Chapter 2

Preliminaries

In this chapter, we collect information that need for an understanding of

the research work.

2.1 Basic definitions and results

2.1.1 Semigroups

A semigroup S is said to be a left (right) zero semigroup if xy = = (xy = y)
for all xz,y € S.

Let G be a group, L,,, for n € N, the n-element left zero semigroup, and set
S = G x L, Define the multiplication on S componentwise by (g,1)(¢’,") = (94, 1)
for g, € G and [,I' € L,,. We call the semigroup S a left zero union of groups
(LZUG) over G.

Correspondingly, if R, for n € N is the n-element right zero semigroup, we
set S = Gx R,, and define the multiplication on S componentwise by (g,7)(¢’,7") =
(99',7") for g,¢ € G and r,r" € R,. We call this semigroup a right zero union of
groups (LZUG) over G.

Note that LZUG over G and RZUG over G are exactly the left and the
right groups over GG, where a semigroup S is called a left (right) group, if it is
uniquely left (right) solvable, i.e. for all ¢t € S there exists a unique s € S such
that rs =1t (sr =1).

2.1.2 Digraphs

A directed graph or digraph D is a finite nonempty set V' together with

a set E of ordered pairs of elements of V. Each element of V' is referred to as a



vertex and V itself as the vertex set of D; the members of the arc set E are called
arcs. We write D = (V, E). By an element of a digraph, we shall mean a vertex
or an arc. The number of elements in the vertex set is called the order of D. A
digraph D; = (V4, Ey) is called a subdigraph of a digraph D = (V, E) if V; C V and
E, C E. A subdigraph D; = (W4, Ey) is called a strong subdigraph of a digraph
D = (V, E) if it is the maximal subdigraph of D with the vertex set V;

Also, recall that if (u,v) is an arc of a digraph, then w is said to be adjacent
to v and v is adjacent from u. The vertices u and v are also said to be incident
with the arc (u,v). The indegree 7(1}) of a vertex v of a digraph D is the number
of vertices of D that end in v. The outdegree 7(1}) of v is the number of arcs of
D start from v.

Now Let D be a digraph. A sequence
W (u = ug,uq, ..., up =)

of vertices of D such that w; is adjacent to u;yq for all i (1 <i <k —1) is called
a (directed) uw — v walk in D. Each arc (u;, u;1q1),1 <@ <k —1, is said to be lie on
or belong to W. The number of occurrences of arcs on a walk is the length of the
walk. So the length of the walk W' : (u = ug, uy, ...,u = v) is k. A walk in which
no arc is repeated is a (directed) trail; while a walk in which no vertex is repeated
is a (directed) path. A u — v walk is closed if u = v. A closed trail of length at
least 2 is a (directed) circuit; a closed walk of length at least 2 in which no vertex
is repeated except for the initial and terminal vertices is a (directed) cycle.

The digraph D is said to be connected if, for each pair of vertices u, v of
D, there exists a u — v (directed) path. A maximal connected subdigraph of a
digraph D is called a component of D

Let Dy = (V4, Eq) and Dy = (Vs Es) be digraphs. A mapping ¢ : V; — V5
is called a digraph homomorphism if u,v € E; implies ((¢(u)), (¢(v))) € Es, i.e.
@ preserves arcs. We write ¢ : D; — Ds. A digraph homomorphism ¢ : D — D
is called a digraph endomorphism. If ¢ : D; — D, is a bijective digraph homo-
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morphism and ¢~ is also a digraph homomorphism, then ¢ is called a digraph



isomorphism, we write Dy = D, and say that D; and D, are isomorphic. A
digraph isomorphism ¢ : D — D is called a digraph automorphism.

A digraph D is called a semigroup (group) digraph or digraph of a semi-
group (group) if there exists a semigroup (group) S and a connection set A C S

such that D is isomorphic to the Cayley digraph Cay(S, A).

2.1.3 Basic theorems

Now we show an interesting basic theorem which can describe a form of
Cl-graphs.
Note that the cyclic group of order n is the group G = {e, a,d?, ...,a" '},

n

a™ = e where n > 1 and e is the identity element of G. The element a is called

a generator of G. Our insistence that |G| = n means that 1,a,a?,...,a""! are

distinct elements of G.

Theorem 2.1.1. [11] A cyclic group G is a 2-DCI-group, that is, all Cayley digraphs
of G of valency at most 2 are Cl-graphs.

S. Panma characterizes digraphs which are Cayley digraphs of left and
right groups in [16]. Hence we shall introduce these useful results to describe the
structures of the Cayley digraphs of both groups in the next following two sections.

In this thesis, p; denotes the projection map on the i*" coordinate of an

ordered pair.

2.2 Cayley digraphs of left groups

Theorem 2.2.1. [16] Let (V, E) be a digraph. Then (V, E) is a Cayley digraph of
left groups if and only if the following conditions hold:

(1) (V, E) is the disjoint union of n isomorphic subdigraphs (Vi, Ey), (Va, Es), ...,
(Va, E) for some n € N,



(2) there exists a group G such that (Vi, E;), i € {1,2,...,n}, are strong subdi-
graph Cayley digraphs of G,

(3) there exists a digraph isomorphism ¢; : (Vi, E;) — Cay(G, 4;), for some
A, CG, and Aj = Ay for all j,k € {1,2,...,n},

(4) for u,v € V;, (u,v) € E if and only if p;(v) = @;(u)a for some a € A;.

So Theorem 2.2.1 is helpful for us to state a new lemma which will be
easier to used in the proof of the main results about left groups.

Let (Vi, Ey), (Va, Es), ..., (V,, E,) be digraphs and V; NV, = () for all i # j.
The disjoint union of (Vi, Ey), (Va, Es), ..., (V,, E,) is defined as U?zl(VmEi) y
VulWu..uV,, By UE,U...UE,).

Lemma 2.2.2. Let S = G x L, be a left group and A C S. Then the following

conditions hold:
(1) for each i€ {1,2,...,n}, Cay(G x {l;},p1(A) x {l;}) = Cay(G, p1(A))
(2) Cay(S, A) = U, Cay(G x {I:}, p1(A) x {L:}).

Example 2.2.3. Let S = Zs x Ly. Consider A = {(1,15)}.
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Figure 1: Cay(Zs x Lo, {(1,15)})
From Figure 1., we have

(1) Cay(S, A) is the disjoint union of two isomorphic subdigraphs (Zs x {l;}, E1)
and (Z5 X {lz},EQ).

(2) For each i € {1,2}, Zs x {l;} contains a strong subdigraph Cayley digraph
of Z5Z (Z5 X {lz}7 Ez) = Cay(Z5 X {ZZ}, {(T, ll)}> 2 Cay(Z5, {T})



(3) From (2), we have A; = Ay = {1} and ¢; : (Zs x {l;}, E;) — Cay(Zs, A;) is
a digraph isomorphism for all i € {1,2}.

(4) We see that ((g,1:), (¢',1;)) is an arc in Cay(S, A) if and only if ¢’ = ga where

a=1.

2.3 Cayley digraphs of right groups

Theorem 2.3.1. [16] Let (V, E) be a digraph. Then (V, E) is a Cayley digraph of
right groups if and only if the following conditions hold:

(1) there exists a group G and m € N such that (V,E) contains m disjoint
strong subdigraphs (V1, E1), (Va, E2), ..., (Vin, E) which are Cayley digraphs
of G and V; = J!"_ Vias

(2) foreacha € {1,2,...,m}, there exists a digraph isomorphism pq, : (Va, Ey) —
Cay(G, Ay), for some A, C G,

(3) for each o, 5 € {1,2,...,m}, and for each v € V,,v € V3, (u,v) € E if and

only if pa(v) = wa(u)a for some a € Ap.

From Theorem 2.3.1, we can state the following lemma which will be used

in the next chapter.

Lemma 2.3.2. Let S = G X R, be a right group and A C S. If A C G x {r;} where
i€{1,2,...,n}, then Cay(G x {r;}, A) = Cay(G,pi(A)).

Example 2.3.3. Let S = Zs x R3. Consider A = {(1,79)}.
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Figure 2: Cay(Zs x R3,{(1,72)})
From Figure 2., we have

(1) (Zs x Rs, E) contains three strong subdigraph Cayley digraphs of Zs;

(Zs x {r:}, Er) = Cay(Zs x {r}, A1) = Cay(Zs,{ }),

(Zs x {ra}, Ea) = Cay(Zs x {ry}, A) = Cay(Zs, {1}),

(Zs x {rs}, B3) = Cay(Zs x {rs}, As) = Cay(Zs,{ }).

(2) From (2), we have Ay = { }, Ay = {1}, A3 ={ } and ¢, : (Zs X {ra}, Es) —
Cay(Zs, A,) is a digraph isomorphism for all « € {1, 2, 3}.

(3) For each o, 8 € {1,2,3}, and for each v € V,,,v € V3, (u,v) € E if and only
if p5(v) = pa(u)a for some a € Ag. For example, we have ((3,73), (4,72)) is
an arc in Cay(S, A) since 4 =3 + 1 and 1 € A,.

Next, we show the condition when any two Cayley digraphs of a given

right group with a one-element connection set are isomorphic.

Lemma 2.3.4. [12] Let S = G x R,, be a right group, and (g,r),(¢’,r") € S where
9,9 € G and r,v" € R,. Then Cay(S,{(g,7)}) = Cay(S,{(¢’,7")}) if and only if
9l = 19|

Lemma 2.3.5. Let S = G X R, be a right group and A C S. Leti € {1,2,...,n}.
Then AN (G x {r;}) =0 if and only if 7(u) =0 for allu € (G x {r;}).



Proof. Let i € {1,2,...,n}.

(=) Assume that AN (G x {r;}) = 0. Suppose that there exists u €
(G x {r;}) such that 7(u) # 0. Hence there exists an element a € A such that
za = u for some x € S. Since S is a right group, we have a € (G x {r;}). Then
a€ AN (G x {r;}), contrary to AN (G x {r;}) = 0. Therefore E)(u) = 0 for all
u € (G x {r}).

(<) Let u,v € (G x {r;}) and E)(u) = 0,3(@) = 0. Suppose that
AN (G x{r;}) # 0. So there exists an element a € AN (G X {r;}) such that (u,v)
is an arc in Cay(.S, A), and then 7(1}) # 0, a contradiction. Hence AN(G x{r;}) =
0. O



