
Chapter 2

Preliminaries

In this chapter, we collect information that need for an understanding of

the research work.

2.1 Basic definitions and results

2.1.1 Semigroups

A semigroup S is said to be a left (right) zero semigroup if xy = x (xy = y)

for all x, y ∈ S.

Let G be a group, Ln, for n ∈ N, the n-element left zero semigroup, and set

S = G×Ln. Define the multiplication on S componentwise by (g, l)(g′, l′) = (gg′, l)

for g, g′ ∈ G and l, l′ ∈ Ln. We call the semigroup S a left zero union of groups

(LZUG) over G.

Correspondingly, if Rn for n ∈ N is the n-element right zero semigroup, we

set S = G×Rn and define the multiplication on S componentwise by (g, r)(g′, r′) =

(gg′, r′) for g, g′ ∈ G and r, r′ ∈ Rn. We call this semigroup a right zero union of

groups (LZUG) over G.

Note that LZUG over G and RZUG over G are exactly the left and the

right groups over G, where a semigroup S is called a left (right) group, if it is

uniquely left (right) solvable, i.e. for all r, t ∈ S there exists a unique s ∈ S such

that rs = t (sr = t).

2.1.2 Digraphs

A directed graph or digraph D is a finite nonempty set V together with

a set E of ordered pairs of elements of V . Each element of V is referred to as a
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vertex and V itself as the vertex set of D; the members of the arc set E are called

arcs. We write D = (V,E). By an element of a digraph, we shall mean a vertex

or an arc. The number of elements in the vertex set is called the order of D. A

digraph D1 = (V1, E1) is called a subdigraph of a digraph D = (V,E) if V1 ⊆ V and

E1 ⊆ E. A subdigraph D1 = (V1, E1) is called a strong subdigraph of a digraph

D = (V,E) if it is the maximal subdigraph of D with the vertex set V1

Also, recall that if (u, v) is an arc of a digraph, then u is said to be adjacent

to v and v is adjacent from u. The vertices u and v are also said to be incident

with the arc (u, v). The indegree
−→
d (v) of a vertex v of a digraph D is the number

of vertices of D that end in v. The outdegree
←−
d (v) of v is the number of arcs of

D start from v.

Now Let D be a digraph. A sequence

W : (u = u0, u1, ..., uk = v)

of vertices of D such that ui is adjacent to ui+1 for all i (1 ≤ i ≤ k − 1) is called

a (directed) u− v walk in D. Each arc (ui, ui+1), 1 ≤ i ≤ k− 1, is said to be lie on

or belong to W . The number of occurrences of arcs on a walk is the length of the

walk. So the length of the walk W : (u = u0, u1, ..., uk = v) is k. A walk in which

no arc is repeated is a (directed) trail; while a walk in which no vertex is repeated

is a (directed) path. A u − v walk is closed if u = v. A closed trail of length at

least 2 is a (directed) circuit; a closed walk of length at least 2 in which no vertex

is repeated except for the initial and terminal vertices is a (directed) cycle.

The digraph D is said to be connected if, for each pair of vertices u, v of

D, there exists a u − v (directed) path. A maximal connected subdigraph of a

digraph D is called a component of D

Let D1 = (V1, E1) and D2 = (V2, E2) be digraphs. A mapping ϕ : V1 → V2

is called a digraph homomorphism if u, v ∈ E1 implies ((ϕ(u)), (ϕ(v))) ∈ E2, i.e.

ϕ preserves arcs. We write ϕ : D1 → D2. A digraph homomorphism ϕ : D → D

is called a digraph endomorphism. If ϕ : D1 → D2 is a bijective digraph homo-

morphism and ϕ−1 is also a digraph homomorphism, then ϕ is called a digraph
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isomorphism, we write D1
∼= D2 and say that D1 and D2 are isomorphic. A

digraph isomorphism ϕ : D → D is called a digraph automorphism.

A digraph D is called a semigroup (group) digraph or digraph of a semi-

group (group) if there exists a semigroup (group) S and a connection set A ⊆ S

such that D is isomorphic to the Cayley digraph Cay(S,A).

2.1.3 Basic theorems

Now we show an interesting basic theorem which can describe a form of

CI-graphs.

Note that the cyclic group of order n is the group G = {e, a, a2, ..., an−1},

an = e where n ≥ 1 and e is the identity element of G. The element a is called

a generator of G. Our insistence that |G| = n means that 1, a, a2, ..., an−1 are

distinct elements of G.

Theorem 2.1.1. [11] A cyclic group G is a 2-DCI-group, that is, all Cayley digraphs

of G of valency at most 2 are CI-graphs.

S. Panma characterizes digraphs which are Cayley digraphs of left and

right groups in [16]. Hence we shall introduce these useful results to describe the

structures of the Cayley digraphs of both groups in the next following two sections.

In this thesis, pi denotes the projection map on the ith coordinate of an

ordered pair.

2.2 Cayley digraphs of left groups

Theorem 2.2.1. [16] Let (V,E) be a digraph. Then (V,E) is a Cayley digraph of

left groups if and only if the following conditions hold:

(1) (V,E) is the disjoint union of n isomorphic subdigraphs (V1, E1), (V2, E2), ...,

(Vn, En) for some n ∈ N,
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(2) there exists a group G such that (Vi, Ei), i ∈ {1, 2, ..., n}, are strong subdi-

graph Cayley digraphs of G,

(3) there exists a digraph isomorphism ϕi : (Vi, Ei) → Cay(G,Ai), for some

Ai ⊆ G, and Aj = Ak for all j, k ∈ {1, 2, ..., n},

(4) for u, v ∈ Vi, (u, v) ∈ E if and only if ϕi(v) = ϕi(u)a for some a ∈ Ai.

So Theorem 2.2.1 is helpful for us to state a new lemma which will be

easier to used in the proof of the main results about left groups.

Let (V1, E1), (V2, E2), ..., (Vn, En) be digraphs and Vi ∩ Vj = ∅ for all i 6= j.

The disjoint union of (V1, E1), (V2, E2), ..., (Vn, En) is defined as
⋃̇n

i=1(Vi, Ei) :=

(V1 ∪ V2 ∪ ... ∪ Vn, E1 ∪ E2 ∪ ... ∪ En).

Lemma 2.2.2. Let S = G × Ln be a left group and A ⊆ S. Then the following

conditions hold:

(1) for each i ∈ {1, 2, ..., n}, Cay(G× {li}, p1(A)× {li}) ∼= Cay(G, p1(A))

(2) Cay(S,A) =
⋃̇n

i=1Cay(G× {li}, p1(A)× {li}).

Example 2.2.3. Let S = Z5 × L2. Consider A = {(1, l2)}.

r r r r r r r r r r- - - - - - - -
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(0, l1) (1, l1) (2, l1) (3, l1) (4, l1) (0, l2) (1, l2) (2, l2) (3, l2) (4, l2)

Figure 1: Cay(Z5 × L2, {(1, l2)})

From Figure 1., we have

(1) Cay(S,A) is the disjoint union of two isomorphic subdigraphs (Z5×{l1}, E1)

and (Z5 × {l2}, E2).

(2) For each i ∈ {1, 2}, Z5 × {li} contains a strong subdigraph Cayley digraph

of Z5: (Z5 × {li}, Ei) ∼= Cay(Z5 × {li}, {(1, l1)}) ∼= Cay(Z5, {1}).
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(3) From (2), we have A1 = A2 = {1} and ϕi : (Z5 × {li}, Ei)→ Cay(Z5, Ai) is

a digraph isomorphism for all i ∈ {1, 2}.

(4) We see that ((g, li), (g
′, li)) is an arc in Cay(S,A) if and only if g′ = ga where

a = 1.

2.3 Cayley digraphs of right groups

Theorem 2.3.1. [16] Let (V,E) be a digraph. Then (V,E) is a Cayley digraph of

right groups if and only if the following conditions hold:

(1) there exists a group G and m ∈ N such that (V,E) contains m disjoint

strong subdigraphs (V1, E1), (V2, E2), ..., (Vm, Em) which are Cayley digraphs

of G and Vi =
⋃m
α=1 Viα,

(2) for each α ∈ {1, 2, ...,m}, there exists a digraph isomorphism ϕα : (Vα, Eα)→

Cay(G,Aα), for some Aα ⊆ G,

(3) for each α, β ∈ {1, 2, ...,m}, and for each u ∈ Vα, v ∈ Vβ, (u, v) ∈ E if and

only if ϕβ(v) = ϕα(u)a for some a ∈ Aβ.

From Theorem 2.3.1, we can state the following lemma which will be used

in the next chapter.

Lemma 2.3.2. Let S = G×Rn be a right group and A ⊆ S. If A ⊆ G×{ri} where

i ∈ {1, 2, ..., n}, then Cay(G× {ri}, A) ∼= Cay(G, p1(A)).

Example 2.3.3. Let S = Z5 ×R3. Consider A = {(1, r2)}.
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Figure 2: Cay(Z5 ×R3, {(1, r2)})

From Figure 2., we have

(1) (Z5 ×R3, E) contains three strong subdigraph Cayley digraphs of Z5;

(Z5 × {r1}, E1) ∼= Cay(Z5 × {r1}, A1) ∼= Cay(Z5, { }),

(Z5 × {r2}, E2) ∼= Cay(Z5 × {r2}, A2) ∼= Cay(Z5, {1}),

(Z5 × {r3}, E3) ∼= Cay(Z5 × {r3}, A3) ∼= Cay(Z5, { }).

(2) From (2), we have A1 = { }, A2 = {1}, A3 = { } and ϕα : (Z5×{rα}, Eα)→

Cay(Z5, Aα) is a digraph isomorphism for all α ∈ {1, 2, 3}.

(3) For each α, β ∈ {1, 2, 3}, and for each u ∈ Vα, v ∈ Vβ, (u, v) ∈ E if and only

if ϕβ(v) = ϕα(u)a for some a ∈ Aβ. For example, we have ((3, r3), (4, r2)) is

an arc in Cay(S,A) since 4 = 3 + 1 and 1 ∈ A2.

Next, we show the condition when any two Cayley digraphs of a given

right group with a one-element connection set are isomorphic.

Lemma 2.3.4. [12] Let S = G× Rn be a right group, and (g, r), (g′, r′) ∈ S where

g, g′ ∈ G and r, r′ ∈ Rn. Then Cay(S, {(g, r)}) ∼= Cay(S, {(g′, r′)}) if and only if

|g| = |g′|.

Lemma 2.3.5. Let S = G × Rn be a right group and A ⊆ S. Let i ∈ {1, 2, ..., n}.

Then A ∩ (G× {ri}) = ∅ if and only if
−→
d (u) = 0 for all u ∈ (G× {ri}).
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Proof. Let i ∈ {1, 2, ..., n}.

(=⇒) Assume that A ∩ (G × {ri}) = ∅. Suppose that there exists u ∈

(G × {ri}) such that
−→
d (u) 6= 0. Hence there exists an element a ∈ A such that

xa = u for some x ∈ S. Since S is a right group, we have a ∈ (G × {ri}). Then

a ∈ A ∩ (G × {ri}), contrary to A ∩ (G × {ri}) = ∅. Therefore
−→
d (u) = 0 for all

u ∈ (G× {ri}).

(⇐=) Let u, v ∈ (G × {ri}) and
−→
d (u) = 0,

−→
d (v) = 0. Suppose that

A∩ (G×{ri}) 6= ∅. So there exists an element a ∈ A∩ (G×{ri}) such that (u, v)

is an arc in Cay(S,A), and then
−→
d (v) 6= 0, a contradiction. Hence A∩(G×{ri}) =

∅.


