
Chapter 3

Existence of Some Generalized Mixed

Equilibrium Problems in Hilbert Spaces

3.1 Existence of Some Generalized Mixed Equilibrium

Problems in Hilbert Spaces

We first prove the existence of (3.1.2). To do this, the following condition is also

assumed:

(H ′) For fixed r > 0 and x ∈ C there exists a bounded set K ⊂ C and a ∈ K

such that for all z ∈ C/K,

−F (a, z) + G(z, a) +
1

r
〈a− z, z − x〉+ ϕ(y) < ϕ(x) for all y ∈ C. (3.1.1)

Theorem 3.1.1. Let C be a nonempty closed convex subset of a real Hilbert space

H.Let ϕ : C → R be convex and lower semicontinuous. Let F, G : C × C → R

be two bifunctions which satisfy conditions (F1)-(F4), (G1)-(G3) and (H ′). Let

r > 0 and x ∈ C. Then, there exists z ∈ C such that

F (z, y) + G(z, y) +
1

r
〈y − z, z − x〉+ ϕ(y) < ϕ(x) for all y ∈ C. (3.1.2)

Further, if

Tϕ
r (x) = {z ∈ C : F (z, y)+G(z, y)+ 1

r
〈y−z, z−x〉+ϕ(y) < ϕ(x) for all y ∈ C},

then the follow hold:

(i) Tϕ
r is single-valued and Tϕ

r is firmly nonexpansive,

(ii) Γ′ is closed and convex and Γ′ = Fix(Tϕ
r ).
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Proof. Let G′ = G(x, y)+ϕ(y)−ϕ(x) for all y ∈ C, We show that G′ : C×C → R

is bifuntion which satisfies conditions (G′1)-(G′3). It easy to show that G′ satisfies

(G′1). For each y ∈ C,we shall show that G′(·, y) is weakly upper semicontinuous.

To do this, suppose xn ⇀ x. By (G2) and lower semicontinuity of ϕ we have, for

any n ≥ 1,

limsupn→∞G′(xn, y) = limsupn→∞[G(xn, y) + ϕ(y)− ϕ(xn)]

≤ limsupn→∞G(xn, y) + limsupn→∞[ϕ(y)− ϕ(xn)]

≤ G(x, y) + ϕ(y) + limsupn→∞[−ϕ(xn)]

= G(x, y) + ϕ(y)− liminfn→∞[ϕ(xn)],

≤ G(x, y) + ϕ(y)− ϕ(x)

= G′(x, y). (3.1.3)

This implies that G′ is weakly upper semicontinuous in the first variable. More-

over, we have that

G′(x, y) + G′(y, x) = G(x, y) + ϕ(y)− ϕ(x) + G(y, x) + ϕ(x)− ϕ(y)

= G(x, y) + G(y, x)

≤ 0. (3.1.4)

Hence G′ satisfies (G′2). For each x ∈ C, G′(x, ·) is convex. Let y1, y2 ∈ C and

λ ∈ [0, 1]. By (G′3) and convexity of ϕ, we have

λG′(x, y1) + (1− λ)G′(x, y2) = λG(x, y1) + (1− λ)G(x, y2) + λϕ(y1)

+(1− λ)ϕ(y2)− ϕ(x)

≥ G(x, λy1 + (1− λ)y2) + ϕ(λy1 + (1− λ)y2)− ϕ(x)

= G′(x, λy1 + (1− λ)y2). (3.1.5)

Therefore G′ satisfies (G′3). By Lemma 2.4.7 there exists z ∈ C such that

F (z, y) + G(z, y) +
1

r
〈y − z, z − x〉+ ϕ(y) < ϕ(x) for all y ∈ C. (3.1.6)
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Further, if

Tϕ
r (x) = {z ∈ C : F (z, y)+G(z, y)+ 1

r
〈y−z, z−x〉+ϕ(y) < ϕ(x) for all y ∈ C},

then the follow hold:

(i) Tϕ
r is single-valued and Tϕ

r is firmly nonexpansive,

(ii) Γ′ is closed and convex and Γ′ = Fix(Tϕ
r ).

Theorem 3.1.2. Let C be a nonempty closed convex subset of a real Hilbert space

H.Let F, G : C×C → R be two bifunctions which satisfy conditions (F2),(G2)and

ϕ : C → R ∪ {+∞}. Let A α-inverse-strongly monotone mapping of C into H.

Then Au = Av for all u, v ∈ Γ′.

Proof. Let u, v ∈ Γ′.We then get

F (u, y) + G(u, y) + 〈Au, y − u〉+ ϕ(y) ≥ ϕ(u) for all y ∈ C. (3.1.7)

and

F (v, y) + G(v, y) + 〈Av, y − v〉+ ϕ(y) ≥ ϕ(v) for all y ∈ C. (3.1.8)

By letting y=v in (3.1.7) and y=u in (3.1.8) we get

F (u, v) + G(u, v) + 〈Au, v − u〉+ ϕ(v) ≥ ϕ(x) for all y ∈ C. (3.1.9)

and

F (v, u) + G(v, u) + 〈Av, u− v〉+ ϕ(u) ≥ ϕ(v) for all y ∈ C. (3.1.10)

By (3.1.9), (3.1.10) and the conditions (F2) and (G2), we have

〈Av − Au, u− v〉 ≥ F (u, v) + F (v, u) + G(u, v) + G(v, u) + 〈Au, v − u〉+ 〈Av, u− v〉

≥ 0.

From A is α-inverse-strongly monotone mapping,

0 ≤ α‖Au− Av‖2 ≤ 〈Au− Av, u− v〉 ≤ 0.

That is Au = Av.



26

Remark 3.1.3. if ϕ = 0 in Theorem 3.1.2 , we obtain that Au = Av for all u, v ∈

Γ.

Theorem 3.1.4. Let C be a nonempty closed convex subset of a real Hilbert space

H. Let ϕ : C → H be an α−inverse strongly monotone mapping and A : C → R

be convex and lower semicontinous. Let F, G : C × C → R be two bifunctions

which satisfy conditions (F1)-(F4),(G1)-(G3) and (H ′). Let f : C → H be a ρ−

contraction and r > 0 be a constant with r < 2δ. Suppose Γ′ 6= ∅ For given x0 ∈ C

and u ∈ C arbitrarily, let the sequence {xn} be generated iteratively by

xn+1 = βnxn + (1− βn)PC [αnu + (1− αn)Tϕ
r (xn − rAxn)], (3.1.8)

for all n ≥ 0, where {αn} and {βn} are sequences in [0,1] satisfying the following

conditions:

(i) limn→∞ αn = 0 and Σ∞
n=1αn = ∞,

(ii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Then the sequence {xn} converges strongly to x∗ ∈ Γ′ which is the unique solution

of the following variational inequality: 〈(I − f)x∗, x− x∗〉 ≥ 0, x ∈ Γ′.

Proof. By Theorem 3.1.1, we have then Γ′ = Fix(Tϕ
r ) and Theorem 2.5.6 assumes

that the sequence generated by 3.1.8 converges strongly to x∗ ∈ Γ′ which is the

unique solution of the following variational inequality:〈(I−f)x∗, x−x∗〉 ≥ 0, x ∈

Γ′.

Theorem 3.1.5. Let C be a nonempty closed convex subset of a real Hilbert space

H. Suppose Γ′ 6= ∅. For given u, x0 ∈ C, let the sequence {xn} be generated

iteratively by

xn+1 = αnu + (1− αn)Tϕ
r xn, n ≥ 0, (3.1.9)

where {αn} is sequences in [0,1] satisfying the following conditions:

(i) limn→∞ αn = 0,

(ii) Σ∞
n=1αn = +∞,

(iii) Σ∞
n=1 | αn+1 − αn |< +∞.

Then the sequence {xn} converges strongly to x∗ ∈ Γ′.
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Proof. By Theorem 3.1.1, we have then Γ′ = Fix(Tϕ
r ) Since Tϕ

r is a nonexpansive,

we have by Theorem 2.5.7 that xn → x∗ ∈ Γ′.


