TABLE OF CONTENTS | TABLE OF CONTENTS | | | |--|----------------|--| | | Page | | | ACKNOWLEDGEMENTS | iii | | | ABSTRACT (IN ENGLISH) ABSTRACT (IN THAI) TABLE OF CONTENTS | v
viii
x | | | LIST OF FIGURES LIST OF TABLES | xiii
xvii | | | ABBREVIATIONS CHAPTER 1 INTRODUCTION | xviii | | | 1.1. Statement of problems | 1 | | | 1.2. Literature review | 2 | | | 1.2.1. Air pollution | 2 | | | 1.2.2. Type of Air pollution | 2 | | | 1.2.3. Sources of Air pollution | 3 | | | 1.2.4. Common Air pollution | 4 | | | 1.2.5. Health effects and Toxicity mechanism of PM | 19 | | | 1.2.6. The structure of lung tissue membrane | 22 | | | 1.2.7 In vivo cell exposure studies of air pollution | Z 23/ A | | | o 9. | 2.8. <i>In vitro</i> cell exposure studies of air pollution | 24 | |-----------------|---|---------------| | 1.3. O | bjectives | 27 | | CHAPTER 2 MATER | CIALS AND METHODS | | | 2.1 Ma | terials | 28 | | 2.2 Me | thods | 28 | | 2.2. | 1 Establishment of direct alveolar epithelial | 28 | | | cells-air exposure prototype | | | 2.2. | 2 Cell culture | 37 | | 2.2. | 3 Toxicity Testing by using the Static Exposure | 38 | | | to Alveolar Epithelial Cells | | | 2.2. | 4 Toxicity Testing by using the Developed | 38 | | | Direct Alveolar Epithelial Cells -Air Exposure | | | | Prototype | | | 2.2. | | 39 | | | method | | | 2.2. | | 40 | | 2.2. | · | 41 | | 2.2. | | | | CHAPTRR 3 RESUL | nangiaagiikgi | 42 | | | | | | 3.1 An | in vitro model for the exposure of air pollutants | 43
Versity | | 3.1. | 1 The construction of an exposure chamber | 43 | | A | 2 Tested function of an exposure chamber devices | 51/ | | | | | | 3.2 The possibility of using an exposure chamber to culture | 54 | |---|-----| | A549 cells | | | 3.3 The suitable cell culture technique for toxicity testing of | 55 | | inhaled substances | | | 3.4 Toxicity testing of air pollution by using the Developed | 58 | | Direct Alveolar Epithelial Cells (A549)-Air Exposure | | | Prototype | | | 3.4.1 Cytotoxicity of A549 cells after exposure to | 58 | | PM2.5 with the Air Exposure Chamber | | | 3.4.2 IL-6 and IL-8 secretion by A549 cells after | 60 | | exposure to PM2.5 with the Air Exposure | | | Chamber | | | 3.5 IL-6 and IL-8 secretion by A549 cells after exposure to | 70 | | PM2.5 with Conventional method | | | CHAPTER 4 DISCUSSION | 72 | | CHAPTER 5 CONCLUSION | 78 | | REFERENCES | 79 | | APPENDICES | 93 | | APPENDIX A | 94 | | APPENDIX B | 95 | | APPENDIX B APPENDIX C | 99 | | CURRICULUM VITAE | 100 | # LIST OF FIGURES | Figure | Page | |---|---| | 1.1 The structure of lung tissue membrane | 22 | | 2.1 Air input unit with curtain wall | 29 | | 2.2 The UV lamp installed in a box for sterilization | 30 | | 2.3 Three-dimensional image of air impactor filter and prototype | 31 | | 2.4 Construction of the impactor for separation of PM10 | 32 | | 2.5 Construction of the impactor for separation of PM2.5 | 32 | | 2.6 The exposure chamber consists of three parts; temperature and humidity | 33 | | sensors, heater and moisture system. | | | 2.7 The SHT15 digital sensor | 33 | | 2.8 Ten Watts resistor | 34 | | 2.9 The Ultrasonic Humidifier | 34 | | 2.10 Temperature and Humidity controller | 35 | | 2.11 Schematic diagram of the control system of temperature and humidity in | 36 | | chamber g h t s r e s e r | | | | 1.1 The structure of lung tissue membrane 2.1 Air input unit with curtain wall 2.2 The UV lamp installed in a box for sterilization 2.3 Three-dimensional image of air impactor filter and prototype 2.4 Construction of the impactor for separation of PM10 2.5 Construction of the impactor for separation of PM2.5 2.6 The exposure chamber consists of three parts; temperature and humidity sensors, heater and moisture system. 2.7 The SHT15 digital sensor 2.8 Ten Watts resistor 2.9 The Ultrasonic Humidifier 2.10 Temperature and Humidity controller 2.11 Schematic diagram of the control system of temperature and humidity in | | 2.12 | Temperature and humidity controller of exposure chamber | 36 | |--------------------|---|--------------------| | 2.13 | Cells were cultured by an air/liquid interface technique. | 38 | | 3.1 | Model of exposure chamber generation 1 which contained test chamber | 43 | | | and water bath, tray for cell culture plate, nuzzle and cap. | | | 3.2 | Graphic model of test chamber (a) and an actual test chamber which made by acrylic (b) | 44 | | 3.3 | Cell culture tray | 45 | | 3.4 | Air cap and nozzle | 46 | | 3.5 | Exposure chamber generation 1 | 47 | | 3.6 | The temperature was controlled by water bath. | 47 | | 3.7 | An exposure chamber devices culture zone (chamber) (A) including Heater (B), Temperature and Humidity sensor (C) and Ultrasonic | 49 | | | Humidifier (D) | | | 3.8
adam | An exposure chamber controller devices (A) including UV light(B), impactor (C), and pump (D) | 50 | | Copyright 3.9 | Cross-sectional view of an impactor | 53
E S | | 3.10 | Cell viability of A549 after culture in an exposure chamber | 54
/ e | | 3.11 | The morphology of A549 cells after culture in an exposure chamber | 55 | |--------|---|--------------| | 3.12 | Cytotoxic effect of benzene vapor in A549 cells which were cultured by | 56 | | | using a conventional and an air/liquid interface culture techniques | | | 3.13 | Effect of benzene vapor on IL-6 level. A549 cells were culture using a | 57 | | | conventional and an air/liquid interface technique | | | 3.14 | Cell viability of A549 cells after culture in an exposure chamber for 6 h | 59 | | 3.15 | Effect of PM on IL-6 level. A549 cells were cultured using the air/liquid | 61 | | | interface technique. Cells were exposed to PM from Phalad temple, | | | | Warorot market and Saraphi for 6 h | | | 3.16 1 | Effect of PM on IL-8 level. A549 cells were cultured using the air/liquid | 62 | | | interface technique. Cells were exposed to PM from Phalad temple, | | | | Warorot market and Saraphi for 6 h | | | 3.17 | Effect of PM on IL-6 level. A549 cells were culture using an air/liquid | 63 | | iı | nterface technique. Cells were exposed to a PM of Phalad temple for 6 h | | | 3.18 | Effect of PM on IL-8 level. A549 cells were culture using an air/liquid | 64 | | avans | interface technique. Cells were exposed to a PM of Phalad temple for 6 h | | | 3.19 | Effect of PM on IL-6 level. A549 cells were culture using an air/liquid | 65
Arsify | | | interface technique. Cells were exposed to a PM of Warorot market for | | | | 6h I g h t s r e s e r | | | 3.20 Effect of PM on IL-8 level. A549 cells were culture using an air/liquid | 66 | |--|----| | interface technique. Cells were exposed to a PM of Warorot market for | | | 6 h | | | 3.21 Effect of PM on IL-6 level. A549 cells were culture using an air/liquid | 67 | | interface technique. Cells were exposed to a PM of Saraphi for 6 h | | | 3.22 Effect of PM on IL-8 level. A549 cells were culture using an air/liquid | 68 | | interface technique. Cells were exposed to a PM of Saraphi for 6 h | | | 3.23 Correlation of daily PM with effect of PM on IL-6 and IL-8 levels | 69 | | 3.24 Cell viability of A549 cells after exposure to PM2.5 with Conventional | 70 | | method | | | 3.25 Effect of PM on IL-6 level. A549 cells after exposure to PM2.5 with | 71 | | Conventional method | | | 3.26 Effect of PM on IL-8 level. A549 cells after exposure to PM2.5 with | 71 | | Conventional method | | ## LIST OF TABLES Table Page 3.1 Summary data of Air Exposure chamber tests # ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved #### xviii ## **ABBREVIATIONS** ALI air liquid interface A549 Human alveolar epithelial cells cAMP Cyclic Adenosine Monophosphate CO Carbon monoxide CO₂ Carbon Dioxide COHb Carboxy hemoglobin DMEM Dulbecco's Modified Eagle Medium DNA Deoxyribonucleic acid EDTA ethylene diamine tetra-acetic acid ELISA Enzyme linked immunosorbent assay ESR electron spin resonance h Hour Hb Hemoglobin HBSS Hanks' Balanced Salt Solution HO-1 hemeoxygenase-1 HRP Horseradish peroxidase IFN-γ interferon gamma IL-1β Interleukin 1 beta IL-6 Interleukin 6 IL-8 Interleukin 8 IU/ml International Unit / milliliter mg:m³ microgram: cubic meters NADPH nicotinamide adenine dinucleotide phosphate oxidase ### xix NHBE normal human bronchial epithelial nM nano molar NO nitric oxide NO₂ nitrogen dioxide N₂O Nitrous oxide O₃ Ozone PAHs Polycyclic Aromatic Hydrocarbons pg/mL picogram / milliliter PM Particulate Metter ppb part per billion RH Relative Humidity RNA Ribonucleic acid RT Room Temperature RV16 human rhinovirus type 16 SOx entire group of sulfur oxides SO₂ Sulfur dioxide SO₃ Sulfur trioxide TNF-α Tumor Necrosis Factor Alpha UV Ultraviolet VOCs volatile organic compounds v/v volume/ volume W watt ım micrometer μg/m³ microgram / Cubic meters μg/ml microgram / milliliter °C Degree Celsius