TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT (ENGLISH)	iv
ABSTRACT (THAI)	vi
LIST OF TABLES	xi
LIST OF FIGURES	xii
CHAPTER 1 INTRODUCTION AND OBJECTIVE	ZIR
1.1 Introduction	1
1.2 Objectives	2
CHAPTER 2 THEORY AND LITERATURE SURVEY	4
2.1 Composite Materials	4
2.2 Matrix Phase: Thermoset Resin	6
2.3 Reinforcement Phase	8
2.3.1 Carbon Nanotubes (CNTs)	8
2.3.2 Silicon carbide nanowire (SiCNWs)	16
1) Structure of SiCNWs	17
2) Synthesis of SiC Nanostructures	20
3) Properties of SiCNWs	35
4) Nanowires Growth techniques	UNIV ₄₃ ISI
5) Applications	er ⁵⁴ e

CHAPTER 3 EXPERIMENTAL AND PROCEDURES	57
3.1 Synthesis of Carbon Nanotubes by Infusion CVD Method	57
3.2 Synthesis of Silicon Carbide Nanowires (SiCNWs) by	58
CVD Method	
3.2.1 Without vacuum pump - assisted system	58
3.2.1 With vacuum pump – assisted system	59
3.3 Fabrication of carbon nanotubes/silicon carbide	60
nanowires/epoxy resin nanocomposites	
3.4 Characterization and Measurement Methods	63
3.4.1 X-ray Diffraction Analysis	63
3.4.2 Scanning Electron Microscopy (SEM)	64
3.4.3 Transmission Electron Microscopy (TEM)	65
3.4.4 Energy Dispersive Spectroscopy (EDS)	66
3.5 Property Measurement of the Nanocomposites	66
3.5.1 Density Measurement	66
3.5.2 Tensile Strength Measurement	67
3.5.3 Compressive Strength Measurement	69
3.5.4 Impact Strength Measurement	70
3.5.5 Wear Measurement	71
CHAPTER 4 RESULTS AND DISCUSSION	72
4.1 Characterization of synthesis of silicon carbide	72
nanowires (SiCNWs)	
4.1.1 Synthesis of SiCNWs without vacuum pump - assisted system	m 72
4.1.2 Synthesis of SiCNWs with vacuum pump - assisted system	76

4.1.2.1 Using Fe ₂ O ₃ as Catalyst	76
4.1.2.2 Using Ni ₂ O ₃ as Catalyst	85
4.1.3 Growth mechanism	94
4.2 Fabrication of CNTs, SiCNWs and Epoxy Resin Nanocomposites	96
4.2.1 The morphologies of CNTs and SiCNWs	97
4.2.2 The morphologies of nanocomposites samples	98
4.2.3 Effect of fillers on the mechanical properties of	99
epoxy composites	
4.2.4 Morphologies of the nanocomposites interface and	111
dispersion of nano-fillers in epoxy matrix	
CHAPTER 5 CONCLUSIONS AND SUGGESTIONS	114
FOR FURTHER WORKS	
5.1 Synthesis of Silicon Carbide Nanowires and Characterization	114
5.2 Composites Processing and Characterization	114
5.3 Suggestions for Further Work	115
REFERENCES	117
APPENDICES	129
APPENDIX A	130
APPENDIX B	143
VITA	159

LIST OF TABLES

Table		Page
2.1	The main physical and chemical properties of the most widespread	19
	SiC polytypes	
2.2	Density, interlayer, and flexural properties of composite with SiC	40
	nanowires and conventional composites	
4.1	The density data for CNTs, SiCNWs and epoxy resin nanocomposites	100

Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

igur	e	Page
2.1	Transmission electron micrograph of some multiwalled nanotubes	9
2.2	The graphite plane of nanotube surface coordinates	10
2.3	Structural of carbon Nanotube (a) Armchair structure (n, n),	10
	(b) zig-zag structure (n, 0), and (c) Chiral structure (n, m)	
2.4	The stacking sequence of 3C-, 2H-, 4H-, and 6H-SiC	18
2.5	Geometry of the reactor. (a) Reactants of SiO ₂ /Si source covered	22
	with carbon nanotubes were put in a crucible. (b) SiO_2/Si source and	
	carbon nanotubes were put in a boat and the latter kept clear of the	
	former along the downstream direction of gas flow in	
2.6	SEM micrographs of a carbon nanotube sheet before (a) and SiC	23
	nanorods: after (b)–(d) thermal annealing this sheet at 1,000°C between	
	two parallel silicon wafers. The large quasi- spherical particles in(a),	
	with a diameter of typically above 30 nm, contain iron	
2.7	Arc-discharge setup	24
2.8	SEM image of the powder by arc discharge	25
2.9	Laser-ablation scheme	26
2.10	Typical SEM image of SiC nanowires	26
2.11	TEM images of resulting SiC sample catalyzed by Fe	27

- 2.12 (a) TEM image of the nanowhiskers obtained by scratching the nanowhiskers from the Si substrate.(b) HR-TEM image of a thin 3C-SiC nanowhisker with an orientation of [111]. (c) A thick 3C-SiC nanowhisker with its selected area electron diffraction pattern taken by the electron beam parallel to the [011] zone axis
- 2.13 SEM images of vertically aligned SiCNWs grown on a Si substrate at 30 1,100°C for 2h under total reactor pressure of 5 Torr. The hydrogen flow rate at 775cm³ min⁻¹. Left lower inset is a TEM image of SiCNWs
- 2.14 High-frequency induction-heating furnace
- 2.15 XRD pattern of the as-synthesized products. Inset (b): the digital camera photo of the products
- 2.16 (a) SEM image of as-prepared samples grown at 1,450°C for 20 min by 33 SiO powder and carbon fiber, (b) EDS spectrum of the nanowires, (c) TEM image of SiCNW, and (d) HRTEM image of the individual SiCNW
- 2.17 (a) Typical TEM images for SiC/SiO₂ nanosprings and (b) HRTEM 34 image nanostructures
- 2.18 TEM images of (a) SiCNWs (1 wt.% doping); inset is a corresponding 34 SAED pattern, shows a single-crystalline cubic structure with a [111] growth direction and (b) a non-uniform layer thickness of alumina coating on an individual SiCNWs (2 wt% doping)

31

32

- 2.19 The dependence of the field-emission current density J on the
 applied electric field strength E of the samples at three anode-sample
 distances of 100, 120, and 140µm 2.20 Raman spectrum of SiCNWs
 by laser ablation
- 2.20 Raman spectrum of SiCNWs by laser ablation
- 2.21 (a) PL spectra of the as-prepared SiC nanocables with core diameters of 38
 10 nm (I) and 20 nm (II), respectively. (b) The PL spectra of the SiC nanocables with core diameter of 20 nm before(II) and after (III) annealing

37

39

41

43

- 2.22 Typical flexural stress–displacement curves and fiber pullout fracture surface (T-NFRC)
- 2.23 Tensile stress–strain curves of PVA and NW composites, showing an increase in the ultimate tensile strength and reduction in ductility with increasing NW volume fraction
- 2.24 Variation of tensile strength as function of nanowire volume fraction.41 The *solid line* represents the least-square fit to the equation given in the figure
- 2.25 (a) SiC photodegradation rates as a function of irradiation time during the photodegradation of acetaldehyde gas under UV irradiation and (b) CO₂ evolution as a function of irradiation time (light on at zero) during the photodegradation of acetaldehyde gas under UV irradiation
 2.26 TEM micrographs of (a) Si nanowire nuclei formed on the Mo

grid and (b), (c) initial growth stages of the nanowires

2.27 Schematic describing the nucleation and growth mechanism of SiNWs
48 The parallel lines indicate the [112] orientation. (a) Si oxide vapor is deposited first and forms the matrix within which the Si nanoparticles are precipitated. (b) Nanoparticles in a preferred orientation grow fast and form nanowires. Nanoparticles with non-preferred orientations may form chains of nanoparticles

49

52

53

61

- 2.28 CVD Growth of SiNWs using Au particle catalysts
- 2.29 In situ TEM images recorded during the process of nanowire growth.
 a) Au nanoclusters in solid state at 500 °C, b) alloying initiates at 800 °C, at this stage Au exists in mostly solid state, c) liquid Au/Ge alloy;
 d) the nucleation of Ge nanocrystal on the alloy surface, e) Ge nanocrystal elongates with further Ge condensation and eventually a wire forms
 f) the interface is pushed forward (or backward) to form nanowires
- 2.30 a) Schematic illustration of vapor-liquid-solid nanowire growth mechanism including three stages (I) alloying, (II) nucleation, and (III) axial growth. The three stages are projected onto the conventional Au-Ge binary phase diagram, b) shows the compositional and phase evolution during the nanowire growth process
- 2.31 SEM micrograph of 3C-SiCNW obtained on a Si spring
 Marker is 20 μm
 3.1 Schematic diagram of the infusion CVD apparatus
 58
- 3.2 Schematic diagram of the synthesis SiCNWs by CVD medthod
- 3.3 The rubber mold and sample geometry for tensile test
- 3.4 The rubber mold and sample geometry for impact test

3.5	X-ray Monochromater	63
3.6	Scanning electron microscopy (JEOL JSM-6335F)	64
3.7	Transmission electron microscopy	65
3.8	Density measurement	67
3.9	The universal testing machine	68
3.10	The universal testing machine for compression test	69
3.11	The apparatus of impact strength test	70
3.12	Pin-on-Disk Tribometer	71
4.1	FE-SEM images of as-products by different reaction temperatures and	73
	the diameters distribution of nanowires (a), (b) at 1,200°C, (c),	
	(d) at 1,300 °C, and (e), (f) at 1,400 °C	
4.2	Typical TEM images of SiCNWs formed with different temperatures;	75
	a) 1,200°C, b) 1,300°C and c) 1,400°C	
4.3	X-ray diffraction spectra of products from different reaction	76
	temperatures at: a) 1,200°C, b) 1,300°C and c) 1,400°C. It can be	
	indexed to be β-SiC (JCPDS Card No. 73-1665)	
4.4	a) Photograph of the product in alumina boat from Fe ₂ O ₃ catalyst	77
	b) FE-SEM image of white wool-like from a), and c) shows the	
	corresponding EDS spectra	
4.5	FE-SEM images of using Fe_2O_3 as catalyst with the reaction	79
	temperature at: a) 1,300°C, b) 1,350°C and c) 1,400°C	
CODY 11 4.6	Distributions of nanowires diameters using Fe ₂ O ₃ as catalyst with	80
	different temperature; a) 1,300°C, b) 1,350°C and c) 1,400°C	

- 4.7 Typical TEM images of SiCNWs were obtained from using Fe₂O₃ as 82 catalyst and its SEAD patterns from varying temperatures at a) 1,300°C,
 b) 1,350°C, and c) 1,400°C
- 4.8 X-ray diffraction spectra of products: using Fe_2O_3 as catalyst after heat-treated a) 1,300°C, 1,350°C and 1,400°C. It can be indexed to be β -SiC (JCPDS Card No. 73-1665)
- 4.9 HR-TEM images of SiCNWs synthesized by using Fe₂O₃ as catalyst
 85 with varying temperatures at a) 1,300°C, b) 1,350°C and c) 1,400°C
- 4.10 SEM images of a) the cross section of white wool-like features covered
 as-grown powder, b) FE-SEM image of surface of the white wool-like
 product at 1,350°C, and c) is the corresponding EDS spectra

89

- 4.11 FE-SEM images of as-products by different temperatures and the distribution of nanowires diameters (a), (b) at 1,300°C, (c), (d) at 1,350 °C and (e), (f) at 1,400 °C
- 4.12 Typical TEM images of SiCNWs and its SEAD patterns from91varying temperatures at a) 1,300°C, b) 1,350°C and c) 1,400°C
- 4.13 HR-TEM images of SiCNWs synthesized by varying temperatures
 92 at a) 1,300°C, b) 1,350°C and c) 1,400°C
- 4.14 X-ray diffraction spectra of products: after heat-treated a) 1,300°C, 93
 1,350°C and 1,400°C. It can be indexed to be β-SiC

(JCPDS Card No. 73-1665)

4.15 FT-IR spectrum of SiCNWs products synthesized at 1,350°C944.16 Tensile strength of epoxy resin matrix and CNTs, SiCNWs fillers96

```
with different ratios of 0.5-8.0 vol%
```

4.17	FE-SEM images of: a) CNTs and b) SiCNWs	98
4.18	Before and after tensile test of CNTs, SiCNWs and epoxy matrix samples	98
4.19	Before and after compressive test of CNTs, SiCNWs and epoxy	99
	matrix samples	
4.20	Before and after impact test of CNTs, SiCNWs and epoxy matrix samples	99
4.21	The tensile response of CNTs and SiCNWs loading content (vol %)	101
	on epoxy nanocomposites	
4.22	The compressive strength of CNTs and SiCNWs loading content	102
	(vol %) on epoxy nanocomposites	
4.23	The impact strength of CNTs and SiCNWs loading content (vol %)	102
	on epoxy nanocomposites	
4.24	Gain in tensile strength in percentage of nanocomposites with	103
	different ratios of CNTs, SiCNWs fillers	
4.25	Gain in compressive strength in percentage of nanocomposites	104
	with different ratios of CNTs, SiCNWs fillers	
4.26	Gain in absorbed energy in percentage of nanocomposites with	104
	different ratios of CNTs, SiCNWs fillers	
4.27	The wear track of nanocomposites samples with different ratios of the fillers	105
4.28	The wear rate of CNTs and SiCNWs loading content (vol %)	106
	on epoxy nanocomposites	
4.29	Loss of wear track in percentage of nanocomposites with different	106
	ratios of CNTs, SiCNWs fillers	
4.30	Loss of wear track in percentage of nanocomposites with different	107
	ratios of CNTs, SiCNWs fillers	

- 4.31 The photographs of the wear track width of 0.05 vol% of the fillers108(CNTs:SiCNWs ratio) in nanocomposites samples
- 4.32 The photographs of the wear track width of 0.1 vol% of the fillers109(CNTs:SiCNWs ratio) in nanocomposites samples
- 4.33 The photographs of the wear track width of 0.2 vol% of the fillers110(CNTs:SiCNWs ratio) in nanocomposites samples
- 4.34 The SEM images of the surfaces of CNTs, SiCNWs and epoxy resin
 113 nanocomposites containing 0.2 vol% of the nano-fillers: a) CNTs 100%
 b) SiCNWs 100% c) CNTs:SiCNWs is 25:75 and d) EDS spectrum of the 25:75 ratio (CNTs:SiCNWs)

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved