
Chapter 2

Basic Concepts

The purpose of this chapter is to explain certain notations, terminologies

and elementary results used throughout the thesis. Although details are included

in some cases, many of the fundamental principles of functional analysis are merely

stated without proof.

2.1 Basic concepts of limits

Definition 2.1.1 ([32]). A sequence is a function whose domain is the set N of

natural numbers.

Definition 2.1.2 ([32]). A sequence whose range is a subset on the set of real

numbers is called a real sequence, i.e. a real sequence s is a function s : N→ R.

Definition 2.1.3 ([32]). A sequence {xn} is said to be bounded above (below) if

there exists a real number M such that xn ≤M(xn ≥M) for all n ∈ N. A sequence

is said to be bounded if it is bounded both above and below.

Or a sequence {xn} is bounded if and only if there exists M > 0 such that |xn| ≤M

for all n ∈ N.

Definition 2.1.4 ([32]). A sequence {xn} is said to converge to x ∈ R if given ε > 0,

there exists a positive integer m such that n ≥ m implies |xn−x| < ε. We call the

limit of {xn} and write lim
n→∞

xn = x or xn → x as n→∞.

Theorem 2.1.5 ([32]). If a sequence has a limit, this limit is unique.

Theorem 2.1.6 ([32]). Every convergent sequence is bounded.

Theorem 2.1.7 ([32]). Let {xn} and {yn} be two sequences of real numbers such

that lim
n→∞

xn = x and lim
n→∞

yn = y, then lim
n→∞

(xn ± yn) = x± y.
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Theorem 2.1.8 ([32]). If {xn} is a convergent sequence such that lim
n→∞

xn = x and

c ∈ R, then lim
n→∞

cxn = cx.

Theorem 2.1.9 ([32]). Let {xn} be a sequence such that {xn} ≥ 0 and lim
n→∞

xn = x,

then x ≥ 0.

Definition 2.1.10 ([1]). Let {xn} be a sequence of real numbers. We say that {xn}

is increasing if it satisfies the inequalities

x1 ≤ x2 ≤ · · · ≤ xn ≤ xn+1 ≤ · · · .

We say that {xn} is decreasing if it satisfies the inequalities

x1 ≥ x2 ≥ · · · ≥ xn ≥ xn+1 ≥ · · · .

We say that {xn} is monotone if it is either increasing or it is decreasing.

Theorem 2.1.11 ([1]). A monotone sequence of real numbers is convergent if and

only if it is bounded. Further:

(1) If {xn} is a bounded increasing sequence, then lim
n→∞

xn = sup
n
{xn}.

(2) If {yn} is a bounded decreasing sequence, then lim
n→∞

yn = inf
n
{yn}.

Definition 2.1.12 ([1]). Let {xn} be a sequence of real numbers and let r1 < r2 <

· · · < rn < · · · be a strictly increasing sequence of natural numbers. Then the

sequence {xrn} in R given by

(xr1 , xr2 , xr3 , . . . , xrn , . . .)

is called a subsequence of {xn}.

Theorem 2.1.13 ([32]). If {xn} converges to x, then every subsequence of {xn}

converges to x.

Theorem 2.1.14 ([32]). Every sequence has a monotone subsequence.

Theorem 2.1.15 ([32]). Every bounded sequence has a convergent subsequence.



7

Definition 2.1.16 ([1]). A sequence {xn} is said to be a Cauchy sequence if for

every ε > 0 there is a natural number N such that all natural numbers n,m ≥ N,

the terms xn, xm satisfy |xn − xm| < ε.

Theorem 2.1.17 ([32]). If {xn} is a bounded sequence, then lim inf
n→∞

xn ≤ lim sup
n→∞

xn.

Theorem 2.1.18 ([32]). If {xn} is a sequence such that

lim sup
n→∞

xn = lim inf
n→∞

xn = x

for some x ∈ R, then {xn} converges to x.

Theorem 2.1.19 ([32]). If {xn} and {yn} are bounded sequences such that for all

n ∈ N, xn ≤ yn, then lim sup
n→∞

xn ≤ lim sup
n→∞

yn and lim inf
n→∞

xn ≤ lim inf
n→∞

yn.

Theorem 2.1.20 ([32]). If {xn} and {yn} are bounded sequences, then

(1) lim sup
n→∞

(xn + yn) ≤ lim sup
n→∞

xn + lim sup
n→∞

yn,

(2) lim inf
n→∞

(xn + yn) ≥ lim inf
n→∞

xn + lim inf
n→∞

yn.

Theorem 2.1.21 ([32]). Let {xn} be a bounded sequence.

(1) If lim sup
n→∞

xn = M, then for any ε > 0

• xn < M + ε for all except finitely many values of n,

• xn > M − ε for infinitely many values of n.

(2) If lim inf
n→∞

xn = m, then for any ε > 0

• xn > m− ε for all except finitely many values of n,

• xn < m+ ε for infinitely many values of n.

Definition 2.1.22 ([1]). If E ⊂ R, then the function f : E → R is said to be

increasing (decreasing) on E if whenever x1, x2 ∈ E and x1 ≤ x2 (x1 ≤ x2) then

f(x1) ≤ f(x2) (f(x1) ≥ f(x2)).

Definition 2.1.23 ([1]). If E ⊂ R, then the function f : E → R is said to be strictly

increasing (strictly decreasing) on E if whenever x1, x2 ∈ E and x1 < x2 (x1 < x2)

then f(x1) < f(x2) (f(x1) > f(x2)).
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2.2 CAT(0) spaces

Definition 2.2.1. Let (X, d) be a metric space. A geodesic path joining x ∈ X to

y ∈ X (or more briefly, a geodesic from x to y) is a map c : [0, l] → X such that

c(0) = x, c(l) = y, and d(c(t), c(t′)) = |t− t′| for all t, t′ ∈ [0, l].

The image α of c is called a geodesic (or metric) segment joining x to y.

When it is unique this geodesic segment is denote by [x, y].

Definition 2.2.2. The space (X, d) is said to be a geodesic space if every two points

of X are joined by a geodesic, and X is said to be uniquely geodesic if there is

exactly one geodesic joining x and y for each x, y ∈ X.

Definition 2.2.3. Let (X, d) be a geodesic space. A subset Y ⊆ X is said to be

convex if Y includes every geodesic segment joining any two of its points.

Definition 2.2.4. Let (X, d) be a geodesic space. A geodesic triangle 4(x1, x2, x3)

subset of X consists of three points x1, x2, x3 in X (the vertices of 4) and a

geodesic segment between each pair of vertices (the edges 4). A comparison

triangle for the geodesic triangle4(x1, x2, x3) in (X, d) is a triangle 4̄(x1, x2, x3) :=

4(x̄1, x̄2, x̄3) in the Euclidean plane E2 such that dE2(x̄i, x̄j) = d(xi, xj) for i, j ∈

{1, 2, 3}.

Definition 2.2.5. A geodesic space (X, d) is said to be a CAT(0) space if all geodesic

triangles satisfy the following comparison axiom.

CAT(0) : Let 4 be a geodesic triangle in X and let 4̄ be a comparison

triangle for 4. Then 4 is said to satisfy the CAT(0) inequality if for all x, y ∈ 4

and all comparison points x̄, ȳ ∈ 4̄,

d(x, y) ≤ dE2(x̄, ȳ). (2.1)

Complete CAT(0) spaces are often called Hadamard spaces. Examples of

CAT(0) spaces include, among others, Hilbert spaces, classical hyperbolic spaces,

Euclidean buildings, R-trees, etc.
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If x, y ∈ X, and t ∈ [0, 1] then we use the notation (1 − t)x ⊕ ty for the

point z in [x, y] which

d(z, x) = td(x, y) and d(z, y) = (1− t)d(x, y). (2.2)

Remark 2.2.6. Let X be a CAT(0) space and let x, y ∈ X such that x 6= y and

s, t ∈ [0, 1]. Then (1− t)x⊕ ty = (1− s)x⊕ sy if and only if s = t.

At this point we collect some elementary facts about CAT(0) spaces.

Lemma 2.2.7 ([2, p.163]). A geodesic space (X, d) is a CAT(0) space if and only

if for x, y1, y2 ∈ X and if y0 is the midpoint of the segment [y1, y2] then

d2 (x, y0) ≤
1

2
d2 (x, y1) +

1

2
d2 (x, y2)−

1

4
d2 (y1, y2) . (CN)

This is the (CN) inequality of Bruhat and Tits [5].

Lemma 2.2.8. Let (X, d) be a CAT(0) space. Then

(i) (X, d) is uniquely geodesic (see [2, p.160]).

(ii) For x, y ∈ X and t ∈ [0, 1], there exists a unique point z ∈ [x, y] such that

d (x, z) = td (x, y) and d (y, z) = (1− t)d (x, y) . (2.3)

We use the notation (1− t)x⊕ ty for the unique point z satisfying (2.3).

(see [11, p.2573]).

(iii) Let p, x, y be points ofX, let α ∈ [0, 1], and letm1 andm2 denote, respectively,

the point of [p, x] and [p, y] satisfying

d (p,m1) = αd (p, x) and d (p,m2) = αd (p, y) .

Then d(m1,m2) ≤ αd(x, y) (see [18, Lemma 3]).

(iv) Let x, y ∈ X, x 6= y and z, w ∈ [x, y] such that d (x, z) = d (x,w) . Then

z = w. (see [11, Lemma 2.1]).

Lemma 2.2.9 ([11, p.163]). Let X be a CAT(0) space. Then for all x, y, z ∈ X

and t ∈ [0, 1].

(i) d
(
(1− t)x⊕ ty, z

)
≤ (1− t)d (x, z) + td (y, z) .

(ii) d2
(
(1− t)x⊕ ty, z

)
≤ (1− t)d2 (x, z) + td2 (y, z)− t(1− t)d2 (x, y) .
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Definition 2.2.10. Let X be a complete CAT(0) space, let {xn} be a bounded

sequence in X and for x ∈ X set

r (x, {xn}) = lim sup
n→∞

d (x, xn) .

The asymptotic radius r ({xn}) of {xn} is given by

r ({xn}) = inf {r (x, {xn}) : x ∈ X}

and the asymptotic center A ({xn}) of {xn} is the set

A ({xn}) = {x ∈ X : r (x, {xn}) = r ({xn})} .

It is known from Proposition 7 of [10] that in a CAT(0) space, A({xn})

consists of exactly one point.

We now give the definition and collect some basic properties of ∆−convergence

and introduce important related concepts which will be used in our work.

Definition 2.2.11 ([19, 21]). A sequence {xn} in a complete CAT(0) space X is

said to ∆−converges to x ∈ X if x is the unique asymptotic center of {un} for

every subsequence {un} of {xn}. In this case we write ∆− lim
n→∞

xn = x and call x

the ∆−limit of {xn}.

Notice that given {xn} ⊂ X such that {xn} ∆−converges to x and given

y ∈ X with y 6= x,

lim sup
n

d (xn, x) < lim sup
n

d (xn, y) .

Thus X satisfies a condition which is known in Banach space theory as the Opial

property.

Lemma 2.2.12 ([19, p.3690]). Every bounded sequence in a complete CAT(0) space

always has a ∆−convergent subsequence.

Lemma 2.2.13 ([9]). If E is a closed convex subset of a complete CAT(0) space

and if {xn} is a bounded sequence in E, then the asymptotic center of {xn} is in

E.
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Lemma 2.2.14 ([11]). Let E be a nonempty closed convex subset of a CAT(0)

space (X, d). Let {xn} be a bounded sequence in X with A({xn}) = {x}, and let

{un} be a subsequence of {xn} with A({un}) = {u}. Suppose that lim
n→∞

d(xn, u)

exists. Then x = u.

Proof. Suppose that x 6= u. By the uniqueness of asymptotic centers,

lim sup
n→∞

{d(un, u)} < lim sup
n→∞

{d(un, x)}

≤ lim sup
n→∞

{d(xn, x)}

< lim sup
n→∞

{d(xn, u)}

= lim sup
n→∞

{d(un, u)},

a contradiction, and hence x = u.

Lemma 2.2.15 ([22]). Let X be a CAT(0) space. Let {xn} and {yn} be two

bounded sequences inX with lim
n→∞

d(yn, xn) = 0. If ∆− lim
n→∞

xn = x, then ∆− lim
n→∞

yn =

x.

Proof. Since ∆−lim
n
xn = x, we know that

r({xn}) = r(x, {xnk
}) = lim sup

k→∞
d({xnk

}, x)

for every subsequence {xnk
} of {xn}. Now, take any subsequence {ynk

} of {yn}

and let {ynk
} be fixed. Then there exists y ∈ X such that A({ynk

}) = {y}. Hence

lim sup
k→∞

d(ynk
, y) ≤ lim sup

k→∞
d(ynk

, x)

≤ lim sup
k→∞

d(ynk
, xnk

) + lim sup
k→∞

d(xnk
, x)

= lim sup
k→∞

d(xnk
, x)

= r({xn})

≤ lim sup
k→∞

d(xnk
, y)

≤ lim sup
k→∞

d(ynk
, y).
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So, lim sup
k→∞

d(ynk
, y) = lim sup

k→∞
d(ynk

, x). And this implies that x ∈ A({ynk
}). Since

A({ynk
}) = {y}, x = y. So, A({ynk

}) = {x} for every subsequence {ynk
} of {yn}.

Therefore ∆−lim
n
yn = x.

2.3 A mapping satisfying condition (C)

In 2010, Nanjaras et al. [4.1] extended Suzuki results on fixed point theorems and

convergence theorems to CAT(0) spaces.

Definition 2.3.1 ([26]). Let E be a nonempty subset of a complete CAT(0) space

X. Then T is said to satisfy condition (C) if

1

2
d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ d(x, y)

for all x, y ∈ E.

Proposition 2.3.2 ([26]). Every nonexpansive mapping satisfies condition (C) but

the converse is not true.

The condition is weaker than nonexpansiveness and stronger than quasi-

nonexpansiveness see Proposition 2.3.3 and 2.3.4 bellow.

Proposition 2.3.3 ([26]). Let E be a nonempty subset of a CAT(0) space X.

Suppose T : E → E is a nonexpansive mapping, then T satisfies condition (C).

Proposition 2.3.4 ([26]). Let E be a nonempty subset of a CAT(0) space X.

Suppose T : E → E satisfies condition (C) and has a fixed point, then T is

quasi-nonexpansive mapping.

Proof. Let p ∈ F (T ) and x ∈ E. Since
1

2
d(p, Tp) = 0 ≤ d(p, x), we have

d(p, Tx) = d(Tp, Tx) ≤ d(p, x).

The proof is complete.
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Example 2.3.5 ([28]). Define a mapping T on [0,5] by

Tx =

0 if x 6= 5,

1 if x = 5.

Then T satisfies condition (C), but T is not nonexpansive.

Proof. If x < y and (x, y) ∈ ([0, 5]× [0, 5]) \ ((4, 5)× 5), then d(Tx, Ty) 6= d(x, y)

holds. If x ∈ (4, 5) and y = 5, then

1

2
d(x, Tx) =

x

2
> 1 > d(x, y) and

1

2
d(y, Ty) = 1 > d(x, y)

holds. Thus T satisfies condition (C). However, since T is not continuous, T is

not nonexpansive.

Example 2.3.6 ([28]). Define a mapping T on [0, 5] by

Tx =

0 if x 6= 5,

4 if x = 5.

Then F (T ) 6= ∅ and T is a quasi-nonexpansive, but T does not satisfy condition

(C).

Proof. It is clear that F (T ) = {0} 6= ∅ and T is a quasi-nonexpansive. However,

since
1

2
d(5, T5) =

1

2
≤ 1 = d(5, 4) and d(T5, T4) = 4 > 1 = d(5, 4)

holds. Thus, T does not satisfy condition (C).

Lemma 2.3.7 ([26]). Let E be a nonempty bounded closed convex subset of a

complete CAT(0) space X. Suppose that T : E → E satisfies condition (C). Then

F (T ) is nonempty closed, convex and hence contractible.

Lemma 2.3.8 ([26]). Let E be a nonempty closed convex subset of a complete

CAT(0) space X, and suppose that T : E → E satisfies condition (C). If {xn} is a

sequence in E such that lim
n→∞

d(Txn, xn) = 0 and ∆− lim
n→∞

xn = z for some z ∈ X,

then z ∈ E and z = Tz.
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2.4 Generalized hybrid mappings

In 2011, Lin et al. [4.1] introduced generalized hybrid mappings on CAT(0) spaces.

Definition 2.4.1 ([22]). Let E be a nonempty closed convex subset of a CAT(0)

space X. We say T : E → X is a generalized hybrid mapping if there exist

a1 : E → [0, 1] , a2, a3 : E → [0, 1) such that

P(1) d2 (Tx, Ty) ≤ a1 (x) d2 (x, y) + a2 (x) d2 (Tx, y)

+ a3(x)d2(x, Ty) + k1(x)d2(Tx, x) + k2(x)d2(Ty, y) for all x, y ∈ E,

P(2) a1 (x) + a2 (x) + a3 (x) ≤ 1 for all x, y ∈ E,

P(3) 2k1 (x) < 1− a2 (x) and k2 (x) < 1− a3 (x) for all x, y ∈ E.

They also gave the definition of nonspreading mappings on CAT(0) spaces.

Definition 2.4.2 ([22]). Let E be a nonempty closed convex subset of a complete

CAT(0) space X. A mapping T : E → E is said to be a nonspreading mapping if

2d2(Tx, Ty) ≤ d2(Tx, y) + d2(Ty, x)

for all x, y ∈ E.

Remark 2.4.3. If T is a nonspreading mapping then T is one case of a generalized

hybrid mapping. In Definition 2.4.1, a1(x) = 0, a2(x) = a3(x) =
1

2
and k1(x) =

k2(x) = 0, then T is a nonspreading mapping for all x ∈ E.

They also gave the following result for a generalized hybrid mapping on

CAT(0) spaces.

Lemma 2.4.4 ([22]). Let E be a nonempty closed convex subset of a complete

CAT(0) space X, and let T : E → E be a generalized hybrid mapping with

k1(x) = k2(x) = 0 for all x ∈ E. Then {T nx} is a bounded for some x ∈ E if and

only if F (T ) 6= ∅.

Proposition 2.4.5 ([22]). Let E be a nonempty closed convex subset of a complete

CAT(0) space (X, d), and let T : E → X be a generalized hybrid mapping with

F (T ) 6= ∅. Then F (T ) is a closed convex subset of E.
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Lemma 2.4.6 ([22]). Let E be a nonempty closed convex subset of a complete

CAT(0) space X, and let T : E → X be a generalized hybrid mapping. Let {xn}

be a bounded sequence in E with ∆− lim
n→∞

xn = x and lim
n→∞

d(xn, Txn) = 0. Then

x ∈ E and Tx = x.

The class of nonspreading mappings and the class of mappings satisfying

condition (C) are different.

Example 2.4.7 ([8]). Define a mapping T on [0,3] by

Tx =

0 if x 6= 3,

2 if x = 3.

T does not satisfy condition (C). But T is a nonspreading.

Proof. If x = 3 and y 6= 3, we have

2d2(Tx, Ty) = 8 < 9 = d2(Ty, x).

It is easy to see in the other cases that 2d2(Tx, Ty) ≤ d2(Tx, y)+d2(Ty, x). Thus,

T is a nonspreading. Since

1

2
d(3, T3) =

1

2
≤ 1 = d(3, 2) and d(T3, T2) = 2 > 1 = d(3, 2)

holds. Thus T does not satisfy condition (C).

Example 2.4.8 ([8]). Define a mapping T on [0, 1] by

Tx = 1− x ∀x ∈ [0, 1].

Thus T is a nonexpansive and hence it satisfies condition (C). But T is not a

nonspreading. In fact, if x = 0 and y = 1, we have

2d2(Tx, Ty) = 2 > 0 = d2(Ty, x) + d2(y, Tx).
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