Chapter 3

Δ -Convergence Theorems

This chapter is divided in to 2 sections. In section 1, we prove existence theorems for some generalized nonexpansive mappings and nonspreading mappings in CAT(0) spaces. In section 2, we prove Δ -convergence theorems for some generalized nonexpansive mappings and nonspreading mappings in CAT(0) spaces.

3.1 Existence Theorems

Theorem 3.1.1. Let E be a nonempty bounded closed convex subset of a complete CAT(0) space X, and let $T : E \to E$ satisfies condition (C) and $S : E \to E$ is a nonspreading mapping. Let T and S are commuting mappings on E. Then T and S have a common fixed point.

Proof. By Lemma 2.3.7, we have $F(T) \neq \emptyset$. By the assumption T and S are commuting mappings on E, we have Sx = S(Tx) = T(Sx) and hence $Sx \in F(T)$ for all $x \in F(T)$. So $S : F(T) \to F(T)$. By Remark 2.4.3 and E is bounded, we can use Lemma 2.4.4, then we have $F(S) \neq \emptyset$. So there exists $y \in F(S)$ such that $y = Sy \in F(T)$. So $y \in F(T) \cap F(S)$.

ลิขสิทธิ์มหาวิทยาลัยเชียงไหม่ Copyright[©] by Chiang Mai University All rights reserved

3.2 Δ -Convergence Theorems

We defined $\omega_w(\{x_n\}) := \bigcup A(\{u_n\})$ where the union is taken over any subsequence $\{u_n\}$ of $\{x_n\}$. In order to prove our main theorem the following facts are needed.

Lemma 3.2.1 ([22]). Let E be a nonempty closed convex subset of a complete CAT(0) space X, and let $T : E \to X$ be a generalized hybrid mapping. If $\{x_n\}$ is a bounded sequence in E such that $\lim_{n\to\infty} d(x_n, Tx_n) = 0$ and $\{d(x_n, v)\}$ converges for all $v \in F(T)$, then $\omega_w(\{x_n\}) \subset F(T)$. Furthermore, $\omega_w(\{x_n\})$ consists of exactly one point.

Remark 3.2.2 ([22]). The conclusion of Lemma 3.2.1 is still true if $T : E \to X$ is any one of nonexpansive mapping, nonspreading mapping, TJ1 mapping, TJ2 mapping, and hybrid mapping.(For other mapping, one can also refer [22].)

We need the following lemmas for complete the proof of main results.

Lemma 3.2.3. Let E be a nonempty closed convex subset of a complete CAT(0) space X, and let $T : E \to X$ satisfies condition (C). If $\{x_n\}$ is a bounded sequence in E such that $\lim_{n\to\infty} d(Tx_n, x_n) = 0$ and $\{d(x_n, v)\}$ converges for all $v \in F(T)$, then $\omega_w(\{x_n\}) \subset F(T)$. Furthermore, $\omega_w(\{x_n\})$ consists of exactly one point.

Proof. By the assumption $\{x_n\}$ is a bounded sequence in E such that $\lim_{n\to\infty} d(Tx_n, x_n) = 0$. Let $u \in \omega_w(\{x_n\})$, then there exists a subsequence $\{u_n\}$ of $\{x_n\}$ such that $A(\{u_n\}) = \{u\}$. By Lemma 2.2.12 and 2.2.13 there exists a subsequence $\{v_n\}$ of $\{u_n\}$ such that $\Delta - \lim_{n\to\infty} u_n = v \in E$. Since $\lim_{n\to\infty} d(Tv_n, v_n) =$ 0, then $v \in F(T)$ by Lemma 2.3.8. By the assumption $\{d(x_n, v)\}$ converges for all $v \in F(T)$, then $u = v \in F(T)$ by Lemma 2.2.14. This shows that $\omega_w(\{x_n\}) \subset$ F(T). Next, we show that $\omega_w(\{x_n\})$ consists of exactly one point. Let $A(\{x_n\}) =$ $\{x\}$ and $\{u_n\}$ be a subsequence of $\{x_n\}$ with $A(\{u_n\}) = \{u\}$. Since $u \in \omega_w(\{x_n\}) \subset$ F(T), we have seen that $u = v \in F(T)$ then $\{d(x_n, u)\}$ converges. By Lemma 2.2.14, x = u. Now, we define the sequence $\{x_n\}$ by

$$(A) \begin{cases} x_1 \in E, \\ x_{n+1} = \alpha_n S y_n \oplus (1 - \alpha_n) x_n, \end{cases}$$

where $y_n = \beta_n T x_n \oplus (1 - \beta_n) x_n$ for all $n \in N$ and we prove the following lemma which, in fact, forms a major part of the proofs of both Δ and strong convergence theorems for a sequence $\{x_n\}$.

Lemma 3.2.4. Let E be a nonempty closed convex subset of a complete CAT(0) space X, and let $T : E \to E$ satisfies condition (C) and $S : E \to E$ is a non-spreading mapping such that $F(T) \cap F(S) \neq \emptyset$. Let $\{x_n\}$ be defined as (A). Then $\lim_{n\to\infty} d(x_n, w)$ exists for all $w \in F(T) \cap F(S)$.

Proof. Let $\{x_n\}$ be a sequence defined by (A) and $w \in F(T) \cap F(S)$. Then $d(Tx, w) \leq d(x, w)$ and $d(Sy, w) \leq d(y, w)$ for all $x, y \in E$. By Lemma 2.2.9(ii), we have

$$d^{2}(y_{n}, w) = d^{2}(\beta_{n}Tx_{n} \oplus (1 - \beta_{n})x_{n}, w)$$

$$\leq \beta_{n}d^{2}(Tx_{n}, w) + (1 - \beta_{n})d^{2}(x_{n}, w) - \beta_{n}(1 - \beta_{n})d^{2}(Tx_{n}, x_{n})$$

$$\leq \beta_{n}d^{2}(x_{n}, w) + (1 - \beta_{n})d^{2}(x_{n}, w) - \beta_{n}(1 - \beta_{n})d^{2}(Tx_{n}, x_{n})$$

$$= d^{2}(x_{n}, w) - \beta_{n}(1 - \beta_{n})d^{2}(Tx_{n}, x_{n}) \qquad (3.1)$$

$$\leq d^{2}(x_{n}, w)$$

and

$$d^{2}(x_{n+1}, w) = d^{2}(\alpha_{n}Sy_{n} \oplus (1 - \alpha_{n})x_{n}, w)$$

$$\leq \alpha_{n}d^{2}(Sy_{n}, w) + (1 - \alpha_{n})d^{2}(x_{n}, w) - \alpha_{n}(1 - \alpha_{n})d^{2}(Sy_{n}, x_{n})$$

$$\leq \alpha_{n}d^{2}(y_{n}, w) + (1 - \alpha_{n})d^{2}(x_{n}, w) - \alpha_{n}(1 - \alpha_{n})d^{2}(Sy_{n}, x_{n}) \quad (3.2)$$

$$\leq \alpha_{n}d^{2}(x_{n}, w) + (1 - \alpha_{n})d^{2}(x_{n}, w) - \alpha_{n}(1 - \alpha_{n})d^{2}(Sy_{n}, x_{n})$$

$$\leq d^{2}(x_{n}, w) - \alpha_{n}(1 - \alpha_{n})d^{2}(Sy_{n}, x_{n}) \quad (3.3)$$

$$\leq d^{2}(x_{n}, w).$$

So $\{d(x_n, w)\}$ is bounded and decreasing sequence.

Hence $\lim_{n \to \infty} d(x_n, w)$ exists.

Lemma 3.2.5. Let E be a nonempty closed convex subset of a complete CAT(0) space X, and let $T : E \to E$ satisfies condition (C) and $S : E \to E$ is a non-spreading mapping such that $F(T) \cap F(S) \neq \emptyset$. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be two sequences in (0,1). Let $\{x_n\}$ be defined as (A). If $\liminf_{n\to\infty} \alpha_n(1-\alpha_n) > 0$ and $\liminf_{n\to\infty} \beta_n(1-\beta_n) > 0$, then $\lim_{n\to\infty} d(y_n, x_n) = 0$ and $\lim_{n\to\infty} d(y_n, w)$ exist.

Proof. Let $\{x_n\}$ be a sequence defined by (A) and $w \in F(T) \cap F(S)$. By Lemma 3.2.4 $\lim_{n \to \infty} d(x_n, w)$ exists. Since $d(y_n, w) \leq d(x_n, w) \leq d(x_1, w)$, so $\{x_n\}$ and $\{y_n\}$ are boundeds.

By (3.3), we have

$$d^{2}(x_{n+1}, w) \leq d^{2}(x_{n}, w) - \alpha_{n}(1 - \alpha_{n})d^{2}(Sy_{n}, x_{n}).$$

Then

$$\alpha_n(1-\alpha_n)d^2(Sy_n,x_n) \le d^2(x_n,w) - d^2(x_{n+1},w)$$

Since $\liminf_{n\to\infty} \alpha_n(1-\alpha_n) > 0$, so there exist k > 0 and $\exists N \in \mathbb{N}$ such that $\alpha_n(1-\alpha_n) \ge k$ for all $n \ge N$, so

$$\limsup_{n \to \infty} kd^2(Sy_n, x_n) \le \limsup_{n \to \infty} \alpha_n (1 - \alpha_n) d^2(Sy_n, x_n)$$
$$\le \limsup_{n \to \infty} \left(d^2(x_n, w) - d^2(x_{n+1}, w) \right)$$
$$= 0.$$

Hence $0 \leq \liminf_{n \to \infty} d^2(Sy_n, x_n) \leq \limsup_{n \to \infty} d^2(Sy_n, x_n) \leq 0.$

Then $\lim_{n \to \infty} d^2(Sy_n, x_n) = 0$. This implies that $\lim_{n \to \infty} d(Sy_n, x_n) = 0$. (3.4)

By (3.2), we have

$$d^{2}(x_{n+1}, w) \leq \alpha_{n} d^{2}(y_{n}, w) + (1 - \alpha_{n}) d^{2}(x_{n}, w) - \alpha_{n} (1 - \alpha_{n}) d^{2}(Sy_{n}, x_{n}).$$

Then

$$\alpha_n[d^2(x_n, w) - d^2(y_n, w)] \le d^2(x_n, w) - d^2(x_{n+1}, w)$$

Since $\alpha_n(1 - \alpha_n) < \alpha_n$ so $\liminf_{n \to \infty} \alpha_n > 0$. Using the same argument we have $\lim_{n \to \infty} (d^2(x_n, w) - d^2(y_n, w)) = 0$. By (3.1), we get

$$d^{2}(y_{n}, w) \leq d^{2}(x_{n}, w) - \beta_{n}(1 - \beta_{n})d^{2}(Tx_{n}, x_{n})$$

Then

$$\beta_n(1-\beta_n)d^2(Tx_n,x_n) \le d^2(x_n,w) - d^2(y_n,w).$$

Since $\liminf_{n \to \infty} \beta_n(1 - \beta_n) > 0$. Using the same argument we have

$$\lim_{n \to \infty} d^2(Tx_n, x_n) = 0. \quad \text{This implies that} \quad \lim_{n \to \infty} d(Tx_n, x_n) = 0. \tag{3.5}$$

Hence

$$\limsup_{n \to \infty} d(y_n, x_n) = \limsup_{n \to \infty} \beta_n d(Tx_n, x_n) \le \limsup_{n \to \infty} d(Tx_n, x_n) = 0.$$

So $\lim_{n \to \infty} d(y_n, x_n) = 0$. Since $\lim_{n \to \infty} (d^2(x_n, w) - d^2(y_n, w)) = 0$ and $\lim_{n \to \infty} d(x_n, w)$ exists, then $\lim_{n \to \infty} d(y_n, w)$ exists.

Now we are ready to prove Δ -convergence theorem for a sequence $\{x_n\}$.

Theorem 3.2.6. Let E be a nonempty closed convex subset of a complete CAT(0) space X, and let $T : E \to E$ satisfies condition (C) and $S : E \to E$ is a non-spreading mapping such that $F(T) \cap F(S) \neq \emptyset$. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be two sequences in (0,1). Let $\{x_n\}$ be defined as (A). If $\liminf_{n\to\infty} \alpha_n(1-\alpha_n) > 0$ and $\liminf_{n\to\infty} \beta_n(1-\beta_n) > 0$, then $\Delta - \lim_n x_n = w \in F(T) \cap F(S)$.

Proof. Let $\{x_n\}$ be a sequence defined by (A) and $w \in F(T) \cap F(S)$. By Lemma 3.2.4, we have $\lim_{n \to \infty} d(x_n, w)$ exists. Then $\{x_n\}$ is bounded. By Lemma 3.2.5, we have $\lim_{n \to \infty} d(y_n, x_n) = 0$ and $\lim_{n \to \infty} d(y_n, w)$ exists. Then $\{y_n\}$ is also bounded. By (3.5) we have $\lim_{n \to \infty} d(Tx_n, x_n) = 0$ and by (3.4) we have $\lim_{n \to \infty} d(Sy_n, x_n) = 0$. Since $d(Sy_n, y_n) \leq d(Sy_n, x_n) + d(x_n, y_n)$, then $\lim_{n \to \infty} d(Sy_n, y_n) = 0$. By Lemma 3.2.3 and Remark 3.2.2, there exist $\bar{x}, \bar{y} \in E$ such that $\omega_w(\{x_n\}) = \{\bar{x}\} \subset F(T)$ and $\omega_w(\{y_n\}) = \{\bar{y}\} \subset F(S)$. So, $\Delta - \lim_n x_n = \bar{x}$ and $\Delta - \lim_n y_n = \bar{y}$. By Lemma 2.2.15, $\bar{x} = \bar{y}$. Now, we define the sequence $\{z_n\}$ by

$$(B) \begin{cases} z_1 \in E, \\ z_{n+1} = \alpha_n T y'_n \oplus (1 - \alpha_n) z_n, \end{cases}$$

where $y'_n = \beta_n S z_n \oplus (1 - \beta_n) z_n$ for all $n \in N$ and we prove the following lemma which, in fact, forms a major part of the proofs of both Δ and strong convergence theorems for a sequence $\{z_n\}$.

Lemma 3.2.7. Let E be a nonempty closed convex subset of a complete CAT(0) space X, and let $T : E \to E$ satisfies condition (C) and $S : E \to E$ is a non-spreading mapping such that $F(T) \cap F(S) \neq \emptyset$. Let $\{z_n\}$ be defined as (B). Then $\lim_{n\to\infty} d(z_n, v)$ exists for all $v \in F(T) \cap F(S)$.

Proof. Let $\{z_n\}$ be a sequence defined by (B) and $v \in F(T) \cap F(S)$. Then $d(Sz, v) \leq d(z, v)$ and $d(Ty', v) \leq d(y', v)$ for all $z, y' \in E$. By Lemma 2.2.9(ii), we have

$$d^{2}(y_{n}',v) = d^{2}(\beta_{n}Sz_{n} \oplus (1-\beta_{n})z_{n},v)$$

$$\leq \beta_{n}d^{2}(Sz_{n},v) + (1-\beta_{n})d^{2}(z_{n},v) - \beta_{n}(1-\beta_{n})d^{2}(Sz_{n},z_{n})$$

$$\leq \beta_{n}d^{2}(z_{n},v) + (1-\beta_{n})d^{2}(z_{n},v) - \beta_{n}(1-\beta_{n})d^{2}(Sz_{n},z_{n})$$

$$= d^{2}(z_{n},v) - \beta_{n}(1-\beta_{n})d^{2}(Sz_{n},z_{n})$$

$$\leq d^{2}(z_{n},v)$$
(3.6)

and

$$d^{2}(z_{n+1}, v) = d^{2}(\alpha_{n}Ty'_{n} \oplus (1 - \alpha_{n})z_{n}, v)$$

$$\leq \alpha_{n}d^{2}(Ty'_{n}, v) + (1 - \alpha_{n})d^{2}(z_{n}, v) - \alpha_{n}(1 - \alpha_{n})d^{2}(Ty'_{n}, z_{n})$$

$$\leq \alpha_{n}d^{2}(y'_{n}, v) + (1 - \alpha_{n})d^{2}(z_{n}, v) - \alpha_{n}(1 - \alpha_{n})d^{2}(Ty'_{n}, z_{n}) \qquad (3.7)$$

$$\leq \alpha_{n}d^{2}(z_{n}, v) + (1 - \alpha_{n})d^{2}(z_{n}, v) - \alpha_{n}(1 - \alpha_{n})d^{2}(Ty'_{n}, z_{n})$$

$$\leq d^{2}(z_{n}, v) - \alpha_{n}(1 - \alpha_{n})d^{2}(Ty'_{n}, z_{n}) \qquad (3.8)$$

$$\leq d^{2}(z_{n}, v).$$

So $\{d(z_n, v)\}$ is bounded and decreasing sequence.

Hence $\lim_{n \to \infty} d(z_n, v)$ exists.

Lemma 3.2.8. Let E be a nonempty closed convex subset of a complete CAT(0) space X, and let $T : E \to E$ satisfies condition (C) and $S : E \to E$ is a non-spreading mapping such that $F(T) \cap F(S) \neq \emptyset$. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be two sequences in (0,1). Let $\{z_n\}$ be defined as (B). If $\liminf_{n\to\infty} \alpha_n(1-\alpha_n) > 0$ and $\liminf_{n\to\infty} \beta_n(1-\beta_n) > 0$, then $\lim_{n\to\infty} d(y'_n, z_n) = 0$ and $\lim_{n\to\infty} d(y'_n, v)$ exists.

Proof. Let $\{z_n\}$ be a sequence defined by (B) and $v \in F(T) \cap F(S)$. By Lemma 3.2.7 $\lim_{n \to \infty} d(z_n, v)$ exists. Since $d(y'_n, v) \leq d(z_n, v) \leq d(z_1, v)$, so $\{z_n\}$ and $\{y'_n\}$ are boundeds.

By (3.8), we have

$$d^{2}(z_{n+1}, v) \leq d^{2}(z_{n}, v) - \alpha_{n}(1 - \alpha_{n})d^{2}(Ty'_{n}, z_{n})$$

Then $\alpha_n(1-\alpha_n)d^2(Ty'_n, z_n) \le d^2(z_n, v) - d^2(z_{n+1}, v).$

Since $\liminf_{n\to\infty} \alpha_n(1-\alpha_n) > 0$, so there exist k > 0 and $N \in \mathbb{N}$ such that $\alpha_n(1-\alpha_n) \ge k > 0$ for all $n \ge N$, so

$$\limsup_{n \to \infty} kd^2(Ty'_n, z_n) \le \limsup_{n \to \infty} \alpha_n (1 - \alpha_n) d^2(Ty'_n, z_n)$$
$$\le \limsup_{n \to \infty} \{d^2(z_n, v) - d^2(z_{n+1}, v)\}$$
$$= 0.$$

Hence $0 \leq \liminf_{n \to \infty} d^2(Ty'_n, z_n) \leq \limsup_{n \to \infty} d^2(Ty'_n, z_n) \leq 0.$

Then $\lim_{n \to \infty} d^2(Ty'_n, z_n) = 0$. This implies that $\lim_{n \to \infty} d(Ty'_n, z_n) = 0.$ (3.9)

By (3.7), we have

$$d^{2}(z_{n+1}, v) \leq \alpha_{n} d^{2}(y'_{n}, v) + (1 - \alpha_{n}) d^{2}(z_{n}, v) - \alpha_{n}(1 - \alpha_{n}) d^{2}(Ty'_{n}, z_{n}).$$

Then $\alpha_n[d^2(z_n, v) - d^2(y'_n, v)] \le d^2(z_n, v) - d^2(z_{n+1}, v).$ Since $\alpha_n(1 - \alpha_n) < \alpha_n$ so $\liminf_{n \to \infty} \alpha_n > 0$.

Using the same argument we have $\lim_{n\to\infty} (d^2(z_n, v) - d^2(y'_n, v)) = 0.$ By (3.6), we have $d^2(y'_n, v) \leq d^2(z_n, v) - \beta_n(1 - \beta_n)d^2(Sz_n, z_n).$ Then $\beta_n(1 - \beta_n)d^2(Sz_n, z_n) \leq d^2(z_n, v) - d^2(y'_n, v).$ Since $\liminf_{n\to\infty} \beta_n(1 - \beta_n) > 0.$ Using the same argument we have

(3.10)

$$\lim_{n \to \infty} d^2(Sz_n, z_n) = 0.$$
 This implies that $\lim_{n \to \infty} d(Sz_n, z_n) = 0.$

Hence

$$\limsup_{n \to \infty} d(y'_n, z_n) = \limsup_{n \to \infty} \beta_n d(Sz_n, z_n) \le \limsup_{n \to \infty} d(Sz_n, z_n) = 0.$$

So $\lim_{n \to \infty} d(y'_n, z_n) = 0$. Since $\lim_{n \to \infty} (d^2(z_n, v) - d^2(y'_n, v)) = 0$ and $\lim_{n \to \infty} d(z_n, v)$ exists, then $\lim_{n \to \infty} d(y'_n, v)$ exists.

Now we are ready to prove Δ -convergence theorem for a sequence $\{z_n\}$.

Theorem 3.2.9. Let E be a nonempty closed convex subset of a complete CAT(0) space X, and let $T : E \to E$ satisfies condition (C) and $S : E \to E$ is a non-spreading mapping such that $F(T) \cap F(S) \neq \emptyset$. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be two sequences in (0,1). Let $\{z_n\}$ be defined as (B). If $\liminf_{n\to\infty} \alpha_n(1-\alpha_n) > 0$ and $\liminf_{n\to\infty} \beta_n(1-\beta_n) > 0$, then $\Delta - \lim_n z_n = v \in F(T) \cap F(S)$.

Proof. Let $\{z_n\}$ be a sequence defined by (B) and $v \in F(T) \cap F(S)$. By Lemma 3.2.7, we have $\lim_{n \to \infty} d(z_n, v)$ exists. Then $\{z_n\}$ is bounded. By Lemma 3.2.8, we have $\lim_{n \to \infty} d(y'_n, z_n) = 0$ and $\lim_{n \to \infty} d(y'_n, v)$ exists. Then $\{y'_n\}$ is also bounded. By (3.10) we have $\lim_{n \to \infty} d(Sz_n, z_n) = 0$ and by (3.9) we have $\lim_{n \to \infty} d(Ty'_n, z_n) = 0$. Since $d(Ty'_n, y'_n) \leq d(Ty'_n, z_n) + d(z_n, y'_n)$, then $\lim_{n \to \infty} d(Ty'_n, y'_n) = 0$. By Lemma 3.2.3 and Remark 3.2.2, there exist $\bar{z}, \bar{y} \in E$ such that $\omega_w(\{z_n\}) = \{\bar{z}\} \subset F(S)$ and $\omega_w(\{y'_n\}) = \{\bar{y}\} \subset F(T)$. So, $\Delta - \lim_n z_n = \bar{z}$ and $\Delta - \lim_n y'_n = \bar{y}$. By Lemma 2.2.15, $\bar{z} = \bar{y}$.