CHAPTER 3
MAIN RESULTS

In this chapter, we present the characterization of the natural partial order
on S(X,Y), and give necessary and sufficient conditions for elements in S(X,Y)
to be minimal or maximal. Moreover, we find elements of S(X,Y) which are
compatible with < on S(X,Y), and count the numbers of minimal and maximal

elements of S(X,Y) when X is a finite set.

3.1 Characterizations

In this section, we give necessary and sufficient conditions for o < 8 where o, 3 €

S(X,Y).

Theorem 3.1.1 Let o, 5 € S(X,Y). Then a < B if and only if «, 5 satisfy the
following conditions:

(i) Xa C Xp and Ya CY(;

(ii) mg refines m, and ma(Y') refines mo(Y);

(iii) for each x € X, 8 € Xa implies ra = x3.

Proof. Assume that « < . Then there exist v,u € S(X,Y) such that a =
v68 = Pp and o = ap by Lemma 2.4.3. From a = v/, we have Xa C X/ and
Ya C Y3 by Lemma 2.4.1 and from o = fu, we get ms refines 7, and mg(Y)
refines 7,(Y) by Lemma 2.4.2. If 28 € Xa, then 2 = za for some z € X and
therefore za = xfp = zap = za = x0.

Conversely, assume that the conditions hold. From (i) and (ii), there exist
v, 1 € S(X,Y) such that o« = v = Su by Lemma 2.4.1 and Lemma 2.4.2. For
each x € X, we have xa = zyf = yf for some y € X, so yf € Xa. By (iii), we
get ya = yfB and hence xa = yf = ya = yBu = rau, that is, a« = au. Therefore,
a < B by Lemma 2.4.3. [ |



Example 3.1.2 Let X = {1,2,3,4,5,6} and Y = {1,2,3}. We define o, €

S(X,Y) by

1 23456 1 23456

o = 7/8 =

1 2 2 4 46 1 23 446
Then there are v, u € S(X,Y) such that

1 2 3 45 6 1 2 3 456

= = )
1 2 2 4 46 1 22 456

and o = y6 = Bu, a = ap which follow that o < . In addition, we can check
that o < 8 by using Theorem 3.1.1 as below.

(1) Xa = {1,2,4,6} C {1,2,3,4,6} = XB and Ya = {1,2} C {1,2,3} =
Y B;

(i) Since mg = {{1}, {2}, {3}, {4,5}, {6}}, ma = {{1}, {2, 3}, {4,5}, {6} },
m3(Y) = {{1},{2},{3}}, and 7. (Y) = {{1},{2,3}}, we have 74 refines 7, and
mg(Y") refines 7, (Y);

(iii) 15,26,48,56,60 € Xa and la = 15,2a = 26,4a = 45,5a = 50,
6o = 6. [

Corollary 3.1.3 Let o, € T(X). Then a < B if and only if o, 8 satisfy the
following conditions:

(i) Xa C Xp;

(i) mg refines my;

(iii) for each x € X, 8 € Xa implies ra = x .

Proof. By taking Y = X, we obtain S(X,Y) =T(X), Ya = Xa, Y = X and
73(Y) = mg, ma(Y) = m,. Thus the proof is complete by Theorem 3.1.1. |
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3.2 Minimal and Maximal Elements

In this section, we give necessary and sufficient conditions for elements in S(X,Y)

to be minimal or maximal elements.

Theorem 3.2.1 Let o € S(X,Y). Then « is a minimal element if and only if «

1S a constant map.

Proof. Assume that « is not a constant map. Then |Xa| > 1. Choose y € Ya
and define § € S(X,Y) by 8 = y for all x € X. Then o # . We have
X8 =A{y} € Ya C Xa, Y = {y} C Ya. Since g = {X} = m3(Y), 1,
refines w3 and 7, (Y') refines m3(Y). For each x € X, if za € X = {y}, implies
xa =y =2z0. Thus f < a and o # § by Theorem 3.1.1. Hence « is not minimal.

On the other hand, assume that « is a constant map with image {y}. Let
p € S(X,Y) besuch that § < . By (i) of Theorem 3.1.1, we get X5 C Xa = {y}.

Then 8 = a. Hence « is minimal. |

Example 3.2.2 Let X ={1,2,3,4} and Y = {1,2}. Consider

12346 123 4
1111] 2 2 2 9

Q
Il
I

Then we have o, 8 € S(X,Y) are the only two minimal elements by Theorem

3.2.1. |

Lemma 3.2.3 Let o € S(X,Y). If a is injective or « is surjective, then « is a

maximal element.

Proof. Assume that « is injective. Let § € S(X,Y) be such that « < . Since
a < B3, we have «, [ satisfy conditions (i) - (iii) of Theorem 3.1.1. Let y € Y. Then
ya € Ya C Y. Thus ya = /' for some 3/ € Y. Since ¢/ = ya € Ya C Xa,
we get y'a = y/B. Then ya = ¢/ = y'a. From « is injective, we have y = v/'.
So ya = yp for all y € Y. That is Xa C X and Ya = Y5, hence Xa \ Ya C
Xp\YgB.
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From ms refines 7, and « is injective, we get 3 is also injective. Since a and f3
are injective, Xa\ Ya = (X \ Y)a and X4\ Y5 = (X \ Y)B. This implies that
(X\Y)a C(X\Y)B. Now, let x € X \Y. Then za € (X \YV)a C (X \Y)5.
So za = zf for some z € X \ Y. Since 2z = xa € Xa, we have za = 2z by (iii)
of Theorem 3.1.1. Thus za = 28 = za. Since « is injective, x = z. So ra = z[.
Therefore o = (3, that is, a is maximal.

Next, we consider the case « is surjective. Then Xa = X = Xf3. By
(iii) of Theorem 3.1.1, we get xaw = a3 for all z € X. Thus v = § and so « is a

maximal element. [ |

Lemma 3.2.4 Let a € S(X,Y). If Y C Xa and a: X \Y — X \ Ya is injective,

then o is a maximal element.

Proof. Assumethat Y C Xaand o : X\Y — X\Yaisinjective. Let § € S(X,Y)
be such that @ < §. Then «, satisfy conditions (i) - (iii) of Theorem 3.1.1.
From Y C Y C Xa, we get ya = yf for all y € Y. Next, we show that
(X\Y)a C (X \Y)5. Suppose that there is x € (X \Y)a such that ¢ (X \Y)p.
Since (X \ Y)a € Xa C X3, we have x € Xf. From X =Y U (X \Y)S, we
get x € YGorxe (X\Y)B. Since x ¢ (X \Y)5, we have z € Y. Then there
is ¢ € Y such that x = ¢/8. From y/f =z € (X \Y)a, va = ¢/ by (iii) of
Theorem 3.1.1. Then z = ¢/ = y/a. Thus z = y’a € Yo which is a contradiction
since x € (X \ Y)a € X \ Ya by assumption. Hence there is no € (X \ V)«
such that z ¢ (X \ Y)S, that is (X \ Y)a C (X \ Y)g.

Let x € X\Y. Then za € (X \Y)a C (X \Y)S. Thus zaw = 2’ for some
¥ € X \Y. Since 25 = za € Xa, we get 2’a = 2/f by (iii) of Theorem 3.1.1.
Hence zav = 2’5 = 2’a. Since v : X \ 'Y — X \ Ya is injective, we have x = 2/. So

za = zf for all z € X \ Y. Therefore « = 3, that is, o is a maximal element. W

Lemma 3.2.5 Let o € S(X,Y). If l[ya™'| =1 forally € XanY and X \Y C

(X \Y)a, then « is a mazimal element.

Proof. Assume that the conditions hold. Let § € S(X,Y) be such that @ < .

Since a < 3, we have «, [ satisfy conditions (i) - (iii) of Theorem 3.1.1. Let y € Y.
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Then ya € Ya C Y. Thus ya = ' for some ¢y € Y. Since 3/ = ya € Ya C
Xa, we get y'a = 3/ by (iii) of Theorem 3.1.1. Then ya = ¢/ = y'«a. Since
ya € XanNY and y,y € (ya)a™!, we get y = ¢ by assumption. Thus ya = yf3
forally € Y. Now,let x € X \ Y. Since X C X = (X\Y)UYa)U (Y \Ya),
we consider three possibilities: If 26 = 2’ € X \Y C (X \Y)a C Xa, then
ra =zxf. If zf =2 € Ya C Xa, then zao = zf. If 28 = 2/ € Y \ Ya, then
B~ € mp(Y) since 2/ € XBNY. Since a < 8, we get m5(Y) refines m,(Y),
that is there exists z € XaNY such that /37! C za~!. Since |za™!| = 1 and
x € 2/, it follows that 2’371 = {x} = za~!. Then z8 = 2’ and xa = 2. Thus
z = za € Xa C X which implies that 2 € X NY and that 287! € m3(Y).
Again, since m5(Y) refines 7,(Y), we have 2671 C ua™! for some u € XaNY.
From |ua™!| = 1, we get 267" = {u'} = ua™! for some v’ € X. Hence v'ff = z
and v'a = u. Since v/ = z € Xa, it follows that v/ = v/« and that z = wu.
Since za™! = {z}, ua™ = {v'} and z = v € XaNY, we have x = «' by the
assumption. So ' = zf = v/ = z and hence xra = z = 2/ = z. In any cases, we
have xa = zf for all z € X \ Y.

So, a = (8 and therefore « is a maximal element. |

Example 3.2.6 Let X be the set of all natural numbers and Y the set of all positive

even integers. Consider

246 8 10 12 ... 1 3 5 7 9 11
o = )
4 6 8 10 12 14 ... 3 5 7 9 11 13
3 246 8 10 12 ... 1 3 5 7 9 11
4 4 6 8 10 12 ... 2 2 1 1 3 5 ’
2 46 8 10 12 ... 1 3 5 7 9 11
SYr— )
4 4 6 8 10 12 ... 2 3 5 7 9 11
24 6 8 10 12 ... 1 3 5 7 9 11

6 8 10 12 14 16 ... 2 1 1 3 5 7
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Since « is injective and [ is surjective, we have v and 3 are maximal elements by
Lemma 3.2.3. Since Y C X~y and v: X \Y — X \ Y is injective, we have v is a
maximal element by Lemma 3.2.4. Also, since |ypu~!| =1 for all y € X NY and
X\Y C(X\Y)u, we have p is a maximal element by Lemma 3.2.5. |

In order to prove Thoerem 3.2.9, the following two lemmas are needed.

Lemma 3.2.7 Let a € S(X,Y). If a is a mazimal element and |ya™'| > 1 for
somey € XanyY, thenY C Xa.

Proof. Assume that « is a maximal element and |ya~!| > 1 for some y € XaNY.
Suppose that Y ¢ Xa. Then there is z € Y such that z ¢ Xa. Since |ya™t| > 1,
there exist a,b € ya~! such that a # b, that is aa = ba = y € XaNY. We define
peSX,Y) by

rxa if x#£D,
xp =

z if z=0b.
Since X3 = XaU{z}, we obtain o # 8 and Xa C X3. If z € Y3, then Y3 =
YaU{z}. But, if z ¢ Y3, then Y3 = Ya. It follows that Ya C Y 3. Since
2871 = {b} Cya! and uft Cua! for all u € XB\ {2}, we have mj refines
T and w3(Y) refines m,(Y). If # € X and 28 € Xa, then  # b, so 2 = za
by the definition of 8. Then o < 8 by Theorem 3.1.1. This implies o« < 8 which

contradicts the maximality of a.. Therefore, Y C X« as required. ]

Lemma 3.2.8 Let a € S(X,Y). If a is a mazimal element, o is not injective and

X\Y € (X\Y)a, thenY C Xa.

Proof. Assume that « is a maximal element, « is not injective and X \ 'Y ¢
(X \Y)a. Suppose that Y ¢ Xa. Then there is z € Y such that z ¢ Xa. Since

« is not injective, there exist a,b € X such that a # b and ac = ba.
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Case aa = ba € Y: We define f € S(X,Y) by

xa if x#£D,

z if x=0.

Since X3 = XaU{z}, we obtain a # f and Xa C XB. If z € Y, then
Y =YaU{z}. If z ¢ Y, then Y3 = Ya. It follows that Ya C Y. Since
2871 ={b} C (ba)a~! and uf™ Cua~! for all u € X3\ {z}, we have 75 refines
To. Let A € m3(Y). Then A =yB7 ' forsomey € XfNY. If 2=y € XBNY,
then A = 287! = {b} C (ba)a~! where ba € XaNY. If 2 £y € XBNY, then
A=ypt Cya! where y € XanY. Hence m5(Y) refines 7, (Y). If z € X and
xf € Xa, then x # b, so x5 = za by the definition of 5. Then a < § by Theorem
3.1.1. This implies a < .

Case av = ba € X \'Y: Then a,b € X \ Y. Since X \Y € (X \ Y)a, there is
2/ € X\ 'Y such that 2/ ¢ (X \ Y)a. Since Ya CY and 2/ ¢ Y, we get 2/ ¢ Ya.
Thus 2’ ¢ Xa. We define 8 € S(X,Y) by

xa if x # b,

Z  if x=0.

Since X = XalU{z'}, we obtain o #  and Xa C Xj3. Since b ¢ Y, we get
Ya =Y. Since 2/~ = {b} C (ba)a™! and uf~! Cua™t for allu € XS\ {7},
we have s refines m,. Let A € mg(Y). Then A = yB~! for some y € XfNY.
Since 2’ ¢ Y, we have 2/ Zy € XfNY,s0 A=yB ' Cya! wherey € XanyY.
Hence m3(Y) refines m,(Y). If x € X and 20 € Xa, then z # b, so 28 = za by
the definition of 5. Then o < 8 by Theorem 3.1.1. This implies a < .

In any cases, we have a < [ which contradicts the maximality of a.

Therefore, Y C X« as required. |
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Theorem 3.2.9 Let o € S(X,Y). Then « is a maximal element if and only if
one of the following statements holds.

(i) « is injective.

(i) « is surjective.

(i) Y C Xa and o : X \'Y — X \ Y is injective.

(iv) [ya™| =1 forally € XanNY and X \Y C (X \Y)a.

Proof. Assume that « is a maximal element of S(X,Y) under <. We prove that
one of the conditions (i)-(iv) holds by supposing that (i),(ii) and (iv) are false.
That is there are two cases arise:

L. av is not injective, « is not surjective and [ya~!| > 1 for some y € XaNY,
or II. « is not injective, « is not surjective and X \' Y € (X \ Y)a.

If 1. occurs, then by Lemma 3.2.7, we have Y C Xa. Now, we show that
a: X \Y — X\ Ya by supposing that there is a € X \ 'Y such that aa € Ya. Let
b = aa. Since b € Ya, we get b = ya for some y € Y. Since « is not surjective

and Y C Xa, there is z € X \ Y such that z ¢ Xa. We define g € S(X,Y) by

ra if x #a,
z if z=a.

Since X3 = XaU{z}, we obtain a # 8 and Xa C X3. Since a ¢ Y, we get
Ya =Yp. Since 287! = {a} C (aa)a™ and uf™' Cua™! for all u € X3\ {z},
we have 7 refines m, and m3(Y) refines m,(Y). If x € X and 20 € Xa, then
x # a, so xff = xa by the definition of 5. Then o < 8 by Theorem 3.1.1. This
implies o < # which is a contradiction. Hence o : X \' Y — X \ Ya.
Next, we show that o : X \ Y — X \ Y is injective. Suppose that there

exist u,v € X \ Y such that u # v and ua = va. We define v € S(X,Y) by

ra if x # v,

Ty =

z it x=w.
Since Xv = XaU{z}, we obtain a # v and Xa C X~. Since v ¢ Y, we get
Ya =Y7. Since 277! = {v} C (va)a™ and wy™' Cwa™! for all w € X\ {2},
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we have 7, refines 7, and m,(Y) refines m,(Y). If + € X and 2y € Xa, then
x # v, so xy = xa by the definition of v. Then o < v by Theorem 3.1.1. This

implies o < v which is a contradiction. Hence oo : X \' Y — X \ Y is injective.

If II. occurs, then by Lemma 3.2.8, we also get Y C Xa. And by the same
proof as given for case I, we obtain that « : X \ Y — X \ Ya.
Finally, we show that a: X \'Y — X \ Ya is injective. Suppose that there
exist v/,v" € X \ 'Y such that v/ # ¢" and v'a = v'a. Since X \Y € (X \ Y)a,
there is 2/ € X \ Y such that 2/ ¢ (X \ Y)a. Since Ya C Y and 2/ ¢ Y, we get
2’ ¢ Ya. Thus 2’ ¢ Xa. We define o0 € S(X,Y) by
xa if x £,

TO =

Z  if =0

Since Xo = XaU{z'}, we obtain o # ¢ and Xa C Xo. Since v/ ¢ Y, we get
Ya =Yo. Since 2’07t = {v'} C (va)a™! and uo™! Cua~! for all u € Xo \ {7},
we have 7, refines 7, and 7,(Y) refines 7,(Y). If x € X and zo € Xa, then
x # v, so xo = xa by the definition of 0. Then a < o by Theorem 3.1.1. This
implies o < o which is a contradiction. Hence o : X \' Y — X \ Y« is injective.

In both cases, we get ¥ C Xa and o : X \ Y — X \ Y is injective.
Therefore, we obtain (iii).

The converse is true by Lemma 3.2.3, Lemma 3.2.4 and Lemma 3.2.5. B

Next, we give a necessary and sufficient condition for elements in S(X,Y)

to be a minimum element.
Theorem 3.2.10 S(X,Y) has a minimum element if and only if |Y| = 1.

Proof. Assume that S(X,Y) has a minimum element, say v. Let a,b € Y and
a, 5 constant maps in S(X,Y') with images {a} and {b}, respectively. By Theorem
3.2.1, o and (8 are minimal elements. Since v is minimum, « = v = . Then a = b.

Hence Y| = 1.
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Conversely, let Y = {y} and « a constant map in S(X,Y") with image {y}.
Let 8 € S(X,Y). We show that < 8. Since f € S(X,Y), Y3 C Y = {y}.
Then Y = {y}. Thus Ya = {y} =Y and Xa = {y} =Y C Xf. Since 7, =
oY) = {X}, we get 1z refines 7, and 75(Y) refines 7, (Y). Let 25 € Xa = {y}.

Then zf8 = y = xa. Therefore a < 3, and so « is a minimum element. |

Lemma 3.2.11 If |Y| > 2, then S(X,Y’) has neither mazimum element nor mini-

mum element.

Proof. Assume that |Y| > 2. By Theorem 3.2.10, we have S(X,Y) has no
minimum element. Next, we show that S(X,Y) has no maximum element. Let «

be an identity map. Then « is injective. By Lemma 3.2.3, we have « is maximal.

Since |Y| > 2, there exist a,b € Y such that a # b. We define g € S(X,Y) by
(

b if z=a,
=S¢ if x =0,

x if = ¢ {a,b}.
\

Then o # 8 and [ is injective. By Lemma 3.2.3, we get ( is maximal. Suppose

that S(X,Y’) has a maximum element, say 7. Then «, 5 < v and hence « =y = f
since a and [ are maximal elements. This contradicts the fact that o # 5. Hence

S(X,Y) has no minimum elements. |

Theorem 3.2.12 S(X,Y) has a mazimum element if and only if |Y]| = 1 and
|1 X < 2.

Proof. Assume that S(X,Y’) has a maximum element, say 7. By Lemma 3.2.11,
we have |Y| =1, so let Y = {a}. Suppose that |X| > 2. Then there exist b,c € X
such that a,b,c are all distinct. Let o be an identity map on X. Then « is

injective. By Lemma 3.2.3, we have « is maximal. We define 5 € S(X,Y’) by

p
c if =0,

rf=90b if r=c,

G if x ¢ {b,c}.
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Then o # [ and f§ is injective. Again by Lemma 3.2.3, we have [ is maximal.
Since 7y is maximum, we have v = v =  which is a contradiction. Hence | X| < 2.

Conversely, if |Y| = | X| = 1, then we let X =Y = {a} (say). Thus

S(X,Y) =

a
Then is a maximum element of S(X,Y). If |Y| =1 and | X| = 2, then we
a

let X ={a,b} and Y = {a}. Thus

a b a b
S(X,Y) = ,
a a a b
a b a a
Since < , we have is maximum of S(X,Y). |
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3.3 Compatibility

In this section, we find elements of S(X,Y) which are left compatible elements or

right compatible elements with < on S(X,Y).

Lemma 3.3.1 Lety € S(X,Y). If~ is a left compatible element with < on S(X,Y)
then Yy =Y.

Proof. Suppose that Yy & Y. Then there exists y € Y \ Y. Since Yy # ()
and Yy C Y, we have |Y| > 1. Then there exists z € Y such that z # y. Let
a € S(X,Y) be a constant map with image {y}. We define 5 € S(X,Y) by

y if x =y,

z if v #y.

xfp =

So, the following properties hold.
(i) Xa={y} C{y,z} = XPBand Ya= {y} C {y,2} =Y.
(ii) Let A € m5. Then A =2z8""or A =yB~ ! since {y, 2} = X0.
IfA=28""then A=X\{y} C X =ya!en,.
If A=ypB ! then A ={y} C X =ya~! € 1,. Then 74 refines m,.
Let A € m3(Y). Then A= z8"1 or A=yp ' since {y,2} = XFNY.
If A=28"" then A= X\{y} C X =ya ! enm,(Y).
If A=yp™ ! then A= {y} C X =ya~! € 1,(Y). Then 75(Y) refines 7, (V).
(iii) If 20 € Xa = {y}, then 20 =y = za.
Hence a and 3 satisfy (i)-(iii) of Theorem 3.1.1, so we conclude that o < . Since
Yya = {y} € {z} = Y8, we get ya £ v5. Hence 7 is not a left compatible

element. [ |

Theorem 3.3.2 Let vy € S(X,Y). Then vy is a left compatible element with < on
S(X,Y) if and only if Yy =Y and (Xy=Y or Xy = X).

Proof. Assume that v is a left compatible element. By Lemma 3.3.1, we get
Y~ =Y. Suppose that Xv # Y and X~ # X. Then there exists y € X \ X~. If
y €Y, wegety e Yy C Xy which is a contradiction. Thus y € X \ Y and this
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implies | X \ Y| > 1. Since Y # 0, there exists z € Y such that z # y.

Case |[X \ Y| = 1: Then X \ Y = {y}. Since yy € X, we get yy = k for some
ke X. Since y € X \ Xv and k € X+, we have k # y. This implies yy =k € Y.
Thus X~ =Y which is a contradiction.

Case | X \ Y| > 1: Since Xy # Y, there exists s € X such that sy ¢ Y. If s€ Y,
then sy € Yy =Y which is a contradiction. Thus s € X \ Y. Let sy = ¢'. Since
s € Xy and y € X \ X, we obtain y # §. Since y,s' € X \ Y and y # s’ and
z €Y, we have z,y, s are all distinct. We define a and 5 € S(X,Y) by

/

if ze {5y},

<

To =
z if e X\ {s,y},

s if x =4,

f=qy if z=vy,

z if e X\ {5, y}.
We show that o < f3.

(i) Xa={y,z} C{s,y,z} = XpBand Ya ={z} =Yp.

(ii) Let A € 3. Then A = ¢t or A = yB' or A = 257! since
{y,2} = XB. lf A= B then A= {s'} C{s,y} =ya! €m,.
If A=yp™ !, then A= {y} C{s,y} =yat €,
If A= 287" then A= X\ {s,y} = za™! € 7,. Then 75 refines 7,.

Let A € m3(Y). Then A = 25! since {2} = XfNY.
Thus A =z0"' =X\ {s,y} = za™! € 1,(Y). Then 75(Y) refines 7, (V).

(iii) Let 2 € Xa ={z,y}. If 28 = z, then 2 = z = xa by definition of
a and B. If 28 = y, then 28 = y = xa by definition of o and . Hence o and
S satisfy (i)-(iii) of Theorem 3.1.1, so we conclude that o < 3. Since y # s, we
obtain Xvya = {z,y} € {z,5'} = Xv8. We have ya £ v/ which contradicts the

left compatible element of ~.

Therefore, Xv =Y or Xv= X.
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To prove the converse, we first prove that if 74 refines m,, then 7,5 refines
Toya- Let A € m5. Then A = y(y8)~"! for some y € X~6. Let z € A = y(y8) "
Then 278 = y. Thus 2y € yB~' € mg. Since 7z refines 7, there exists z € X«
such that y8~! C za™. Thus 2y € yB~! C za™!. Then zya = z. Hence
x € z(ya)~t € M. That is 7,4 refines 7.,. Similarly, we can prove that if 75(Y")
refines m,(Y"), then m,5(Y") refines m,,(Y).

Now, assume that Yy =Y and (X7 =Y or Xy = X). Let o, 8 € S(X,Y)
be such that o < 3. Then 7 refines 7, and 75(Y) refines 7, (Y"). Thus 7,4 refines
Tye and m,5(Y") refines m,,(Y). We consider two cases. If Yy =Y = X+, then
Xva=Yvya=Ya CYSB =Yy = X6 and if 270 € Xva = Ya C Xa, we
obtain (z7)5 = (zy)a. f Yy =Y and X7y = X, then Xva = Xa C X = X~0,
Yyva=YaCYp=Y~p and if 276 € Xya = Xa, we obtain (z7)8 = (z7)a.

Therefore ya and 7/ satisfy (i)-(iii) of Theorem 3.1.1, so we conclude that
vya < (. Hence 7 is a left compatible element. |

Example 3.3.3 Let X ={1,2,3,4,5,6},Y = {1,2,3,4}. Wedefine, 8 € S(X,Y)
by
1 2 3 4 6 123 45 6

o = ’6:
4 2 1 3 4 4 4 21 3 5 6

ot

We see that Ya = {1,2,3,4} =Y = Xa, Y = {1,2,3,4} = Y and X =
{1,2,3,4,5,6} = X. Thus a and § are left compatible elements with < on S(X,Y’)
by Theorem 3.3.2. [ ]

Lemma 3.3.4 Lety € S(X,Y). Ifv is a constant map, then v is a right compatible

element.

Proof. Assume that v is a constant map with image {y}. Let a, 8 € S(X,Y) be
such that o < . Since Xa and X/ are nonempty sets, we have Xay = {y} =
X P~. This implies ay = 7. So ay < 3. Hence 7 is a right compatible element.

|



22

Lemma 3.3.5 Let o, 3,7 € S(X.,Y) be such that wg refines m,, ms(Y) refines
oY), and 7 is injective. Then the following statements hold.

(i) mg, refines mon.

(ii) If (X\Y)yC X\Y, then mp,(Y) refines ma, (V).

(ili) If (X \Y)y CY \ Yy, then s, (Y) refines moy(Y).

Proof. (i) Let A € mg,. Then A = z(f7)~* for some z € Xfv. Let z € A =
2(By)~'. Then zf~y = z. Since 2 € X3, we have (z3)3~! € ms. Since 75 refines
To, there exists y € Xa such that x € (z6)37! C ya~!. Since 7 is a function,
there exists 2’ € X+ such that yy = 2’. We show that z(8v)™! = (z8)37 "

s€z(By)" & spy=z=upy
& sf=uaf (Since 7 is injective)

& se(xB)p

Next, we show that 2/(ay)™' = ya~!.

te(ay)™ & tay=2=yy
&S tla=y (Since 7 is injective)

& teyal.

Since 2’ = yy € Xay, we get 2'(ay)™! € m,,. We choose B = z'(ay)~!. Then
A=2z(By) ' =(@p)p !t Cyat =2 (ay)™! = B. Hence g, refines m,,.

(ii) Assume that (X \Y)y C X \ Y. Let A € 73,(Y). Then A = z(f7)~*
for some z € XpyNY. Since Xy C Xy =YyU (X \Y)y and z € X, we
get z€ Yyorze (X\Y)y. If z€ (X\Y)y C X\Y, then z ¢ Y which is
a contradiction. Hence z € Y. So there exists y € Y such that yy = 2. Let
x € A= z(By)"!. Then z8y = z = yy. Since v is injective, we get z3 = y.
From y = 26 € XBNY, so y8~' € mg(Y). Since m5(Y) refines 7, (Y), there
exists ¥ € XaNY such that z € yB~! C y/a~t. Since 3y € Y, we have y/'y = 2/
for some 2/ € Y. Then 2/ = y'v € Xay. Thus 2/ € XaynNY. We show that
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2(By) " =yp!
uez(fy)t & uby=z=uyy
& ouf = Since v is injective
B=y ( 7 is inj
& uweyp L

Next, we show that 2'(ay)™! = y'a™!.

veE(ay)! & vay=2 =yy
& va=y (Since v is injective)

& veyall

Since 2’ = y'y € XayNY, we get 2'(ay) ™! € may(Y). We choose B = 2/(ay) L.
Then A = 2(By)™' = yB8' C yat = 2(ay)™t = B. Hence 73,(Y) refines
Tary(Y).

(iii) Assume that (X \Y)y C Y \Y+~. Let A € 75,(Y). Then A = z(87)~*
for some z € XByNY. Let x € A = 2(8y)"!. Then z8vy = z. Since z8 € X,
we have (x8)5~' € ms. Since 7z refines m,, there exists ¥ € Xa such that
v € (xB8)B37! C ya~!. Since v is a function, there exists 2/ € X+ such that
y'v =2 Since Xy =YyU (X \Y)yCYyUY \Yy) =Y, wegetz €Y. We
show that 2(8y)~! = (zB)5~ .

u€2(By)"t & uby=z=aby
&S uf =af (Since 7 is injective)

& wue (zB)pL

Next, we show that 2/(ay)™' = ¢y'a™ .

veZ(ay) ! & vay=7=yy
& va=y (Since 7 is injective)
& veyal

Since 2’ = y'y € XayNY, we get 2'(ay) ™! € may(Y). We choose B = 2/(ay) L.
Then A = 2(By)" ! = (28)87' C y'at = 2/(ay)"t = B. Hence g, (Y) refines
Tay(Y). [ |
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Lemma 3.3.6 Let v € S(X,Y). If v is injective and (X \Y)y C X\ Y, then v is

a right compatible element.

Proof. Assume that v is injective and (X \Y)y C X \ Y. Let a, 5 € S(X,Y) be
such that @ < 8. We show that ay < £7.

(i) Since Xao € X and Ya C Y5, we have Xay C Xy and Yay C Y 5y.

(ii) By Lemma 3.3.5(i), we have 7g, refines m,,, and by Lemma 3.3.5(ii),
we obtain that 7, (Y") refines m,,(Y").

(iii) Let 28y € Xay. Then zf8y = yy for some y € Xa. Since 7 is
injective, we get 3 = y. Since zf8 = y € Xa, we have 28 = xa since a < f.
Thus zfvy = xay.

Therefore oy and [ satisty (i)-(iii) of Theorem 3.1.1, so we conclude that
avy < fBv. Hence v is a right compatible element. N

Theorem 3.3.7 Let X be a nonempty set and Y C X such that |Y| = 1. Then
v € S(X,Y) is a right compatible element if and only if one of the following
statements holds.

(i) v is a constant map.

(ii) 7 is injective.
Proof. Assume that v is a right compatible element. Since |Y| = 1, we let
Y = {y}. We show that ~ is a constant map or ~ is injective by supposing that
this is false. Then v is not a constant map and 7 is not injective. Since 7 is not a
constant map, there exists a € X \ Y such that ay # y. Since v is not injective,
there exist b, ¢ € X such that b # ¢ and by = ¢y. From |Y| = 1, we conclude that

b and ¢ can not both belong to Y. Therefore, we consider the following cases.

Casebe Y and c € X\ Y: Since b € Y = {y}, we have b = y. Since ¢y = by =
yy = y and a7y # y, we obtain ay # ¢y. This implies a # ¢. Since a,c € X \ Y
and a # c and y € Y, we have y, a, c are all distinct. Let o € S(X,Y) be such

that

y if vey,
T =

a if e X\Y.
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Let € S(X,Y) be such that
y if x €Yy,

8=Sa if z=c,

c it ze X\ (YU{c}).
Then a < 5. Thus

y if x €Y,
Tay =
ay if x € X \Y,
and
y if x e X\ {c},
xfy =

ay if z=c.
From 7, = {{c}, X \ {c}} and 7, = {{y}, X \ {y}}, we see that 73, does not
refine m,,. Then ay £ (7.

Case b,c € X \Y and by = y: If a = b, then ay = by = y which is a contradiction.
Then a # b. Also, if a = ¢, then ay = ¢y = by = y which is a contradiction. Then
a # c. Hence a,b, c are all distinct. Since a,b,c € X \'Y and y € Y, we obtain
y,a,b,c are all distinct. Let o € S(X,Y) be such that

(

y if x €y,
ra=qb if x =0,

a if v e X\ (Y U{b}).

\

Let 8 € S(X,Y) be such that

y if xey,

b if x =0,
b =

a if r=c¢,

(¢ f z2e X\ (Y U{bc}).

Then o < 8. Thus
y if z € Y U{b},

Tay =

ay if xe X\ (Y U{b}),
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and
y if ze X\ {c},
xpy =
ay if x=c.

From mg, = {{c}, X \ {c}} and 7., = {{y, b}, X \ {y,b}}, we see that 7wz, does
not refine 7,,. Then ary £ 3.

Case b,c € X\ Y and by # y: Since b,c € X \ Y and b # c and y € Y, we obtain
y, b, c are all distinct. Let a € S(X,Y) be such that

y if z €Y U{b},
ro =

c if ze X\ (YU{b}).

Let 5 € S(X,Y) be such that

y if x €y,

8=<S0b if z=0,

c if ze X\ (YU{b}).

Then o < 3. Thus

y if x e Y U{b},
Ty =

by if z € X\ (Y U{b}),

and

y if x ey,
rhy =
by if ze X\Y.

From 7g, = {{y}, X \ {y}} and 7o, = {{v, 0}, X \ {y,0}}, we see that 73, does
not refine 7,,. Then ay £ B7.
In any cases, we get that v is not a right compatible element which is a

contradiction. Therefore, v is a constant map or ~ is injective.

Conversely, assume that 7 is a constant map or v is injective. Let Y = {y}.
If v is injective, then vy # y for all x € X \ Y. That is (X \Y)y C X \Y. By
Lemma 3.3.6, we get v is a right compatible element. If v is a constant map, then

by Lemma 3.3.4, we obtain v is a right compatible element. ]
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Example 3.3.8 Let X ={1,2,3,4,5,6},Y = {1}. We define o, 8 € S(X,Y) by

123456[3 123456
111111]/) 13456 2

We see that « is a constant map and 3 is injective. Thus a and [ are right

compatible elements with < on S(X,Y) by Theorem 3.3.7. [ |

Lemma 3.3.9 Let v € S(X,Y). If v is injective and (X \Y)y C Y \ Y, then v

1s a right compatible element.

Proof. Assume that 7 is injective and (X \Y)y C Y \ Y. Let o, 8 € S(X,Y) be
such that o < 8. We show that ay < §7.
(i) Since Xao € XS and Yoo C Y5, we have Xay C X vy and Yay C Y 5y.
(ii) By Lemma 3.3.5(i), we have mg, refines m,,, and by Lemma 3.3.5(iii),
we obtain that 7, (Y") refines m,(Y).
(iii) Let 28y € Xay. Then zf8y = yy for some y € Xa. Since 7 is
injective, we get 8 = y. Since 28 = y € X, we have 8 = xa. Thus 24y = zary.
Therefore ary and f satisty (i)-(iii) of Theorem 3.1.1, so we conclude that
ay < fBv. Hence v is a right compatible element. |

Lemma 3.3.10 Let o, 5,7 € S(X,Y) be such that mg refines m,, ws(Y) refines
oY), and 7|y is a constant map. Then the following statements hold.

(1) If v: X\Y = X \Y is injective, then mg, refines mo, and ma,(Y)
refines ma(Y).

(i) If v: X\Y —= Y \ Yy is injective, then mg, refines mo, and ma,(Y)
refines ma(Y).

Proof. Let 7|y be a constant map with image {y}.
(i) Assume that v : X \ Y — X \ Y is injective. Let A € mg,. Then
A = z(Bv)7 for some z € X 3.

Case z = y: We show that y(B37)™' C ylay)™'. Let s € y(Bvy)~!. Then
sBby=yeY.lfsfe X\Y,thensfye X\Y by (X\Y)yC X\Y which is a



28

contradiction, so s € Y. Since s € X NY, we have (s8)37! € m3(Y). Since
m5(Y) refines 7, (Y), there exists k € Xa NY such that s € (s8)57 C ka™'.
Then sa = k. Thus say = ky = y since k € Y. So s € y(ay)~!. This
implies y(87)™! C y(ay)™!. Since y € Xay, we have y(ay)™ € m,,. We choose
B =y(ay)~!. Thus A = 2(8y)~' = y(By) "' Cylay)™' = B.

Case z # y: Let t € A = 2(By)"!. Then t3y = 2. Since t3 € X3, we have
(t8)B~" € mz. Since g refines m,, there exists £ € Xa such that t € (¢8)87! C
fa~t. Since v is a function, there exists 2’ € X+~ such that £y = 2. We show that
2(By)"t = (tB)BL. Let u € z(By)~'. Then uBy = z = tBv. Since z # y, we
have uf3 and ¢3 ¢ Y. Then uf and ¢ € X \ Y. Since 7|x\y is injective, we get
uf = tfB. Then u € (tB)3~*. That is z(By)~! C (t8)B~. On the other hand, let
v € (tB)37L. Then vB = tB. Thus vBy = tBy = 2. Hence v € z(Bv)~t. That
is (t8)B8~! C z(By)~!. Therefore z(Bv)~t = (t8)3~!. Now, we show that fa~' C
Z(ay)™. Let w € La™'. Then wa = ¢. Thus wary =y = 2'. Then w € 2/(ay)™!.
That is la™ C 2/(ay)™!. Since 2’ = ¢y € Xary, we get 2/(ay)™! € m,,. We choose
B =Z2(ay)™!. Then A= z2(8y)' = (tB)s ' Cla! C 2 (ay)! = B.

By both cases, we have g, refines m,,.

Now, we prove 7, (Y) refines 7, (Y). Let A € g, (V). Then A = z(87)~*
for some z € Xy NY. We show that Xy NY = {y}. Let x € XByNY. Then
r = kp7y for some k € X. If kf € X \ Y, then x = kfy € X \ Y which is a
contradiction. Then k8 € Y. Thus kv = x = y. On the other hand, from y € Y,
so yB € YB. Thus yBy € YB3y C Yy = {y}. Soy = ypy € YBy C Xpy.
Then y € XfyNY. Hence XfyNY = {y}. This implies z = y. Next,
we show that y(8v)™! C y(ay)™!. Let u € y(By)~'. Then ufy = y. Since
uf € XBNY, we have (uB)B~' € m3(Y). Since m5(Y) refines m,(Y), there
exists £ € XaNY such that v € (uB)B~' C la~'. Then ua = ¢. Since ¢ € Y,
we get uay = vy = y. Thus u € y(ay)~!. That is y(87)' C y(ay)™'. Since
y=uay € XayNY, we get y(ay) ™ € may(Y). We choose B = y(ay)~*. Then
A=z(By)' =y(By)! Cylay)™' = B. Therefore mg,(Y) refines mo,(Y).
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(i) Assume that v : X \'Y — Y \ Y is injective. Let A € mg,. Then
A = z(By) ! for some z € X 3.

Case z = y: We show that y(87)™! C y(ay)™!. Let s € y(By)~!. Then sBvy = y.
If s € X\Y, weobtain sy € Y\ Yy =Y \{y} by (X\Y)y CY \Y~y. Then
spvy # y which is a contradiction, thus sf € Y. Since sf € X NY, we have
(s8)B7" € ms(Y). Since m5(Y) refines m,(Y), there exists k € XaNY such that
s € (sB)p™' C ka™t. Then sa = k. Thus say = ky = y since k € Y. Then s €
y(ay)~. This implies y(8y) ™' C y(ay)™". Since y € Xay, we get y(ay)™! € T4y
We choose B = y(ay)™t. Thus A = 2(8y) ' =y(By) ! Cylay)™t = B.

Case z # y: By the same proof as given in (i) case z # y, we have A C B for some
B € mq,.

By both cases, we have g, refines m,,.

Now, we prove 7, (Y) refines 7, (Y). Let A € w5, (V). Then A = z(87)~*
for some z € XpyNY. From Xy C Xy =Y~yU (X \Y)y C{y}uU (Y \Yn),
then z € {y} U (Y \ V7).

Case 2z = y: We show that y(87)™! C y(ay)~t. Let s € y(By)~L. Then sBvy = y.
Since s € XBNY, we have (s8)5~t € m5(Y). Since m5(Y) refines m,(Y),
there exists k € Xa NY such that s € (s8)~ C ka~'. Then sa = k. Thus
say = ky =y since k € Y. Then s € y(a~y)~!. This implies y(87) ™' C y(ay)™L.
Since y € XayNY, we have y(ay) ™ € 74, (Y). We choose B = y(ay)~!. Thus
A=z(By)" =y(By) Cylay) = B.

Case 2 # y: Then z € Y \Y~y. Let t € A = z(Bvy)"!. Then t3y = 2. Since
t8 € X3, we have (t8)3~! € mz. Since 7 refines m,, there exists £ € Xa such
that t € (t8)8~' C fa~!. Since 7 is a function, there exists 2/ € X+ such that
ly =7 Since Xy =YyU(X\Y)y C{ytu(Y\Yv) CY, weget 2’ € Y. We show
that z(B8y)™' = (t8)8~!. Let u € 2(B8y)~!. Then uBy = z = tBv. Since z # y,
we have uf and t5 ¢ Y. Then uf and tf € X \Y. Since y: X \Y —» Y\ Yy
is injective, we get uf = t3. Then u € (t8)3~'. That is z(8y)~' C (t8)37 .
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On the other hand, let v € (¢3)37!. Then v = t3. Thus vy = tBy = 2. Hence
v € z(By)"'. That is (t8)5~" C z(By)~*. Therefore z(8y)™' = (t8)p~. We
show that fa™! C 2/(ay)™!. Let w € fa~!. Then wa = £. Thus way = ly = 2.
Then w € 2'(ary)™t. That is £y~ C 2'(ay)™!. Since 2/ = fy € XayNY, we get
2 (ay)™" € oy (Y). We choose B = z/(ay)™'. Then A = 2(By)™' = (t8)5~! C
la™" C Z'(ay)~* = B. Therefore 74,(Y) refines 7, (Y). |

Lemma 3.3.11 Let v € S(X,Y). Ifv|y is a constant map and v : X \Y — X \Y

15 injective, then 7y is a right compatible element.

Proof. Assume that 7|y is a constant map with image {y} and v : X\Y — X \Y
is injective. Let a, B € S(X,Y) be such that a < . We show that ay < 3.
(i) Since Xa C Xp and Ya C Y3, we have Xay C X vy and Yay C Y.
(ii) By Lemma 3.3.10(i), we get mg, refines m,, and mg,(Y") refines m,, (Y).
(iii) Let By € Xa7y. Then 28y = y'vy for some 3y € Xa.

Case z0 € X \Y: Since y: X\ Y — X\ Y, we get 8y = g for some g € X \ Y.
So zfy = g = y'v. This implies 5/ € X \ Y. Since v: X \ Y — X \ Y is injective,

we have z3 = 3. Since 28 =y’ € Xa, we have 8 = za. Thus x5y = zavy.

Case 0 € Y: Then 28y =y. If x € Y, then xa € Ya C Y. Then zay = y.
Hence zfy =y = zay. If z € X \ Y, we know that 28 € Y so 3 = g for some
g €Y. Since g€ XBNY, we get & € g8~" € m5(Y). Suppose that zav € X \ Y.
Then xa = h for some h € X \'Y. Then ha™! contains z. Since « is a function,
there is no element in m,(Y") which contain z. Thus g8~ € A for all A € 7,(Y).
Hence o £ ( which is a contradiction. Then za € Y. So zay = y. Thus
Tfy =y = zay.

Therefore ary and G satisty (i)-(iii) of Theorem 3.1.1, so we conclude that
avy < fBv. Hence v is a right compatible element. ]
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Lemma 3.3.12 Lety € S(X,Y). Ifv|y is a constant map and v : X\Y — Y \Y~

15 1njective, then 7y is a right compatible element.

Proof. Assume that |y is a constant map with image {y} and v : X\Y — Y\Y~
is injective. Let a, 8 € S(X,Y) be such that a < 5. We show that ay < 7.
(i) Since Xae € X and Ya C Y 5, we have Xay C X vy and Yoy C Y 5y.
(i) By Lemma 3.3.10(ii), we get mg, refines m,, and 73, (Y’) refines 7, (Y).

(iii) Let 8y € Xary. Then z5y = y'v for some y' € Xa.

Case x5 € X \Y: Since v: X\Y — Y\ Y, we get 87y = g for some g € Y \ Y.
So xf~y = g = y'v. This implies ¢/ € X \ Y. Since v: X\ Y — Y\ Y is injective,

we have x5 = y. Since 28 =y’ € Xa, we have 28 = xa. Thus zfv = zay.

Case z3 € Y: Then zfy =y. f x € Y, then za € Ya C Y. Then zay = y.
Hence xfy =y = xzay. If z € X \ 'Y, we know that 28 € Y so 8 = g for some
g €Y. Since g € XBNY, we get x € g8~" € m(Y). Suppose that za € X \ Y.
Then za = h for some h € X \' Y. Then ha™! contains z. Since « is a function,
there is no element in 7, (Y") which contain z. Thus g8~ ¢ A for all A € 7,(Y).
Hence o £ (8 which is a contradiction. Then za € Y. So zay = y. Thus
fy =y = zay.

Therefore ary and (7 satisfy (i)-(iii) of Theorem 3.1.1, so we conclude that
avy < . Hence v is a right compatible element. |

Lemma 3.3.13 Let v € S(X,Y) be such that v is a right compatible element,
Y| > 2 and | X \Y]| < 1. If v is not a constant map, then (X \Y)y C X \Y or
(X\Y)y CY\Yy.

Proof. Assume that v is not a constant map. Then there exist a,b € X such
that a # b and ay # by. If [ X\ Y| =0,then X =Y. So (X\Y)yC X \Y or
(X\Y)y CY\ Y~y holds. Now, consider the case | X \ Y| = 1 and suppose that
(X\Y)yZ X\Yand (X\Y)y €Y \Y~. Let X \Y = {c}. Then ¢y € Y and
(cyeYyoreye X \Y). This implies ¢y € Y. So ¢y = yy for some y € Y.
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Case a =y or a = ¢: Then ¢y =yy = ay. If b = ¢, then by = ¢y = a~y which is a
contradiction, thus b # ¢. This implies b € Y. If b = y, then by = yy = ay which
is also a contradiction, thus b # y. Since b,y € Y and b # y and c € X \ Y, we
obtain b, ¢,y are all distinct. Let a € S(X,Y) be such that

b if xeY,
T =

¢ if z=c

Let 5 € S(X,Y) be such that

y if =y,
rB=1q0b if zeY \{y},

c if z=c

Then o < 3. Thus

by if x €Y,
rary =
ay if z=c¢,
and
by if z €Y \{y},
xpy =

ay if x € {y,c}.
From 7g, = {{y,c}, Y \ {y}} and 7., = {{c},Y}, we see that 75, does not refine
Tay. Then ay £ B.

Case a # y and a # c and ay = y7y: Since a # ¢, we get a € Y. If b = ¢, then
by = ¢y = yy = ay which is a contradiction, thus b # ¢. This implies b € Y. If
b =y, then by = yv = ay which is also a contradiction, thus b # y. Now, we have
a,b,y are all distinct. Since a,b,y € Y and ¢ € X \ Y, we obtain a, b, ¢,y are all
distinct. Let o € S(X,Y) be such that

a it zeY \{y},

To =

b if x e {y,c}.
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Let € S(X,Y) be such that

(

a if zeY \{y},

ef=4qb if z=y,

y if r=c.
\

Then o < 5. Thus

;

ay if x e Y \{y},

by if x € {y,c},

ray =

\

and
;

ay if z € X\ {y},
kbfy it x=uy.

From 7, = {{y}, X \ {y}} and 7o, = {{y.c},Y \ {y}}, we see that 73, does not
refine 7,,. Then ay £ 5.

rfy =

Case a # y and a # ¢ and a7y # yv: Since a # ¢, we get a € Y. Since a,y € Y
and a # y and ¢ € X \ 'Y, we obtain a, ¢,y are all distinct. Let a € S(X,Y") be

such that

a if veYy,
rTa =

c if z=c

Let 5 € S(X,Y) be such that

a if xeY\{y},
ef=qy if z=uy,

c¢c if z=c

Then a < 5. Thus

ay if v €Y,
rary =
yy if x =,
and
ay if z €Y \{y},
rfy =

yy if z € {y,c}.
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From 7, = {{y,c}, Y \ {y}} and 7o, = {{c},Y}, we see that mg, does not refine
Tay. Then ary £ 3.

In any cases, we have v is not a right compatible element which is a

contradiction. Therefore (X \Y)y C X\ Y or (X \Y)yCY \Y~. |

Theorem 3.3.14 Let X be a nonempty set and Y C X such that |Y| > 2 and
|IX\Y| <1. Then v € S(X,Y) is a right compatible element if and only if one of
the following statements holds.

(i) v is a constant map.

(ii) [y is ingective or |y is a constant map] and

[(X\Y)y S X\Y or (X\Y)yCY\Yr]

Proof. Assume that v is a right compatible element and v is not a constant map.
By Lemma 3.3.13, we have (X \Y)y C X \Y or (X \Y)y CY \Y~y. We show
that v is injective or |y is a constant map by supposing that this is false. So 7 is
not injective and ~y|y is not a constant map. Then there exist ¢,d € X such that
¢ # d and ¢y = dy. Also, there exist a,b € Y such that a # b and ay # by. If
|X\Y| =0, then c,d € Y. Next, we consider in case | X \Y| =1, if ¢ € X\ Y, then
deY since | X\Y|=1.Socye (X\Y)yCX\Yoreye (X\Y)yCY\Yn.
Thus dy € Y but ¢y ¢ Y+, and so ¢y # dy which is a contradiction. Similarly,
if d € X \'Y, then it will lead to a contradiction. Hence ¢ and d are both belong

to Y. So, we consider the following two cases.

Case ¢,d € Y and ¢y # ay: Then ¢ # a. If a = d, then ay = dvy = ¢y which is a
contradiction. Then a # d. Hence a, ¢, d are all distinct. Let a € S(X,Y) be such

that
a if z € {c,d},

ro =

c if x € X\ {cd}.
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Let € S(X,Y) be such that

(
a if xr=d,

ef=4qd if v=c,
¢ if v e X\ {cd}.
\

Then o < 5. Thus

(
ay if z € {c, d},
Ty =

cy if xe X\ {cd},
and

ay if z=d,
rfy =
cy if v e X\ {d}.

From 7g, = {{d}, X \ {d}} and 7., = {{c,d}, X \ {c,d}}, we see that 73, does

not refine 7,,. Then ay £ B~ which is a contradiction.

Case ¢,d € Y and ¢y = ay: Since ay # by, we have ¢y # by, this implies ¢ # b. If
b = d, then by = dv = ¢y = ay which is a contradiction. Thus b # d, and hence
b, c,d are all distinct. Let a € S(X,Y) be such that

b if z e {cd},

TOo =

c if e X\ {cd}.

Let g € S(X,Y) be such that

d if z=c,
zf=4b if z=d,

c if e X\ {cd}.

\

Then a < §. Thus
by if x € {cd},

Ty =

ay if z e X \{cd},
and

by if v =d,
rfy =
ay if x € X\ {d}.
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From 7g, = {{d}, X \ {d}} and 7., = {{c,d}, X \ {c,d}}, we see that 73, does
not refine m,,. Then ay £ B~y which is a contradiction.
Therefore v is injective or |y is a constant map.

The converse is true by Lemma 3.3.4, Lemma 3.3.6, Lemma 3.3.9, Lemma

3.3.11 and Lemma 3.3.12. [ ]

Example 3.3.15 Let X ={1,2,3,4,5,6},Y = {1,2,3,4,5}, and define @« € S(X,Y)
by

1 23 45 6

2 2 2 2 2 3
We see that a|y is a constant map and (X \ Y)a = {3} € {1,3,4,5} =Y \ Ya.
Thus « is a right compatible element with < on S(X,Y’) by Theorem 3.3.14. R

Lemma 3.3.16 Let v € S(X,Y) be such that v is a right compatible element,
Y| >2 and | X \Y| > 1. If v is not a constant map, then (X \Y)y C X \Y or
(X\Y)yCY\Yy.

Proof. Assume that ~ is not a constant map. Then there exist a,b € X such that
a # band ay # by. Suppose that (X\Y)y € X\Y and (X\Y)y € Y\ Y. Then
there exists ¢ € (X \ Y)y such that c¢ X\ Y, and so ¢ € Y. Since c € (X \ V)7,
there exists ¢ € X \ 'Y such that ¢ = ¢/y. Since (X \ Y)y € Y \ Y, there exists
de (X\Y)ysuchthat d¢ Y \Y~y. Sode X\Y ordeYry. Sinced € (X \Y)r,
there exists d’ € X \ Y such that d = d'y. Since |[X \ Y| >1and ¢ € X\ Y, we
have X \ (YU {c'}) # 0.

Cased € X \Y: Since dy=ceY anddy=d e X \Y, we have ¢y # dy. This
implies ¢ # d'. Since ¢/, d € X \Y and ¢ # d' and ¢ € Y, we obtain ¢,c,d’ are
all distinct. Let oo € S(X,Y’) be such that

c if x €Y,
ro =

d if reX\Y.
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Let € S(X,Y) be such that

¢

c if rey,

=9 if v=¢,

d if xe X\ (YU{}.

\

Then o < 5. Thus
cy if x €Y,
Tay =

d if zeX\Y,

and
.

cy if z €Y,
fy=qc¢ if z=¢,

d ifzeX\(YU{d}).

\

Since ¢,cy € Y andd € X\Y, we have ¢ # d and ¢y # d. From 75, (Y) = {Y,{c'}}
and 7., (Y) = {Y'}, we see that mg,(Y) does not refine m,,(Y). Then ay £ 5.

Case d € Yy and ¢ # d: Then d = yvy for some y € Y. If ¢ = d, then
¢ =y =d'v = d which is a contradiction. Then ¢ # d'. Since ¢/, d' € X \ Y and
d #d and y € Y, we obtain y, ¢, d" are all distinct. Let o € S(X,Y) be such that

y if xey,
To =
d if reX\Y.

Let g € S(X,Y) be such that

y if zey,

B=q¢ if z=¢,

dif ze X\ (Y U{d)).

Then o < 5. Thus

d if zey,
ray =

c if zeX\Y,
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and

d if xe X\ {c},
xfy =
c if x=¢.

From mg, = {{'}, X \ {¢'}} and 7o, = {Y, X \ Y}, we see that 7, does not refine
Tay. Then ay £ By.
Case d € Yv and ¢ = d # ay: Then d = y~ for some y € Y. Since yy = d # a,

we have y # a. Also, since ¢y = ¢ # ay, we get ¢ # a. From y € Y and
d € X\Y, we have y # . Hence a,y, ¢ are all distinct. Let a € S(X,Y’) be such

that
y if x ey,
ro =
a if e X\Y.
Let 5 € S(X,Y) be such that
(
y if z €Y,

=S¢ if r=¢,

a if xe X\ (YU{c}).

Then o < 5. Thus

c if x €Y,
ray =
ay if xe X\Y,
and
c it xeYU{d}
zfy =

ay if xe X\ (Y U{d}).
From 7g, = {YU{c'}, X\ (Y U{c'})} and 7o, = {Y, X \ Y}, we see that 73, does
not refine 7,,. Then ary £ 3.
Case d € Y~y and ¢ =d = ay: Then d = yy for some y € Y. Since yy=d = ay #

by, we have y # b. Also, since 'y = ¢ = ay # by, we get ¢ # b. From y € Y and
d € X\Y, wehave y # ¢. Hence b,y, ¢ are all distinct. Let o € S(X,Y’) be such
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that
y if x ey,
ro =
boif ze X\Y.
Let 5 € S(X,Y) be such that
(
y if z €Yy,

wf=q¢ if x=¢,

b if xe X\ (YU{d}).

\

Then o < 5. Thus

ay if x €Y,
ray =
by if x e X\Y,
and
ay if e Y U{c},
xfy =

by if e X\ (YU{d}).
From 7g, = {YU{c'}, X\ (Y U{c})} and 7o, = {Y, X \ Y}, we see that 7z, does
not refine 7,,. Then ay £ 3.

In any cases, we have v is not a right compatible element which is a

contradiction. Hence (X \Y)y C X\ Y or (X \Y)yCY \Yn. |

Theorem 3.3.17 Let X be a nonempty set and Y C X such that |Y| > 2 and
|IX\Y|>1. Then~y € S(X,Y) is a right compatible element if and only if one of
the following statements holds.

(i) v is a constant map.

(i) [(7y is injective) or (y|y is a constant map and v|x\y is injective)| and

[(X\Y)y CX\Y or (X\Y)yCY\Y1l.

Proof. Assume that « is a right compatible element and ~ is not a constant map.
By Lemma 3.3.16, we have (X\Y )y C X\Y or (X\Y)y C Y \Y~. Assume that v
is not injective. We show that 7|y is a constant map by supposing that this is false.

That is |y is not a constant map. Then there exist a,b € Y such that a # b and
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ay # by. Since v is not injective, there exist ¢,d € X such that ¢ # d and ¢y = d7.

Case c€ Yandd € X \Y: Sincedy € (X\Y)yand (X\Y)y C X \Y or
(X\Y)y CY\ Yy, we obtain dy ¢ Y. But ¢y € Y. Then ¢y # dy which is a

contradiction.

Case ¢,d € Y and ¢y # avy: Then a # c. Since dy = ¢y # avy, we have a # d.
Hence a, ¢, d are all distinct. Let a € S(X,Y’) be such that

a if z € {cd},
To =

c if xe X\ {cd}.
Let 5 € S(X,Y) be such that
a if r=c,

rf=19d if z=d,

c if xe X\ {cd}.

Then o < 3. Thus

ay if z € {ed},
Tay =

cy if xe X\ {cd},
and

ay if x=c¢,
rfy =
cy if e X\ {c}.

From mg, = {{c}, X \ {c}} and 7., = {{c,d}, X \ {c,d}}, we see that 7z, does

not refine 7,,. Then ary € By which contradicts 7 is a right compatible element.

Case c¢,d € Y and ¢y = av: Since ¢y = ay # by, we get b # ¢. Since dy = ¢y =
ay # by, we have b # d. Hence b, c,d are all distinct. Let a € S(X,Y’) be such

that
b if x € {cd},

T =

c if ve X\ {cd}.
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Let € S(X,Y) be such that

(
b if z=c,

rf=19d if z=d,

c if xe X \{cd}.
\

Then o < 5. Thus
by if z € {ed},
Tay =
ay if € X\ {ed},
and
by if z=c,
rfy =
ay if x € X\ {c}.
From mg, = {{c}, X \ {c}} and 7o, = {{c,d}, X \ {c,d}}, we see that 7z, does

not refine m,,. Then ary £ B~ which contradicts 7 is a right compatible element.

Case c,d € X \Y: We have a,b, ¢, d are all distinct. Let a € S(X,Y’) be such that

c if x=c¢,
o=

a if e X\ {c}.

Let 5 € S(X,Y) be such that

a if ey,

=S¢ if z=c,

d if e X\ (YU{c}).

Then o < 5. Thus
cy if z=c¢
rary =
ay if v € X \{c},

and

ay if x €Y,
rfy =
cy f zeX\Y
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Since ¢y € (X\Y)yand (X\Y)y C X\Y or (X\Y)y CY\Y~, we have ¢y ¢ Y.
But ay € Y, we get ¢y # ay. From 7z, = {Y, X \ Y} and 7., = {{c}, X \ {c}},
we see that 7, does not refine m,,. Then ary £ B which contradicts v is a right
compatible element.

In any cases, it is a contradiction. Hence 7|y is a constant map.

Next, we show that v|x\y is injective. We suppose that this is false. Then
there exist g,h € X \ Y such that g # h and gy = hy. From 7|Y is a constant
map. Then Y~ = {y} for some y € Y.

Case gy = y: If zy = y for all x € X \ Y, then ~ is a constant map which is a
contradiction. Then there exists k € (X \ Y) \ {g, h} such that ky # y. We have
k, g, h are all distinct. Since k,g,h € X \Y and y € Y, we obtain y, k, g, h are all
distinct. Let @ € S(X,Y) be such that

y if z €Y,
T =

Eoif e X\Y.

Let f € S(X,Y) be such that

(

y if zeY,

g if =g,

h if x =h,

Eoif e X\ (YU{g,h}).

Then o < 3. Thus

y if xey,
Ty =

ky if x € X\Y,
and

y if x € Y U{g,h},
rfy =
ky if x e X\ (Y U{g,h}).
From mg, = {Y U{g,h}, X \ (Y U{g,h})} and 7o, = {Y, X \ Y}, we see that

7, does not refine 7,,. Then ary £ v which contradicts ~ is a right compatible
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element.

Case gy # y: Then gy = 2’ for some 2’ € X \ {y}. Since g,h € X \Y and g # h
and y € Y, we obtain y, g, h are all distinct. Let a € S(X,Y’) be such that

y if z e Y U{g},
Ta =

h if 2 € X\ (YU{g}).
Let 5 € S(X,Y) be such that

y if x ey,

rf=4qg if =g,

h if x e X\ (YU{g}).
Then o < 5. Thus

y if z e Y U{g},
Tary =

 if e X\ (YU{g}),

and

y if z €Yy,
xfy =
 if ze X\Y.

From 7, ={Y, X\ Y} and 7o, = {Y U{g}, X \ (Y U{g})}, we see that mg, does
not refine 7,,. Then ary £ By which contradicts 7 is a right compatible element.

In both cases, we have 7 is not a right compatible element which is a
contradiction. Hence 7|x\y is injective.

The converse is true by Lemma 3.3.4, Lemma 3.3.6, Lemma 3.3.9, Lemma

3.3.11 and Lemma 3.3.12. [ ]

Example 3.3.18 Let X be the set of all natural numbers and Y the set of all

positive even integers. Consider

246 8 10 12 ... 1 3 5 7 9 11

4 6 8 10 12 14 ... 3 5 7 9 11 13
We see that « is injective and (X \Y)a = {3,5,7,9,...} € {1,3,5,7,...} = X\Y.
Thus « is a right compatible element with < on S(X,Y’) by Theorem 3.3.17. W
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3.4 The Numbers of Minimal and Maximal Elements

From now on, we let X be a finite set with |X| =n and Y be a nonempty subset

of X with |Y| = r. First, we find the number of minimal elements of S(X,Y).
Theorem 3.4.1 The number of minimal elements of S(X,Y) is r.

Proof. By Thoerem 3.2.1, o € S(X,Y) is a minimal element if and only if « is a
constant map. Since |Y| = r, we obtain that there are r constant maps. Hence

the number of minimal elements of S(X,Y) is r. |

The following theorem is needed in order to find the number of maximal

elements of S(X,Y).

Theorem 3.4.2 Let o € S(X,Y). Then « is a maximal element if and only if
Y CXaand a: X \Y — X\ Ya is injective.

Proof. Assume that « is a maximal element. We show that Y C Xa. Suppose
that Y ¢ Xa. Then there is z € Y such that z ¢ Xa. From X is a finite set,
this implies Y is a finite set. Moreover, there exist a,b € Y such that a # b and
aa = ba. We define € S(X,Y) by

xa if x # b,

z if x=0.

Since ba € X and b8 = z ¢ Xa, we have ba # bf5. Then a # 5. We show that
a < 3. Since X3 = XaU{z}, we have Xa C X3. Since Y3 = YaU{z}, we have
Ya CYB. Also, 267! = {b} C (ba)a~! and uB~! C ua™? for all u € X3\ {z}.
This implies 7g refines 7, and 7g(Y") refines o (Y). If x € X and x5 € Xa, then
x # b, so xf = xa by the definition of 5. Then a < [ which contradicts the
maximality of a. Hence Y C Xa.

Next, we show that o : X \'Y — X \ Ya. Suppose that thereis c € X\ Y
such that ca € Y. Since ca € Y and X \ Y is a finite set, there exists d € X \ 'Y
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such that d ¢ (X \ Y)a. We define v € S(X,Y) by

xa if x # ¢,
Ty =

d if z=c.
Since ca € Y and ¢y =d € X \ Y, we have ca # ¢y. Then o # . We show that
a < 7. Since Xy = Xa U{d}, we have Xa C X~. Since ¢ € X \ Y, we have
Ya = Y~ by the definition of . Also, dy™' = {c} C (ca)a™! and uy™' C ua™!
for all u € X+ \ {d}. This implies ., refines 7, and 7, (Y") refines 7, (Y). If z € X
and v € Xa, then x # ¢, so 7y = xa by the definition of 7v. Then a < v which
contradicts the maximality of . Hence av: X \Y — X \ Yau

Finally, we show that o : X\ Y — X \ Y is injective. Suppose that there

exist u,v € X \ 'Y such that u # v and ua = va. Since X \ 'Y is a finite set, there
exists w € X \ 'Y such that w ¢ (X \ Y)a. We define 6 € S(X,Y) by

rxa if z# v,
xd =

w if x=w.
Since va € (X \ Y)a and v = w ¢ (X \ Y)a, we have va # vd. Then o # 6. By
the same proof as given above, we get a < § which contradicts the maximality of
a. Hence a : X\ Y — X \ Ya is injective.

The converse is true by Lemma 3.2.4. |

Theorem 3.4.3 Let |X| = n = |Y|. Then the number of maximal elements of
S(X,Y) is nl.

Proof. By Theorem 3.4.2, we have a € S(X,Y) is a maximal element if and only
ifY C Xaand a: X \Y — X \ Ya is injective.

Let a be a maximal element in S(X,Y). Since X =Y C Xa C X, we
have X =Y = Xa. Also, since X is a finite set, we obtain « is injective. Hence
the number of maximal elements of S(X,Y) is equal to the number of all injective

functions of S(X,Y’) which is equal to n!. n
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Theorem 3.4.4 Let |X| = n > 1 and |Y| = 1. Then the number of mazimal
elements of S(X,Y) is (n — 1)L

Proof. By Theorem 3.4.2, we have a € S(X,Y) is a maximal element if and only
ifY C Xaand a: X\ Y — X \ Ya is injective.

Let o be a maximal element in S(X,Y). Since ) # Ya CY and |Y| =1,
we have Y = Ya. Thena: X\Y — X\Y isinjective. Since X'\Y is a finite set, we
obtain (X\Y)a =X \Y. From |Ya| =|Y|=1and (X \Y)o| = |X\Y|=n—1,
it follows that Yo can have 1 choice and (X \ Y)a can have (n — 1)! choices, thus
there are (n—1)! ways to choose Yaw and (X \ ). Hence the number of maximal

elements of S(X,Y) is (n — 1)L [

To count the number of maximal elements of S(X,Y") in the case | X| =

n>r=|Y|> 1, we need the following combinatorics result.

Lemma 3.4.5 The number of r arrangements of objects chosen from unlimited
supplies of k types of objects such that each type will be use at least once is

k

3 (-1t (j. \ 1) (k—(j—1))" choices.

7=1
Proof. Now let us solve this problem with exponential generating functions. The

exponential generating function for this problem is

x2 3 k
@+5+§+m>
= (e" —1)F

2.2 3.3 T T r

n°x® n°w n"x _ x
+ ..., we have the coefficient of —
2! 3! 7! d

in this generating function

From ™ =1+ nz +




= () B = (D =1+ () (k=2)" .+ (=D (L) (k= (k1))

(1 (5 )w-G-vr

j=1
Hence the number of r arrangements of objects chosen from unlimited supplies of
k types of objects such that each type will be use at least once is

: k

> (=1t ( , >(k —(j—1))" choices. |
, Jg—1

7j=1
Theorem 3.4.6 Let |X|=n >r and |Y| =r > 1. Then the number of mazimal
elements of S(X,Y) is

T!(n—r)!—i—Z{ (Tii)i(—l)j_l (;:i) (r—i—(j—1))"-P(n—r,i)-P(n—r, n—r—i)},

=1

where m s the minimum of n —r and r — 1.

Proof. By Theorem 3.4.2, we have a € S(X,Y) is a maximal element if and only
if Y C Xaand a: X\ Y — X \ Y is injective. Let a be a maximal element in

S(X,Y).

Case Ya=Y: Since o : X\Y — X\ Y is injective and X \ Y is a finite set, so we
have (X \Y)a=X\Y. From |[Yao|=|Y|=rand (X \Y)a|=|X\Y|=n—r,
so Ya can have 7! choices and for each choice of Ya, (X \ Y)a can have (n —r)!
choices, thus there are r!(n — r)! ways to choose Yo and (X \ Y)a. Hence the

number of maximal elements in this case is r!(n — r)!.

Case Ya C Y: Let |[Ya| = k. Then &k > 1 and £k < r — 1. Suppose that
r—Fk>n—r. Since (X \Y)a C X\ Ya, we obtain Yo and (X \ Y)« are disjoint
sets. Then we have
Xal = [Yal +](X\ Y)al

=k+(n—r)

<k+(r—Fk)=r=|Y|
This implies Y ,Q_ X« which is a contradiction. Hence r — k < n — r, that is
Ya|=k>r—(n—r).
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Let |[Ya| =r —s. Since |Ya| > 1, this implies » — s > 1, that is s < r — 1. Also,
since |[Ya| >r — (n—r), we obtain r —s > r — (n—r), that is s <n —r. Let m

be the minimum of n — r and r — 1. We can write |Y«| in the form
Ya|=r—1i Vi=1,...,m.

Consider for each i € {1,...,m}, let t be the number of r arrangements of objects
chosen from unlimited supplies of r — 7 types of objects such that each type will
be use at least once. Then Y« can have (Tii)t choices. By Lemma 3.4.5, Yo can
have (Tii)i(fl)jfl(;j)(rfif (j—1))" choices. And for each choice of Y, we need
to find thje:1number of ways to choose (X \ Y)a. Since a: X \Y — X\ Yais
injective and X \ Y is a finite set, we have [ X \Y|=n—7r=[(X \Y)al. Also, we
have |Y \ Ya|=r— (r —i) =i. Since Y C X, this implies Y \ Ya C (X \ Y)a.
Thus (X \ Y)a can have P(n —r,4) - P(n —r,n — r — i) choices. Then there are

r—i

(rii)Z(_l)jil(;j) (r—i—@G-1)-Pn—ri)-Pln—r,n—r—1)

j=1
ways to choose Yo and (X \ Y)a such that |Ya| = r —i. Hence the number of

maximal elements in this case is

m r—1

Z{(rii)Z(—l)j‘l(;fjj) (r—i—(j—1)-Pn—ri)-Pln—rn—r— 2’)}.

i=1 j=1

Therefore the number of maximal elements of S(X,Y) is

r!(n—r)!—l—Z{ (rii)z_:(_l)jl (;:i)(r—i—(j—l))’"-P(n—r, i)-P(n—r, n—r—i)}

Example 3.4.7 Let X = {1,2,3,4},Y = {1,2}. Then |X| =4 and |Y| = 2. By

Theorem 3.4.6, we have m = 1 and the number of maximal elements of S(X,Y)

— 212! + Z{ (;i)i(—l)j—l(j—j)@ —i—(j—1)%-P(2,4)- P(2,2 — i)}

=4+ (-1°()2-1- (- 1) P(2,1) - P(2,2-1)

J=1

=1 () (022
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= 4+(2)(1)(2)(2)
= 4+8
= 1.

Moreover, by Theorem 3.4.6 the maximal elements of S(X,Y’) consist of

S
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