Chapter 2

Preliminaries

In this chapter, we collect information that need for an understanding of the research work.

2.1 Basic definitions and results

2.1.1 Semigroups

A semigroup S is said to be a left (right) zero semigroup if xy = x (xy = y) for all $x, y \in S$.

Let G be a group, L_n , for $n \in \mathbb{N}$, the n-element left zero semigroup, and set $S = G \times L_n$. Define the multiplication on S componentwise by (g, l)(g', l') = (gg', l)for $g, g' \in G$ and $l, l' \in L_n$. We call the semigroup S a left zero union of groups (LZUG) over G.

Correspondingly, if R_n for $n \in \mathbb{N}$ is the *n*-element right zero semigroup, we set $S = G \times R_n$ and define the multiplication on S componentwise by (g, r)(g', r') = (gg', r') for $g, g' \in G$ and $r, r' \in R_n$. We call this semigroup a right zero union of groups (LZUG) over G.

Note that LZUG over G and RZUG over G are exactly the left and the right groups over G, where a semigroup S is called a *left (right) group*, if it is uniquely left (right) solvable, i.e. for all $r, t \in S$ there exists a unique $s \in S$ such that rs = t (sr = t).

2.1.2 Digraphs

A directed graph or digraph D is a finite nonempty set V together with a set E of ordered pairs of elements of V. Each element of V is referred to as a vertex and V itself as the vertex set of D; the members of the arc set E are called arcs. We write D = (V, E). By an element of a digraph, we shall mean a vertex or an arc. The number of elements in the vertex set is called the order of D. A digraph $D_1 = (V_1, E_1)$ is called a subdigraph of a digraph D = (V, E) if $V_1 \subseteq V$ and $E_1 \subseteq E$. A subdigraph $D_1 = (V_1, E_1)$ is called a strong subdigraph of a digraph D = (V, E) if it is the maximal subdigraph of D with the vertex set V_1

Also, recall that if (u, v) is an arc of a digraph, then u is said to be *adjacent* to v and v is *adjacent from* u. The vertices u and v are also said to be *incident* with the arc (u, v). The *indegree* $\overrightarrow{d}(v)$ of a vertex v of a digraph D is the number of vertices of D that end in v. The *outdegree* $\overleftarrow{d}(v)$ of v is the number of arcs of D start from v.

Now Let D be a digraph. A sequence

$$W: (u = u_0, u_1, ..., u_k = v)$$

of vertices of D such that u_i is adjacent to u_{i+1} for all i $(1 \le i \le k-1)$ is called a (*directed*) u - v walk in D. Each arc $(u_i, u_{i+1}), 1 \le i \le k-1$, is said to be lie on or belong to W. The number of occurrences of arcs on a walk is the *length* of the walk. So the length of the walk $W : (u = u_0, u_1, ..., u_k = v)$ is k. A walk in which no arc is repeated is a (*directed*) trail; while a walk in which no vertex is repeated is a (*directed*) path. A u - v walk is closed if u = v. A closed trail of length at least 2 is a (*directed*) circuit; a closed walk of length at least 2 in which no vertex is repeated except for the initial and terminal vertices is a (*directed*) cycle.

The digraph D is said to be *connected* if, for each pair of vertices u, v of D, there exists a u - v (directed) path. A maximal connected subdigraph of a digraph D is called a *component* of D

Let $D_1 = (V_1, E_1)$ and $D_2 = (V_2, E_2)$ be digraphs. A mapping $\varphi : V_1 \to V_2$ is called a *digraph homomorphism* if $u, v \in E_1$ implies $((\varphi(u)), (\varphi(v))) \in E_2$, i.e. φ preserves arcs. We write $\varphi : D_1 \to D_2$. A digraph homomorphism $\varphi : D \to D$ is called a *digraph endomorphism*. If $\varphi : D_1 \to D_2$ is a bijective digraph homomorphism and φ^{-1} is also a digraph homomorphism, then φ is called a *digraph* isomorphism, we write $D_1 \cong D_2$ and say that D_1 and D_2 are isomorphic. A digraph isomorphism $\varphi: D \to D$ is called a *digraph automorphism*.

A digraph D is called a *semigroup* (group) digraph or digraph of a semigroup (group) if there exists a semigroup (group) S and a connection set $A \subseteq S$ such that D is isomorphic to the Cayley digraph Cay(S, A).

2.1.3 Basic theorems

Now we show an interesting basic theorem which can describe a form of CI-graphs.

Note that the cyclic group of order n is the group $G = \{e, a, a^2, ..., a^{n-1}\},$ $a^n = e$ where $n \ge 1$ and e is the identity element of G. The element a is called a generator of G. Our insistence that |G| = n means that $1, a, a^2, ..., a^{n-1}$ are distinct elements of G.

Theorem 2.1.1. [11] A cyclic group G is a 2-DCI-group, that is, all Cayley digraphs of G of valency at most 2 are CI-graphs.

S. Panma characterizes digraphs which are Cayley digraphs of left and right groups in [16]. Hence we shall introduce these useful results to describe the structures of the Cayley digraphs of both groups in the next following two sections.

In this thesis, p_i denotes the projection map on the i^{th} coordinate of an ordered pair.

2.2 Cayley digraphs of left groups

Theorem 2.2.1. [16] Let (V, E) be a digraph. Then (V, E) is a Cayley digraph of left groups if and only if the following conditions hold:

(1) (V, E) is the disjoint union of n isomorphic subdigraphs $(V_1, E_1), (V_2, E_2), ...$ (V_n, E_n) for some $n \in \mathbb{N}$,

- (2) there exists a group G such that (V_i, E_i) , $i \in \{1, 2, ..., n\}$, are strong subdigraph Cayley digraphs of G,
- (3) there exists a digraph isomorphism $\varphi_i : (V_i, E_i) \to \operatorname{Cay}(G, A_i)$, for some $A_i \subseteq G$, and $A_j = A_k$ for all $j, k \in \{1, 2, ..., n\}$,
- (4) for $u, v \in V_i$, $(u, v) \in E$ if and only if $\varphi_i(v) = \varphi_i(u)a$ for some $a \in A_i$.

So Theorem 2.2.1 is helpful for us to state a new lemma which will be easier to used in the proof of the main results about left groups.

Let $(V_1, E_1), (V_2, E_2), ..., (V_n, E_n)$ be digraphs and $V_i \cap V_j = \emptyset$ for all $i \neq j$. The disjoint union of $(V_1, E_1), (V_2, E_2), ..., (V_n, E_n)$ is defined as $\bigcup_{i=1}^n (V_i, E_i) := (V_1 \cup V_2 \cup ... \cup V_n, E_1 \cup E_2 \cup ... \cup E_n)$.

Lemma 2.2.2. Let $S = G \times L_n$ be a left group and $A \subseteq S$. Then the following conditions hold:

(1) for each $i \in \{1, 2, ..., n\}$, $Cay(G \times \{l_i\}, p_1(A) \times \{l_i\}) \cong Cay(G, p_1(A))$

(2)
$$\operatorname{Cay}(S, A) = \bigcup_{i=1}^{n} \operatorname{Cay}(G \times \{l_i\}, p_1(A) \times \{l_i\}).$$

Example 2.2.3. Let $S = \mathbb{Z}_5 \times L_2$. Consider $A = \{(\overline{1}, l_2)\}$.

$$(\overline{0}, l_1) \quad (\overline{1}, l_1) \quad (\overline{2}, l_1) \quad (\overline{3}, l_1) \quad (\overline{4}, l_1) \quad (\overline{0}, l_2) \quad (\overline{1}, l_2) \quad (\overline{2}, l_2) \quad (\overline{3}, l_2) \quad (\overline{4}, l_2)$$

Figure 1: Cay $(\mathbb{Z}_5 \times L_2, \{(\overline{1}, l_2)\})$

From Figure 1., we have

- (1) $\operatorname{Cay}(S, A)$ is the disjoint union of two isomorphic subdigraphs $(\mathbb{Z}_5 \times \{l_1\}, E_1)$ and $(\mathbb{Z}_5 \times \{l_2\}, E_2)$.
- (2) For each $i \in \{1, 2\}$, $\mathbb{Z}_5 \times \{l_i\}$ contains a strong subdigraph Cayley digraph of \mathbb{Z}_5 : $(\mathbb{Z}_5 \times \{l_i\}, E_i) \cong \operatorname{Cay}(\mathbb{Z}_5 \times \{l_i\}, \{(\overline{1}, l_1)\}) \cong \operatorname{Cay}(\mathbb{Z}_5, \{\overline{1}\}).$

- (3) From (2), we have $A_1 = A_2 = \{\overline{1}\}$ and $\varphi_i : (\mathbb{Z}_5 \times \{l_i\}, E_i) \to \operatorname{Cay}(\mathbb{Z}_5, A_i)$ is a digraph isomorphism for all $i \in \{1, 2\}$.
- (4) We see that $((g, l_i), (g', l_i))$ is an arc in Cay(S, A) if and only if g' = ga where $a = \overline{1}$.

2.3 Cayley digraphs of right groups

Theorem 2.3.1. [16] Let (V, E) be a digraph. Then (V, E) is a Cayley digraph of right groups if and only if the following conditions hold:

- (1) there exists a group G and $m \in \mathbb{N}$ such that (V, E) contains m disjoint strong subdigraphs $(V_1, E_1), (V_2, E_2), ..., (V_m, E_m)$ which are Cayley digraphs of G and $V_i = \bigcup_{\alpha=1}^m V_{i\alpha}$,
- (2) for each $\alpha \in \{1, 2, ..., m\}$, there exists a digraph isomorphism $\varphi_{\alpha} : (V_{\alpha}, E_{\alpha}) \to$ Cay (G, A_{α}) , for some $A_{\alpha} \subseteq G$,
- (3) for each $\alpha, \beta \in \{1, 2, ..., m\}$, and for each $u \in V_{\alpha}, v \in V_{\beta}, (u, v) \in E$ if and only if $\varphi_{\beta}(v) = \varphi_{\alpha}(u)a$ for some $a \in A_{\beta}$.

From Theorem 2.3.1, we can state the following lemma which will be used in the next chapter.

Lemma 2.3.2. Let $S = G \times R_n$ be a right group and $A \subseteq S$. If $A \subseteq G \times \{r_i\}$ where $i \in \{1, 2, ..., n\}$, then $\operatorname{Cay}(G \times \{r_i\}, A) \cong \operatorname{Cay}(G, p_1(A))$.

Example 2.3.3. Let $S = \mathbb{Z}_5 \times R_3$. Consider $A = \{(\overline{1}, r_2)\}$.

Copyright[©] by Chiang Mai University All rights reserved

Figure 2: $\operatorname{Cay}(\mathbb{Z}_5 \times R_3, \{(\overline{1}, r_2)\})$

From Figure 2., we have

- (1) $(\mathbb{Z}_5 \times R_3, E)$ contains three strong subdigraph Cayley digraphs of \mathbb{Z}_5 ; $(\mathbb{Z}_5 \times \{r_1\}, E_1) \cong \operatorname{Cay}(\mathbb{Z}_5 \times \{r_1\}, A_1) \cong \operatorname{Cay}(\mathbb{Z}_5, \{ \}),$ $(\mathbb{Z}_5 \times \{r_2\}, E_2) \cong \operatorname{Cay}(\mathbb{Z}_5 \times \{r_2\}, A_2) \cong \operatorname{Cay}(\mathbb{Z}_5, \{\overline{1}\}),$ $(\mathbb{Z}_5 \times \{r_3\}, E_3) \cong \operatorname{Cay}(\mathbb{Z}_5 \times \{r_3\}, A_3) \cong \operatorname{Cay}(\mathbb{Z}_5, \{ \}).$
- (2) From (2), we have $A_1 = \{ \}, A_2 = \{\overline{1}\}, A_3 = \{ \}$ and $\varphi_{\alpha} : (\mathbb{Z}_5 \times \{r_{\alpha}\}, E_{\alpha}) \to$ Cay $(\mathbb{Z}_5, A_{\alpha})$ is a digraph isomorphism for all $\alpha \in \{1, 2, 3\}$.
- (3) For each $\alpha, \beta \in \{1, 2, 3\}$, and for each $u \in V_{\alpha}, v \in V_{\beta}, (u, v) \in E$ if and only if $\varphi_{\beta}(v) = \varphi_{\alpha}(u)a$ for some $a \in A_{\beta}$. For example, we have $((\overline{3}, r_3), (\overline{4}, r_2))$ is an arc in Cay(S, A) since $\overline{4} = \overline{3} + \overline{1}$ and $\overline{1} \in A_2$.

Next, we show the condition when any two Cayley digraphs of a given right group with a one-element connection set are isomorphic.

Lemma 2.3.4. [12] Let $S = G \times R_n$ be a right group, and $(g, r), (g', r') \in S$ where $g, g' \in G$ and $r, r' \in R_n$. Then $\operatorname{Cay}(S, \{(g, r)\}) \cong \operatorname{Cay}(S, \{(g', r')\})$ if and only if |g| = |g'|.

Lemma 2.3.5. Let $S = G \times R_n$ be a right group and $A \subseteq S$. Let $i \in \{1, 2, ..., n\}$ Then $A \cap (G \times \{r_i\}) = \emptyset$ if and only if $\overrightarrow{d}(u) = 0$ for all $u \in (G \times \{r_i\})$. *Proof.* Let $i \in \{1, 2, ..., n\}$.

Ø.

 (\Longrightarrow) Assume that $A \cap (G \times \{r_i\}) = \emptyset$. Suppose that there exists $u \in (G \times \{r_i\})$ such that $\overrightarrow{d}(u) \neq 0$. Hence there exists an element $a \in A$ such that xa = u for some $x \in S$. Since S is a right group, we have $a \in (G \times \{r_i\})$. Then $a \in A \cap (G \times \{r_i\})$, contrary to $A \cap (G \times \{r_i\}) = \emptyset$. Therefore $\overrightarrow{d}(u) = 0$ for all $u \in (G \times \{r_i\})$.

(\Leftarrow) Let $u, v \in (G \times \{r_i\})$ and $\overrightarrow{d}(u) = 0, \overrightarrow{d}(v) = 0$. Suppose that $A \cap (G \times \{r_i\}) \neq \emptyset$. So there exists an element $a \in A \cap (G \times \{r_i\})$ such that (u, v) is an arc in Cay(S, A), and then $\overrightarrow{d}(v) \neq 0$, a contradiction. Hence $A \cap (G \times \{r_i\}) =$

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหเ</mark> Copyright[©] by Chiang Mai University All rights reserved