate	
1.10 Lamina margin	Entire	Entire	Entire	
1.11 Leaf pubescence	Sparse	Sparse	Sparse	
1.12 Plant height (cm)	64.78±6.36	59.11±4.43	57.33±3.76	
1.13 Plant canopy width (cm)	64.22±11.22	77.11±7.03	79.78±6.52	
1.14 Stem length (cm)	23.67±0.67	23.00±0.58	23.33±0.88	
1.15 Mature leaf length (cm)	15.08±2.79	17.30±1.22	15.05±0.30	
1.16 Mature leaf width (cm)	4.52±0.68	6.41±0.73	5.63±0.24	
. Inflorescence descriptors				
2.1 Days to flowering	72	69	70	
2.2 Flower position	Pendant	Pendant	Intermediate	
2.3 Corolla color	White	White	White	
2.4 Corolla spot color	non	non	non	
2.5 Corolla shape	Rotate	Rotate	Rotate	
2.6 Male sterility	Absent	Absent	Absent	
2.7 Calyx pigmentation	Absent	Absent	Absent	
2.8 Calyx margin	Intermediate	Intermediate	Intermediate	
2.9 Calyx annular constriction	Absent	Present	Present	
5. Fruit descriptors		Tresent	110,000	
3.1 Anthocyanin spots or strips	Absent	Absent	Absent	
3.2 Fruit color at intermediate stage	Green	Green	Green	
3.3 Fruit set	Intermediate	High	High	
3.4 Fruit color at mature stage	Red	Red	Red	
3.5 Fruit shape	Elongate	Elongate	Elongate	
3.6 Fruit shape at pedicel attachment	Obtuse	Truncate	Truncate	
3.7 Neck at base of fruit	Present	Present	Present	
3.8 Fruit shape at blossom end	Pointed	Pointed	Pointed	
3.9 Fruit blossom end appendage	Absent	Absent	Absent	
3.10 Fruit cross-sectional corrugation	Slightly corrugated	Slightly corrugated	Slightly corrugate	
3.11 Fruit surface	Semiwrinkled	Semiwrinkled	Semiwrinkled	
3.12 Placenta length	>1/2 fruit length	>1/2 fruit length	>1/2 fruit length	
3.13 Number of locules	2-3	2-3	2-3	
3.14 Fruit length (cm)	14.45±0.09	19.21±1.18	19.23±0.42	
3.15 Fruit width (cm)	2.60±0.13	3.19±0.25		
3.16 Fruit weight (g)	28.63±2.58	51.17±1.10	3.27±0.18 50.20±5.31	
3.17 Fruit weight (g) 3.17 Fruit pedicel length (cm)	5.59±0.32	5.69±0.34	5.67±0.14	
			0.29±0.01	
3.18 Fruit wall thickness (mm)	0.22±0.01	0.28 ± 0.03	0.29±0.01	
I. Seed descriptors			C+	
4.1 Seed color	Straw	Straw	Straw	
4.2 Seed surface	Smooth	Smooth	Smooth	
4.3 1000-seed weight (g)	5.87	5.49	5.36	
4.4 Number of seed per fruit	>50	>50	>50	

Table 9 Horticultural characteristics of male parents, female parents, F_1 hybrid and commercial of chilies, winter 2010 (continued)

Descriptors for Capsicum (1995)	Jakkrapat	JomThong 2	YokSiam	
1. Plant descriptors	•	7 7 /		
1.1 Stem color	Green	Green	Green	
1.2 Nodal anthocyanin	Purple	Green	Purple	
1.3 Stem shape	Cylindrical	Cylindrical	Cylindrical	
1.4 Stem pubescence	Sparse	Intermediate	Intermediate	
1.5 Plant growth habit	Erect	Erect	Erect	
1.6 Branching habit	Intermediate	Intermediate	Intermediate	
1.7 Leaf density	Intermediate	Dense	Dense	
1.8 Leaf color	Green	Green	Green	
1.9 Leaf shape	Lanceolate	Lanceolate	Lanceolate	
1.10 Lamina margin	Entire	Entire	Entire	
1.11 Leaf pubescence	Sparse	Sparse	Sparse	
1.12 Plant height (cm)	76.00±5.81	81.78±7.31	74.22±2.83	
1.13 Plant canopy width (cm)	73.67±9.70	78.78±5.01	76.22±6.68	
1.14 Stem length (cm)	22.44±0.51	20.56±1.71	24.89±1.35	
1.15 Mature leaf length (cm)	15.85±2.26	15.71±0.45	15.09±0.88	
1.16 Mature leaf width (cm)	4.94±0.48	5.76±0.49	4.94±0.17	
2. Inflorescence descriptors				
2.1 Days to flowering	72	71	72	
2.2 Flower position	Pendant	Pendant	Pendant	
2.3 Corolla color	White	White	White	
2.4 Corolla spot color	non	non	non	
2.5 Corolla shape	Rotate	Rotate	Rotate	
2.6 Male sterility	Absent	Absent	Absent	
2.7 Calyx pigmentation	Absent	Absent	Absent	
2.8 Calyx margin	Intermediate	Intermediate	Intermediate	
2.9 Calyx annular constriction	Present	Absent	Present	
3. Fruit descriptors	Tiesent	Absciit	Tresent	
	Absent	Absent	Absent	
3.1 Anthocyanin spots or strips	Green	Green	Green	
3.2 Fruit color at intermediate stage3.3 Fruit set				
	High	High	High	
3.4 Fruit color at mature stage	Red	Red	Red	
3.5 Fruit shape	Elongate	Elongate	Elongate	
3.6 Fruit shape at pedicel attachment	Obtuse	Obtuse	Obtuse	
3.7 Neck at base of fruit	Present	Present	Present	
3.8 Fruit shape at blossom end	Point	Point	Point	
3.9 Fruit blossom end appendage	Absent	Absent	Absent	
3.10 Fruit cross-sectional corrugation	Slightly corrugated	Slightly corrugated	Slightly corrugated	
3.11 Fruit surface	Semiwrinkled	Semiwrinkled	Smooth	
3.12 Placenta length	>1/2 fruit length	>1/2 fruit length	>1/2 fruit length	
3.13 Number of locules	2-3	2-3	2-3	
3.14 Fruit length (cm)	18.74±0.56	17.79±0.53	17.09±0.24	
3.15 Fruit width (cm)	2.15±0.04	2.20±0.06	2.07±0.02	
3.16 Fruit weight (g)	30.23 ± 0.85	27.67 ± 2.01	24.83 ± 0.35	
3.17 Fruit pedicel length (cm)	6.38±0.57	5.40 ± 0.09	6.24±0.19	
3.18 Fruit wall thickness (mm)	0.23±0.01	0.24 ± 0.01	0.19±0.01	
4. Seed descriptors				
4.1 Seed color	Straw	Straw	Straw	
4.2 Seed surface	Smooth	Smooth	Smooth	
4.3 1000-seed weight (g)	4.63	6.08	6.03	
4.4 Number of seed per fruit	>50	>50	>50	

2.5 Postharvest quality assessment of fresh chili fruits

Physico-chemical properties of chili fruits

Color of the nine F₁ hybrid chili fruits at green maturity but not yet fully ripen stage varied in L values indicative of bright-dark shades of fruit skin in the 46.38 -59.99 range, with differences at statistically significant level (Table 10). The F₁ hybrid CA1445 × CA683 had the minimum L value thus the darkest fruit skin while the F_1 hybrid CA1449 × CA1447 had the maximum L value therefore the brightest skin color. The F₁ generation appeared to have L values higher than those of their female parents except the case of CA1449, higher than those of the commercial varieties except YokSiam and higher than those of all male parents. By comparison, the two F_1 hybrids namely CA1445 × CA1447 and CA1449 × CA683 had the second highest L values with the differences from those of the other F₁ hybrids at statistically significant level, but not significantly different when compared with color skin of CA1445 and CA1449 female parents, CA1447 male parent and YokSiam commercial variety. It can be concluded that the three F_1 hybrids CA1449 × CA1447, CA1445 × CA1447 and CA1449 × CA683 had skin color brighter than that of any other remaining F₁ hybrids as indicated by the former three's relatively much higher L value (Table 10).

The nine F_1 hybrids had Chroma values indicative of skin color in 41.10 - 50.43 range and the differences were statistically significant. The F_1 hybrid CA1445 \times CA683 had the minimum while the F_1 hybrid CA1445 \times CA1447 had the maximum Chroma value. The F_1 hybrid having the darkest skin color however it was not statistically significantly different from the three other F_1 hybrids namely CA1449 \times CA1447, CA1449 \times CA683 and CA1445 \times CA1448, most of the female parents including CA1445 and CA1449, most of the male parents including CA1447 and CA1448 and YokSiam. Meanwhile the remaining F_1 hybrids had Chroma values not significantly different from those of their female parents, CA1449 and CA1450, most of the male parents, CA683 and CA1448 and Jakkrapat.

The nine F_1 hybrids had Hue angle values of skin color in the 122.68 - 130.56 degree range with differences at statistically significant level (Table 10). The F_1 hybrid CA1449 \times CA1447 exhibited the minimum Hue angle value while the F_1

hybrid CA1445 \times CA683 showed the maximum Hue angle value which was however not statistically significantly different from those values of the F_1 hybrids CA1449 \times CA1448 and CA1450 \times CA683 but which was different statistically from the Hue angle values of all female parents, most of the male parents including CA1447 and CA1448, and YokSiam commercial variety. The majority of the remaining F_1 hybrids appeared to be not different at statistically significant level from most of the female parents, most of the male parents as well as Jakkrapat and YokSiam commercial varieties in terms of Hue angle value.

The foremost quality traits of green chili are the moisture content and peppery hotness degree. Food venders or manufacturers that process the green chili dip are generally careful to choose chili fruits having low moisture content to ensure the dip not to be too watery to satisfy consumers and having moderate degree of hotness.

The nine F_1 hybrids had moisture content in fruits in 83.25 - 89.72 % range, with differences at statistically significant level (Table 11). The F_1 hybrid CA1445 x CA683 contained the minimum moisture thus become most suitable for making green chili dip while the F_1 hybrid CA1450 x CA1447 had the highest percentage of moisture but not statistically significantly different from those of the F_1 hybrid CA1449 x CA1447. The three F_1 hybrids having high moisture content, however, were statistically significantly different from most of the female parents, some of the male parents, and all of the commercial varieties in this horticultural characteristics. Most of the F_1 hybrids appeared to contain low percentage of moisture in fruits comparable to those of commercial varieties.

The nine F_1 hybrids had total soluble solids in fruit flesh in the range of 4.07 - 6.2 % with differences at statistically significant level (Table 11). The F_1 hybrid $CA1450 \times CA1447$ contained the lowest percentage of total soluble solids in contrast to the F_1 hybrid $CA1449 \times CA1447$ which had the highest total soluble solids content but which was not different statistically significantly from the F_1 hybrids $CA1449 \times CA683$ and $CA1445 \times CA683$ in this horticultural characteristics. The latter three F_1 hybrids were found to contain higher percentage of total soluble solids at statistically significant level of differences in comparison with most female parents namely the CA1449 and CA1450 varieties, the CA683 male parent, and the commercial varieties. The high percentage of total soluble solids in fruit flesh is the desirable quality trait of

green chili reflecting the availability of sugar as well as other solids. The other F_1 hybrids not discussed above all contained total soluble solids at percentages not different at statistically significant level from those of the commercial varieties.

All nine F_1 hybrids under study had vitamin C content in fruit flesh in the range of 5.13 - 7.69 mg per 100 gram fresh fruit weight with statistically significant variation (Table 11). The F_1 hybrid CA1445 × CA683 contained the lowest vitamin C content whereas the F_1 hybrid CA1450 × CA1447 had the highest content of vitamin C which was higher, at statistically significant level of difference, than any other F_1 hybrids as well as its female parent, its male parent and all commercial varieties. Next to the F_1 hybrid CA1450 × CA1447, the F_1 hybrid having high vitamin C content were F_1 hybrids CA1450 × CA683 and CA1450 × CA1448 but they were not statistically significantly different in this characteristics from such female parent as CA1450, such male parents as CA1447 and CA1448, and most commercial varieties including YokSiam and JomThong 2. The other F_1 hybrids generally had vitamin C content rather low but not statistically significantly different from Jakkrapat commercial variety but lower at statistically significant level in comparison with Yok Siam and JomThong 2 varieties.

Capsaicin content of the nine F_1 hybrids varied in the 50 - 5,720 Scoville unit range with differences at statistically significant level (Table 11). The F_1 hybrid CA1450 \times CA683 had the lowest while the F_1 hybrid CA1450 \times CA1447 had the highest capsaicin content. The degree of hotness of the latter variety was higher at statistically significant level than those of all other F_1 hybrids, the male parents, the female parents, and commercial varieties. The next hottest F_1 hybrid, CA1450 \times CA1448, contained capsaicin content in fruit flesh at the extent not statistically significantly different from the CA683 male parent but its capsaicin content was higher than other male parents, all female parents, and the commercial varieties at statistically significant level. The other F_1 hybrids not yet discussed appeared to have capsaicin content at the degree comparable to those of YokSiam and JomThong 2 commercial varieties.

Color of chili fruit is important for making green chili dip. It should not be too dark nor too light in green shades. A survey on the preference of 52 green chili dip processors (Apichartsrangkoon, 2006) revealed the respondents' opinion that the

light shades of green chili tended to make the dip look not attractive while the overly dark shades was also not desirable for consumers. The L, Chroma and Hue angle values, contents of chlorophyll a, b, and total chlorophyll are all indicative of the colors of chili fruit skin and flesh. From the color criterion, the male parents, the commercial varieties and the F_1 hybrids involved in the present study are suitable for making green chili dip while the female parent varieties and the maintainer varieties are generally not used for the purpose.

Chlorophyll a contents of the nine F_1 hybrids ranged from 0.0020 - 0.0197 mg per 100 gram fresh fruit weight and were different at statistically significant level (Table 12). The F_1 hybrid CA1449 × CA683 had the lowest chlorophyll a content while the F_1 hybrid CA1445 × CA683 contained the highest level. However, this highest estimate was not statistically significantly different from those of F_1 hybrids CA1445 × CA1447 and CA1449 × CA1448, as well as the two commercial varieties namely JomThong 2 and Jakkrapat. These three high chlorophyll a content F_1 hybrids nevertheless were superior to the female parents, most of the male parents, and the YokSiam variety, at statistically significant level. Most of the remaining F_1 hybrids were found to have chlorophyll a content at levels not statistically significant different from those of the female parents, most of the male parents, and YokSiam variety.

Chlorophyll b contents appeared to vary at statistically significant level among various varieties whether F_1 hybrids, the female parents, the male parents or commercial ones (Table 12). Those of the nine F_1 hybrids varied in the range of 0.0007 - 0.0200 mg per 100 gram fresh fruit weight (Table 12). The F_1 hybrid CA1449 × CA683 contained the lowest chlorophyll b content while the F_1 hybrid CA1445 × CA1447 contained the highest but was not statistically significantly different from the other two F_1 hybrids' levels: CA1450 × CA683 and CA1445 × CA683; however, higher with the differences at statistically significant level compared with the female parents, the male parents, and all commercial varieties. The remaining F_1 hybrids had chlorophyll b content at levels comparable to those of the female parents, the male parents, and the commercial varieties.

The total chlorophyll content of various F_1 hybrids ranged from 0.0087 - 0.0390 mg per 100 gram fresh fruit weight which varied at statistically significantly different level. The F_1 hybrid CA1445 \times CA1448 contained the least total

chlorophyll content. The maximum total chlorophyll content was found in the F_1 hybrid CA1445 × CA1447 but the level was not different statistically significant from that of F_1 hybrid CA1445 × CA683. These two hybrids had total chlorophyll content far higher, at statistically significantly different level, than most of the other F_1 hybrids, the female parents, the male parents and all of the commercial varieties. Meanwhile, most of the other F_1 hybrids contained total chlorophyll lower than JomThong 2 and Jakkrapat commercial varieties when assessed the differences at statistically significant level.

Table 10 Color of skin fruit chili of F_1 hybrids, male parents, female parents and commercial varieties, winter 2010

Variety/Cultivar	HIM	Chroma	Hue
F ₁ Hybrid		Z//s	
CA1445 × CA683	46.38 gh	41.10 c	130.56 a
CA1445 × CA1447	55.91 bc	50.43 a	124.60 efg
CA1445 × CA1448	51.86 de	46.29 ab	125.70 def
CA1449 × CA683	55.27 c	48.10 a	124.35 fg
CA1449 × CA1447	59.99 a	49.02 a	122.68 g
CA1449 × CA1448	47.61 fgh	43.04 bc	129.71 abc
CA1450 × CA683	46.91 fgh	41.12 c	129.31 abc
CA1450 × CA1447	50.06 ef	42.86 bc	127.47 cd
CA1450 × CA1448	49.32 efg	43.27 bc	127.81 bcd
Male Parent			
CA683	48.05 fgh	42.75 bc	130.41 ab
CA1447	53.54 cd	48.26 a	125.49 def
CA1448	51.68 de	46.30 ab	126.40 def
Female Parent			
CA1445	53.83 cd	49.48 a	125.99 def
CA1449	58.82 ab	46.44 ab	122.65 g
CA1449 CA1450	49.99 ef	42.93 bc	127.13 cde
Commercial			
Jakkrapat	47.75 fgh	42.15 bc	129.60 abc
JomThong 2	44.62 h	40.30 c	130.70 a
YokSiam	56.83 abc	50.71 a	126.09 def
C.V. (%)	3.65	5.12	1.12

¹⁷ Means within column with different letters differ significantly at P < 0.05 according to DMRT.

Table 11 Fruit physico-chemical properties of F₁ hybrids, male parents, female parents and commercial varieties, winter 2010

Variety/Cultivar	Total soluble solids	Moisture (%)	Vitamin C	Capsaicin (Scoville unit)
F ₁ Hybrid	- 1		76	
CA1445 × CA683	5.87 bc	83.25 h	5.13 c	1920e
CA1445 × CA1447	5.17 de	87.05 def	5.13 c	940 g
CA1445 × CA1448	5.03 def	86.75 ef	5.13 c	500h
CA1449 × CA683	6.03 b	86.28 f	5.13 c	530h
CA1449 × CA1447	6.20 b	88.47 a-d	5.13 c	1210g
CA1449 × CA1448	5.43 cd	84.00 gh	5.13 c	1490 f
CA1450 × CA683	4.17 h	83.53 gh	6.41 b	50 i
CA1450 × CA1447	4.07 h	89.72 a	7.69 a	5720a
CA1450 × CA1448	5.43 cd	89.34 ab	6.41 b	3490b
Male Parent				
CA683	4.53 fgh	84.80 g	3.85 d	3530b
CA1447	6.93 a	89.37 ab	6.41 b	1700ef
CA1448	6.23 b	89.02 abc	6.41 b	190i
Female Parent				
CA1445	6.13 b	83.50gh	5.13 c	260 hi
CA1449	5.17 de	86.58ef	5.13 c	2750c
CA1450	4.57 fgh	88.95 abc	6.41 b	2370 d
Commercial				
Jakkrapat	4.73 efg	87.90b-e	5.13 c	2610cd
JomThong 2	4.83 ef	87.48 def	6.41 b	960g
YokSiam	4.30 gh	87.58c-f	6.41 b	1700ef
C.V. (%)	5.38	0.92	8.56	8.89

Table 12 Chlorophyll content of F_1 hybrids, male parents, female parents and commercial varieties, winter $2010\,$

Variety/Cultivar	Chlorophyll a (mg/100 g fresh weight)	Chlorophyll b (mg/100 g fresh weight)	Total chlorophyll (mg/100 g fresh weight)
F ₁ Hybrid			000
CA1445 × CA683	0.0197 a	0.0183 a	0.0347 ab
CA1445 × CA1447	0.0190 a	0.0200 a	0.0390 a
CA1445 × CA1448	0.0047 de	0.0007 c	0.0087 i
CA1449 × CA683	0.0020e	0.0007 c	0.0093 hi
CA1449 × CA1447	0.0047 de	0.0013 c	0.0093 hi
CA1449 × CA1448	0.0147 ab	0.0097b	0.0210 d
CA1450 × CA683	0.0113 bc	0.0193 a	0.0307 bc
CA1450 × CA1447	0.0083 cd	0.0107b	0.0190 de
CA1450 × CA1448	0.0090 cd	0.0093b	0.0150ef
Male Parent			
CA683	0.0003 e	0.0003 c	0.0007j
CA1447	0.0003 e	0.0000c	0.0003j
CA1448	0.0113 bc	0.0097b	0.0210 d
Female Parent			
CA1445	0.0093 cd	0.0083b	0.0143 efg
CA1449	0.0083 cd	0.0013 c	0.0097 ghi
CA1450	0.0113 bc	0.0090b	0.0203 d
Commercial			
Jakkrapat	0.0193 a	0.0097b	0.0290 c
JomThong 2	0.0193 a	0.0100b	0.0293 c
YokSiam	0.0093 cd	0.0013 c	0.0140 fgh
C.V. (%)	2.47	2.64	2.16

 $^{^{\}mathrm{T}}$ Means within column with different letters differ significantly at P < 0.05 according to DMRT.