Chapter 3

A—Convergence Theorems

This chapter is divided in to 2 sections. In section 1, we prove existence
theorems for some generalized nonexpansive mappings and nonspreading mappings
in CAT(0) spaces. In section 2, we prove A—convergence theorems for some

generalized nonexpansive mappings and nonspreading mappings in CAT(0) spaces.

3.1 Existence Theorems

Theorem 3.1.1. Let E be a nonempty bounded closed convex subset of a complete
CAT(0) space X, and let T : E — E satisfies condition (C) and S: E — E is a
nonspreading mapping. Let T" and S are commuting mappings on £. Then T" and

S have a common fixed point.

Proof. By Lemma 2.3.7, we have F(T) # (). By the assumption 7" and S are
commuting mappings on F, we have Sz = S(Tx) = T'(Sz) and hence Sz € F(T)
for all x € F(T). So S: F(T) — F(T). By Remark 2.4.3 and E is bounded, we
can use Lemma 2.4.4, then we have F'(S) # (). So there exists y € F/(S) such that
y=Sye F(T). Soye F(T)NF(9). O
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3.2 A—Convergence Theorems

We defined w,, ({2, }) := UA({u,}) where the union is taken over any subsequence

{u,} of {x,}. In order to prove our main theorem the following facts are needed.

Lemma 3.2.1 ([22]). Let E be a nonempty closed convex subset of a complete
CAT(0) space X, and let T': E — X be a generalized hybrid mapping. If {z,} is
a bounded sequence in E such that nlglf}o d(xy, Tz,) = 0 and {d(z,,v)} converges
for all v € F(T), then w,({z,}) C F(T) . Furthermore, w,({z,}) consists of

exactly one point.

Remark 3.2.2 ([22]). The conclusion of Lemma 3.2.1 is still true if 7' : £ — X
is any one of nonexpansive mapping, nonspreading mapping, TJ1 mapping, TJ2

mapping, and hybrid mapping.(For other mapping, one can also refer [22].)
We need the following lemmas for complete the proof of main results.

Lemma 3.2.3. Let E be a nonempty closed convex subset of a complete CAT(0)
space X, and let T': E — X satisfies condition (C). If {z,} is a bounded sequence
in £ such that lim d(T'z,,z,) = 0 and {d(z,,v)} converges for all v € F(T'), then

n—oo

wy({xn}) C F(T). Furthermore, w,({z,}) consists of exactly one point.

Proof. By the assumption {z,} is a bounded sequence in E such that

nh_)rrgo d(Txp,x,) = 0. Let u € wy({x,}), then there exists a subsequence {u,}
of {x,} such that A({u,}) = {u}. By Lemma 2.2.12 and 2.2.13 there exists a
subsequence {v,} of {u,} such that A_nhjgo u, = v € E. Since nhjgo d(Tv,,v,) =
0, then v € F(T') by Lemma 2.3.8. By the assumption {d(x,,v)} converges for
all v € F(T), then u = v € F(T) by Lemma 2.2.14. This shows that w,,({z,}) C
F(T). Next, we show that w,({z,}) consists of exactly one point. Let A({x,}) =
{z} and {u, } be a subsequence of {z,, } with A({u,}) = {u}. Since u € w,,({z,}) C
F(T), we have seen that u = v € F(T') then {d(x,,u)} converges. By Lemma

2.2.14, x = u. O
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Now, we define the sequence {x,} by

.CCleE,

Tn+1 = anSyn 7] (1 —~~ Oén)*xn?

where y,, = 6, Tz, ® (1 — ,)x, for all n € N and we prove the following lemma
which, in fact, forms a major part of the proofs of both A and strong convergence

theorems for a sequence {x,,}.

Lemma 3.2.4. Let £ be a nonempty closed convex subset of a complete CAT(0)
space X, and let T : E — FE satisfies condition (C) and S : E — E is a non-
spreading mapping such that F(T)NF(S) # 0. Let {x,} be defined as (A). Then
lim d(x,,w) exists for all w € F(T) N F(S).

n—oo

Proof. Let {x,} be a sequence defined by (A) and w € F(T) N F(S). Then
d(Tz,w) < d(z,w) and d(Sy,w) < d(y,w) for all z,y € E. By Lemma 2.2.9(ii),

we have

& (Y, w) = (BT @ (1 = F) 20, w)
< Bud*(Tn, w) + (1 = Ba)d* (20, w) — Bu(1 = B)d*(Tp, )
< Bud? (wn, w) + (1 = Bo)d* (w0, w) = Bu(1 = Bu)d*(Twn, 20)
= d*(z,,w) — Bu(1 — Bo)d* (T, x,) (3.1)

< d*(zp, w)
and

d*(Tny1,w) = d* (0, SYp @ (1 — )Ty, w)
< d?(Syn, w) + (1 — ap)d* (2, w) — (1 — ) d*(Syn, ,)
< apd® (Y, w) + (1 — ap)d* (2, w) — an(l — a)d*(Syn, ) (3.2)
< and* (2, w) 4+ (1 — ay,)d* (@, w) — (1 — ) d*(Syn, )
< (@, w) = an(l — an)d*(Syn, ) (3-3)

< d* (2, w).
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So {d(z,,w)} is bounded and decreasing sequence.

Hence lim d(z,,w) exists.

n—oo

[]

Lemma 3.2.5. Let £ be a nonempty closed convex subset of a complete CAT(0)

space X, and let T' : E — E satisfies condition (C) and S : E — E is a non-
spreading mapping such that F(7) N F(S) # 0. Let {a,} and {3,} be two
sequences in (0,1). Let {z,} be defined as (A). If liminf o, (1 — o) > 0 and

liminf 3,(1 — 3,) > 0, then lim d(y,,x,) =0 and lim d(y,,w) exist.

Proof. Let {x,} be a sequence defined by (A) and w € F(T) N F(S). By Lemma
3.2.4 lim d(x,,w) exists. Since d(yn,w) < d(z,,w) < d(z1,w), so {x,} and {y,}

are boundeds.

By (3.3), we have
dQ(:an,w) < dQ(xn, w) — a,(1— ozn)d2(5’yn,xn).

Then
an(l— an)dQ(Syn,xn) < dQ(xn, w) — dQ(an,w).

Since liminf o, (1 — a;,) > 0, so there exist & > 0 and 3N € N such that

n—o0

an(l —ay,) >k forallmn > N, so

lim sup kd*(Syn, z,) < limsup o, (1 — o) d*(Syn, Tn)

n—oo n—oo

S lim sup (d2<xna w) > dQ(xn+17 w))

n—oo

=0.

Hence 0 < lim inf d*(Sy,,, z,,) < limsup d*(Sy,, z,) < 0.

n—oo n—oo

Then lim d*(Sy,,r,) =0. This implies that  lim d(Sy,,z,) = 0.

n—o0 n—o0

By (3.2), we have

dQ(an, w) < andQ(yn, w)+ (1 - an)dQ(In,w) —ap(l— an)dQ(Syn,xn).

Then

o [d? (2, w) — d*(yn, w)] < d* (2, w) — d*(Tpy1, w).
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Since ay, (1 — o) <y so liminf oy, > 0 .

n—oo

Using the same argument we have lim (d*(z,,w) — d*(y,,w)) = 0.

n—oo

By (3.1), we get
d*(yn, w) < d*(@n, w) = Bu(1l = Bo)d* (T, ).

Then
Bn(1 — Bo)d* (T, 2,) < d*(2,,w) — d*(yn, w).

Since liminf 3,,(1 — 3,) > 0. Using the same argument we have

lim d*(Tw,,z,) = 0. Thisimplies that lim d(Tx,,x,) = 0. (3.5)
Hence

lim sup d(yn, ©,) = limsup B,d(Tz,, r,) < limsup d(Tx,,x,) = 0.

So lim d(yn,x,) = 0. Since lim (d*(z,,w) — d*(yn,w)) = 0 and lim d(x,,w)
exists, then lim d(y,,w) exists. O

Now we are ready to prove A—convergence theorem for a sequence {z,}.

Theorem 3.2.6. Let E be a nonempty closed convex subset of a complete CAT(0)
space X, and let T : F — FE satisfies condition (C) and S : E — FE is a non-
spreading mapping such that F(T) N F(S) # 0. Let {a,} and {8,} be two
sequences in (0,1). Let {x,} be defined as (A). If hffigif an(l — ay,) > 0 and
ligriggfﬂn(l — [,) > 0, then A—li;bnxn =w e F(T)NF(S).

Proof. Let {x,} be a sequence defined by (A) and w € F(T) N F(S). By Lemma
3.2.4, we have T}LIEO d(z,,w) exists. Then {x,} is bounded. By Lemma 3.2.5, we
have nhj& d(Yn, T,) = 0 and nh_)rgo d(yn,w) exists. Then {y,} is also bounded.

By (3.5) we have nh_)rgo d(Tx,,x,) = 0 and by (3.4) we have nlLHSO d(Syn, x,) = 0.
Since d(SYn, Yn) < d(SYn, ) + d(n,ys), then 7}1}20 d(SYn,yn) = 0. By Lemma
3.2.3 and Remark 3.2.2, there exist 7,y € E such that w,({z,}) = {z} C F(T)
and w,({yn}) = {g} € F(S5). So, A—lirrlnxn = 7 and A—liyrlnyn = y. By Lemma
2915, 7 = §. 0
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Now, we define the sequence {z,} by

ZleE,

Zn4+1 = O‘nqulq D (1 = Oln)Zn,

where y/, = 3,52, ® (1 — B,)z, for all n € N and we prove the following lemma
which, in fact, forms a major part of the proofs of both A and strong convergence

theorems for a sequence {z,}.

Lemma 3.2.7. Let F be a nonempty closed convex subset of a complete CAT(0)
space X, and let T : E — FE satisfies condition (C) and S : £ — E is a non-
spreading mapping such that F(T) N F(S) # (. Let {z,} be defined as (B). Then
lim d(z,,v) exists for all v € F(T) N F(S).

n—oo

Proof. Let {z,} be a sequence defined by (B) and v € F(T) N F(S). Then
d(Sz,v) < d(z,v) and d(Ty',v) < d(y',v) for all z,y € E. By Lemma 2.2.9(ii),

we have

d*(y,,,v) = d*(B,Szn & (1 = Bn)zn, v)
< Bnd®(Sz0,v) + (1 = Bo)d* (20, 0) = Bull — Ba)d* (S 2, 20)
< Bnd? (20, 0) + (1= Bo)d (20, 0) = Ba(1 — B)d*(S2n, 20n)
= (20, 0) — Ba(1 — Bo)d2(Szn, 20) (3.6)

< d*(2n, )
and

d*(2n11,v) = (0, Ty, ® (1 — )2, 0)
< apd(Ty,,v) + (1 — ) (20, v) — an(l — an)d2(Ty,, 20)
< a, d®(y),,v) + (1 — an)d®(2,0) — an(1 — ap)d*(Ty.,, 20)  (3.7)
< and?(2n,v) + (1 — an)d?(2,,v) — (1 — an,)d*(T.,, 2,)
< d*(20,v) — (1 — ) d* (T, 2,) (3.8)

< d*(zn,v).
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So {d(zy,v)} is bounded and decreasing sequence.

Hence lim d(z,,v) exists. O

n—oo

Lemma 3.2.8. Let E be a nonempty closed convex subset of a complete CAT(0)
space X, and let T : F — FE satisfies condition (C) and S : E — FE is a non-
spreading mapping such that F(T) N F(S) # 0. Let {a,} and {8,} be two
sequences in (0,1). Let {z,} be defined as (B). If ligirolf an(1 — o) > 0 and

liminf 8,(1 — 3,) > 0, then lim d(y,,2,) = 0 and lim d(y/,, v) exists.

Proof. Let {z,} be a sequence defined by (B) and v € F(T) N F(S). By Lemma
3.2.7 nlg& d(zp,v) exists. Since d(y.,,v) < d(z,,v) < d(z1,v), so {z,} and {y/,} are
boundeds.

By (3.8), we have

d*(2n41,v) < d*(2n,v) — an(1 — an)d* (T, 2n).

Then o, (1 — a,,)d*(Ty.,, z,) < d*(2p,v) — d*(2p41,v).
Since liminf o, (1 — o) > 0, so there exist £ > 0 and N € N such that

an(l —a,) >k >0foralln >N, so

lim sup kd*(Ty),, z,) < limsup a, (1 — a,)d* (T, z,)

n—oo n—~oo

< limsup{d®(zy,v) — d* (241, 0)}

n—oo

=0.

Hence 0 < liminf d*(Ty.,, z,) < limsup d*(Ty.,, z,) < 0.

n—0oo n—o0

Then lim d*(T%.,2,) =0. This implies that  lim d(Ty),z,) =0.  (3.9)

n—oo n—o0

By (3.7), we have
d*(2p11,v) < apd®(y),v) + (1 — an)d® (2, v) — an(l — ay,)d*(Ty.,, 2n).

Then a,[d?*(2,,v) — d*(y,,v)] < d*(zn,v) — d*(2p11,v).

Since ay, (1 — o) <, so liminf oy, >0 .

n—oo
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Using the same argument we have Jlrgo(d2(zn, v) — d*(yl,v)) = 0.
By (3.6), we have d*(y/,,v) < d*(zn,v) — Bu(1l — 8,)d%(Szn, 2n)-
Then 3,(1 — 3,)d*(Szn, 2) < d?(2p,v) — d*(y,, v).

Since ligri) iOI.}f Bn(1 — 3,) > 0. Using the same argument we have

lim d*(Szn, z,) = 0. This implies that ~ lim d(Sz,, z,) = 0. (3.10)

n—~oo n—0o0

Hence

limsup d(y,,, z,) = limsup ,d(Sz,, z,) < limsupd(Sz,, z,) = 0.

n—o0 n—o0o n—oo

So lim d(y,, z,) = 0. Since lim (d*(2,,v) —d*(y/,,v)) = 0 and lim d(z,,v) exists,

n—oo n—oo n—oo

then lim d(y,,v) exists. O
n—oo
Now we are ready to prove A—convergence theorem for a sequence {z,}.

Theorem 3.2.9. Let E be a nonempty closed convex subset of a complete CAT(0)
space X, and let 7' : ' — F satisfies condition (C) and S : F — F is a non-
spreading mapping such that F(T) N F(S) # 0. Let {a,} and {8,} be two
sequences in (0,1). Let {z,} be defined as (B). If lirrlriiogf an(l —a,) > 0 and
lirrlriglfﬁn(l — [(n) > 0, then A—li}lnzn =v e F(T)NF(S).

Proof. Let {z,} be a sequence defined by (B) and v € F(T) N F(S). By Lemma
3.2.7, we have nango (zn,v) exists. Then {z,} is bounded. By Lemma 3.2.8, we
have lim d(y,, z,) = 0 and lim d(y,,v) exists. Then {y,} is also bounded.

By (3.10) we have nh_)nge d(Szy, z,) = 0 and by (3.9) we have nh_)nolo d(Ty., zn) = 0.
Since d(Ty,,,y,,) < d(Ty.,zn) + d(zn,7,), then nlLHOlO d(Ty,,y,,) = 0. By Lemma
3.2.3 and Remark 3.2.2; there exist z,y € E such that w,({z,}) = {Z} C F(S)
and w,,({v,,}) = {y} € F(T). So, A—li7r1n z, = Z and A—liyllny;l = 3. By Lemma
2.2.15, Z = §. O
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