CHAPTER 3

RESULTS

3.1 Identification the protein reacted to CM5pAb

3.1.1 Protein purification by immunoprecipitation with CM5pAb

Cell extracts prepared from lung tumor tissues were incubated with CM5pAb immobilized protein G agarose bead for 24 hours. After incubation, the unbound proteins were washed away and the bound protein was eluted and subjected to SDS-PAGE. The gel was stained with a coomassie blue, and protein bands with apparent molecular weight around 95-100 kDa were excised and subjected to protein identification by LC-MS/MS. As shown in Figure 3.1, there are three faint bands appear next to each other around the expected area of gel; therefore, all of the protein bands were individually excised. The excised bands were referred to band A, band B and band C, respectively.

Figure 3.1 Coomassie blue stained gel showing the CM5pAb immunoprecipitated protein bands. The immunoprecipitated proteins were separated through 10% SDS-PAGE and stained with coomassie blue. Marker (lane1), immunoprecipitated proteins (lane 2) **3.1.2 Identification of immunoprecipitated proteins by LC-MS/MS (Liquid chromatography – tandem mass spectrometry)**

The excised immunoprecipitated proteins from gel were collected in sterile distilled water before sending for identification as describe in section 2.2.2.2. Using mass spectrum data searched against mammalian protein database, the resulting mass spectra of band A, B, C were identified to belong to several candidate proteins as shown in Table 3.1, Table 3.2 and Table 3.3, repectively. In general, the delta Cn score of greater than 100 represents significant similarity. Taken together of all the matched profile, the potential candidates showing highest delta Cn score were mouse glucose-regulated protein, 78 kDa; GRP-78 (gi1304157, delta Cn score 184.21) and human ER glucosidase II (gi2274968, delta Cn score 174.26).

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

No.	Reference scan	Sequence	MH+	Charge	Delta Cn Score	
1	gi 1304157 dbj BAA11462	R L A			184.21	
	.1 78 kDa glucose-			0 0,		
	regulated protein					
	[Mus musculus]					
	2498 - 2500	ETAEAYLGK	982.0699	1	0.18	
	2506 - 2508	M#KETAEAYLGK	1257.4393	2	0.21	
	2798 - 2800	TWNDPSVQQDIK	1431.533	2	0.13	
	2938	NQLTSNPENTVFDAK	1678.7823	2	0.24	
	2970	TKPYIQVDIGGGQTK	1605.8177	2	0.32	
	2972 - 2974	-SQIFSTASDNQPTVTIK	1838.0093	2	0.28	
	2986	TKPYIQVDIGGGQTK	1605.8177	2	0.26	
	3032	TWNDPSVQQDIK	1431.533	2	0.04	
	3096	ITPSYVAFTPEGER	1567.7247	2 ~	0.12	
	3104	NQLTSNPENTVFDAK	1678.7823	2	0.24	
	3108	ITPSYVAFTPEGER	1567.7247	2	0.07	
	3118	NQLTSNPENTVFDAK	1678.7823	2	0.23	
	3180	NELESYAYSLK	1317.4266	2	0.11	
	3192	NELESYAYSLK	1317.4266	2	0.00	
	3322	ELEEIVQPIISK	1398.6274	2	0.12	
	3388	TFAPEEISAM#VLTK	1553.8029	2	0.13	
	3608 - 3610	TFAPEEISAM#VLTK	1553.8029	2	0.01	
	3800	TFAPEEISAMVLTK	1537.8036	2	0.09	
	3806	TFAPEEISAMVLTK	1537.8036	2	0.24	
	3874	TFAPEEISAM#VLTK	1553.8029	2	0.08	
2	gi 2274968 emb CAA0400	Chick S			174.26	
	6.1 Glucosidase II [Homo					
	sapiens]					
	2010 - 2012	DPAEGDGAQPEETR.	1569.569	2	0.40	
	2654	PAAVVLQTK	927.1238	2	0.17	
	2660	PAAVVLQTK	927.1238	2	0.26	
	2692	SIRPGLSPYR	1146.3248	2	0.11	
	2720	-M#M#DYLQGSGETPQTDVR	1961.1214	2	0.45	
	2734	M#M#DYLQGSGETPQTDVR	1961.1214	2	0.42	
	2876	MM#DYLQGSGETPQTDVR	1945.122	2	0.45	
	2876	M#MDYLQGSGETPQTDVR	1945.122	2	0.01	
	2894	MM#DYLQGSGETPQTDVR	1945.122	2	0.00	
	2894	M#MDYLQGSGETPQTDVR	1945.122	2	0.45	
	3012	MMDYLQGSGETPQTDVR	1929.1227	2	0.16	
	3018	LVAIVDPHIK	1105.3557	2	0.17	
	3022	LVAIVDPHIK	1105.3557	2	0.12	
	3028	MMDYLQGSGETPOTDVR	1929.1227	2	0.41	
	3146	DENSVELTMAEGPYK	1683.8192	2	0.48	
	3168	DENSVELTMAEGPYK	1683.8192	2	0.35	
	3292	SLLLSVNAR	973.1526		0.20	
			072 1506	-	0.00	

Fable 3.1 LC-MS/MS	result of	immunopre	cipitated	protein	band A

Table 3.1 (continue)

No.	Reference scan	Sequence	MH+	Charge	Delta Cn Score
3	gi 224970 prf 1205208A	RUZ			74.23
	heat shock protein hsp70			00	
	2096 - 2098	VEIIANDQGNR	1229.3258	2	0.00
	2326	VEIIANDQGNR	1229.3258	2	0.00
	2330	VEIIANDQGNR	1229.3258	2	0.11
	3372	IINEPTAAAIAYGLDK	1660.8933	2	0.00
	3538	FEELNM#DLFR	1330.492	2	0.28
	3550	FEELNM#DLFR	1330.492	2	0.20
	3580	IINEPTAAAIAYGLDK	1660.8933	2	0.00
	3590	IINEPTAAAIAYGLDK	1660.8933	2	0.00
1	gi 229552 prf 754920A	2			60.19
	albumin				
	2902 - 2904	HLVDEPQNLIK	1306.4934	2 ~	0.09
	2966	KVPQVSTPTLVEVSR	1640.9067	2	0.27
	2992	KVPQVSTPTLVEVSR	1640.9067	2	0.16
	3030	YLYEIAR	928.0671	2	0.00
	3128	VPQVSTPTLVEVSR	1512.7338	2	0.21
	3198	VPQVSTPTLVEVSR	1512.7338	2	0.26
5	gi 2392283 pdb 1DKG D				28.23
	Chain D, Crystal Structure Of The Nucleotide Exchange Factor Grpe Pound To Th				
		UNEDTA A AL AVEL DV	1660 9022		0.00
	2590	IINEPTAAALAIOLDK	1000.0933		0.00
	2500	IINEPTAAALAIGLDK	1000.8933	$\frac{2}{2}$	0.00
	3390	IIINEPTAAALAYGLDK	1000.8933	2	0.00

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

No.	Reference scan	Sequence	MH+	Charge	Delta Cn Score
1	gi 223170 prf 0602239A	R III A			110.24
	fibrinogen gamma			0 0	
	2774	YLQEIYNSNNQK	1514.6219	2	0.05
	2778	YLOEIYNSNNOK	1514.6219	2	0.14
	2788	- DTVOIHDITGK -	1227.3499	2	0.31
	2796	- DTVOIHDITGK -	1227.3499	2	0.34
	2926	- YEASII THDSSIR -	1492 6163	2	0.35
	2934	- YEASILTHDSSIR -	1492.6163	2	0.26
	3088	- VELEDWNGR -	1118 182	2	0.09
	3104	- VELED WHOR	1118 182	2	0.16
	3130	- TSTADVAMEK	1135 2727	2	0.32
	3142	- TSTADYAMEK	1135 2727	2	0.32
	3142		1204 5672	2	0.31
2	3412 gil2274068lemblCAA04006	QSULIFIKFLK	1294.3073	2	109.17
-2	sapiens]	The second			108.17
	2990	M#MDYLQGSGETPOTDVR	1945.122	2	0.00
	2990	MM#DYLOGSGETPOTDVR	1945.122	2	0.35
	3120	MMDYLOGSGETPOTDVR	1929.1227	2	0.10
	3134	MMDYLOGSGETPOTDVR	1929.1227	2	0.07
	3144	- VVIIGAGKPAAVVLOTK -	1665.0577	2	0.40
	3150	- AEKDEPGAWEETEK -	1637 7288	2	0.10
	3156	- AFKDEPGAWEETEK -	1637.7288	2	0.26
	3174		1665 0577	2	0.20
	3274	- FRIDELEPR	1175 3108	2	0.18
	3276	DENSVELTMAEGPVK	1683 8102	$\frac{2}{2}$	0.10
	4072	VI I VI ELOCI OK	1353 6763	2	0.08
3	4072 gil1304157/dbi/BAA11462	VEEVEELQOEQK	1333.0703	L	50.17
5	1 78 kDa glucose-regulated protein [Mus musculus] 3184 - 3186	UNIV			50.17
	3350	VTHAVVTVPAYFNDAQR	1889.1044	2	0.28
	3372	IINEPTAAAIAYGLDKR	1817.0796	2	0.05
	3948	IINEPTAAAIAYGLDKR	1817.0796	2	0.02
	3966	TFAPEEISAMVLTK	1537.8036	2	0.13
	SIKU	TFAPEEISAMVLTK	1537.8036	2	0.12
4	gi 226787 prf 1605217A Ig gamma1 2760				36.24
	2764	ALPAPIEK	839.015	1	0.10
	3262	ALPAPIEK	839.015		0.09
	3268	TPEVTCVVVDVSHEDPEVK	2140.3279	2	0.07
	righ	TPEVTCVVVDVSHEDPEVK	2140.3279	Δ^2	0.05

|--|

Table 3.2 (continue)

No.	Reference scan	Sequence	MH+	Charge	Delta
					Cn
					Score
5	gi 30581038 sp P23142 FB				30.26
	LN1_HUMAN Fibulin-1			0 05	
	precursor				
	2598	YM#DGM#TVGVVR	1260.4667	2	0.13
	3166	IIEVEEEQEDPYLNDR	1992.087	2	0.38
	3194	IIEVEEEQEDPYLNDR	1992.087	2	0.41
6	gi 229601 prf 765044A Ig				30.18
	G1 H Nie				
	2940	EPQVYTLPPSRDELTK	1874.0848	2	0.26
	2968	EPQVYTLPPSRDELTK	1874.0848	2	0.22
P	3238 - 3240	EPQVYTLPPSRDELTK	1874.0848	2	0.03
7	gi 229552 prf 754920A				28.17
	albumin			G	7 20}e
U.	2752	FKDLGEEHFK	1250.3851	2	0.18
0	3046	KVPQVSTPTLVEVSR	1640.9067	2	0.32
	3054	KVPQVSTPTLVEVSR	1640.9067	2	0.34

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University A I I rights reserved

No.	Reference scan	Sequence	MH+	Charge	Delta Cn Score
1	gil226787 prf 1605217A_Ig				104.25
1	gamma1			Oa	104.23
	2792				
	2806	ALPAPIEK	839.015	1	0.04
	2864	ALPAPIEK	839.015	1	0.11
	3294 - 3296	- EPOVYTLPPSR -	1287.4469	2	0.10
	3230	- TPEVTCVVVDVSHEDPEVK	2140 3279	2	0.04
	3332	- FNWYVDGVEVHNAK -	1678 829	2	0.03
	3348	- NOVSLTCLVK -	1162.356	2	0.14
	2710	- FNWYVDGVEVHNAK -	1678 829	2	0.08
	2716	- TTPPVI DSDGSEELVSK -	1875.068	2	0.00
	4122	TTPPVI DSDGSFELVSK	1875.068	2	0.35
	4122		18/0 1022	$\frac{2}{2}$	0.25
	4150	V SVLIVLIQDWLINGK	1809.1023	$\frac{2}{2}$	0.08
2	ail12082134146:10 A D 2077	• • S • L I • LHQD • LNOK	1609.1023	2	79.02
2	$g_1 _{12082134 u0j }$ DAD2077				78.23
	beta [Equus caballus]				
		FUSNASDALDK	1276 3761	2	0.00
	2974	ELISNASDALDK	1276.3761	2	0.00
	2978	ELISNASDALDK	12/0.3/01	2	0.00
	3048	SITTILGESK	1101.2800	2	0.07
	3194	NPDDITQEEYGEFYK	1848.9011	2	0.22
	3204	NPDDITQEEYGEFYK	1848.9011	2	0.20
	3366	HFSVEGQLEFR	1349.4768	2	0.10
	3372	ADLINNLGTIAK	1243.4355	2	0.09
	3386	ADLINNLGTIAK	1243.4355	2	0.12
3	gi 224053 prf 1009174A macroglobulin alpha2				60.19
	3232	NEDSLVFVQTDK	1395.4974	2	0.30
	3614	IAQWQSFQLEGGLK	1605.8193	2	0.17
	3636	IAQWQSFQLEGGLK	1605.8193	2	0.35
	3852	VSVQLEASPAFLAVPVEK	1885.1938	2	0.15
	3954	LLIYAVLPTGDVIGDSAK	1846.1576	2	0.12
	3966	LLIYAVLPTGDVIGDSAK	1846.1576	2	0.22
4	gi 6137530 pdb 1D0N B				58.24
	Chain B, The Crystal				
	Structure Of Calcium-Free			\mathbf{K}	
	Equine Plasma				
	Gelsolin.gi 613				
	2356 - 2358	DSQDEEKTEALTSAK	1652.6969	2	0.13
	2918	TGAQELLR	888.0045	2	0.00
	3338	AGALNSNDAFVLK	1320.4769	2	0.17
	3408	AGALNSNDAFVLK	1320.4769	2	0.25
	3498	TPSAAYLWVGAGASEAEK.	1808.9697	2	0.19
		TRANSFORMED A CHARLEN	1000 0 007		0.20

Fable 3.3 LC-MS/Mag	S result of im	munoprecipitated	protein band C
---------------------	----------------	------------------	----------------

Table 3.3 (continue)

No.	Reference scan	Sequence	MH+	Charge	Delta Cn
					Score
5	gi 2136983 pir I46732 Ig	R L / A			50.19
	gamma heavy chain			0 9	
	constant region - rabbit				
	(fragment)gi 165110 gb AA				
	A312		1002.00		
	3114	LSVPTSEWQR	1203.33	2	0.23
	3134	LSVPTSEWQR	1203.33	2	0.19
	3516	TTPAVLDSDGSYFLYSK	1865.03	2	0.40
	3530	TTPAVLDSDGSYFLYSK	1865.03	2	0.43
	3532 - 3534	VVSTLPIAHQDWLR	1635.8918	2	0.31
6	gi 229908 pdb 1FC2 D				42.22
	Chain D, Immunoglobulin	\sim (17)			
	Fc And Fragment B OI				
	Complex gil220006lpdb1				
	3204 - 3206	- TPEVTCVVVDVSHEDPOVK	2139 343	2	0.46
	3234 - 3290	- FNWYVDGVOVHNAK -	1677 8441	2	0.40
	3348	- FNWYVDGVOVHNAK -	1677 8441	2	0.41
	4122	- VVSVI TVI HONWI DGK -	1809 1023	2	0.41
	4122	- VVSVLTVLHQIVVLDGK	1809.1023	2	0.01
7	4150 gil227782lprfl1710352A		1007.1025	2	40.19
	heat shock protein 83				40.18
	2850	- FLISNSSDALDK -	1292 3755	2	0.00
	2868	- FUISNSSDALDK	1292.3755	2	0.00
	3280	- SI TNDWEDHI AVK -	1528 6487	2	0.07
	3286	- SLTNDWEDHLAVK -	1528.6487	$\frac{2}{2}$	0.07
8	gi 223170 prf 0602239A		1520.0107		0.07
	fibrinogen gamma				
	2810	YLQEIYNSNNQK	1514.6219	2	38.16
	2816	YLQEIYNSNNOK	1514.6219	2	0.10
	2970	YEASILTHDSSIR	1492.6163	2	0.11
	2980	YEASILTHDSSIR	1492.6163	2	0.29
					0.45

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved 3.1.3 Verification and confirmation of the identification result from LC-MS/MS

From the results of protein identification in section 3.1.2, two proteins showed significant delta Cn score thus represent a candidate protein of interest. In order to rule one out, western blot analysis was performed to compare their molecular weight with the CM5pAb reactive protein. Whole cell lysate from various lung tumor tissues known to overexpressed the CM5pAb-reactive protein was resolved through 10% polyacrylamide gel and separated proteins were transfered onto PVDF membrane. The blots were cut in-half and immunodetected with either CM5pAb and anti-GRP78 or anti-glucosidase II. As shown in Figure 3.2, the protein was recognized by CM5pAb has an apparent molecular weight similar to glucosidase II but not GRP-78.

Therefore, immunoprecipitation was performed using anti-glucosidase II mAb and the immunoprecipitated glucosidase II was resolved through SDS-PAGE and subjected to immunodetection with CM5pAb. As shown in Figure 3.3, the immunoprecipitated protein was recognizable by anti-glucosidase II mAb thus indicating the successful of immunoprecipitation process. Interestingly, it was found that the immunoprecipitated glucosidase II was also recognized by CM5pAb (Fig. 3.3) at the same position, thus suggesting that the CM5-reactive protein was in fact the glucosidase II.

Figure 3. 2 Comparison of protein molecular weight of the CM5 reactive protein with GRP78 (A) and Glucosidase II (B); MW, protein molecular weight marker; number represents sample number

Figure 3.3 Western blot analysis showing the reactivity of the immunoprecipitated glucosidase II to CM5pAb.

Cell lysate from tumor tissues was diluted with PBS to obtain total protein concentration of 1 mg/ml and immunoprecipitated with antibody against glucosidase II. The imunoprecipitated protein was resolved through SDS-PAGE, transferred onto PVDF membrane and followed by immunodetected with CM5pAb and antiglucosidase II mAb. Mw, molecular weight marker; lane 1, diluted tumor cell lysate before immunoprecipitation; lane 2, immunoprecipitated protein; lane 3, diluted cell lysate after immunoprecipitation; lane 4, crude cell lysate from tumor tissue (30µg of total protein)

Copyright[©] by Chiang Mai University All rights reserved 3.2 Expression pattern of CM5pAb reactive protein and glucosidaseII in human lung tumor tissues

Paired sample of lung tumor tissues and accompanying normal tissues were obtained from each surgical specimen of the same patient. Cell lysate was prepared and separated according to their molecular weight through a 7% SDS-PAGE and subjected to western blot analysis. The representatives of Western blot results are shown in Figure 3.4. It was found that the result of Western blot analysis showed the exact same expression pattern of proteins recognized by CM5pAb and antiglucosidase II mAb in each lung tumor tissues tested.

Figure 3.4 Western blotting results showing expression similarity of CM5 reactive protein and glucosidase II in lung tumor and normal corresponding tissues. T, tumor tissue; N, normal tissue

Expression of glucosidaes II in relation to clinicopathologic feathers of lung tumor tissues are summarized in Table 3.4. Of 37 lung tumor tissues, 35 showed an increase expression level of glucosidase II in tumor tissues in comparison to the normal corresponding tissues. As almost all of the tumor tissues showed overexpression of glucosidase II, no significant relationship between overexpression of glucosidase II and clinicopathologic features was seen.

	GlucosidaseII o	202		
Pathological features (cases)	(no.ca	(no.cases)		
	Yes (%)	NO (%)	A	
			6	
Total (37 cases)	35 (94.6%)	2 (5.4%)	0	
Type of NSCLC				
Adenocarcinoma (25 cases)	24 (96%)	1 (4%)	1.00	
Squamous cell carcinoma (12 cases)	11 (91.6%)	1 (8.3%)		
Age (years)		C Y		
< 60 (19 cases)	17 (89.5%)	2 (11.8%)	0.486	
≥ 60 (18 cases)	18 (100%)	0 (0%)		
Gender				
Female (14 cases)	14 (100%)	0 (0%)	0.517	
Male (23 cases)	21 (91.3%)	2 (8.7%)	0	
Tumor stage	200		e e	
Early (25 cases)	25 (100%)	0 (0%)	0.099	
Late (12 cases)	10 (83.3%)	2 (16.7%)		
Smoking	ianσ N		hiver	
Yes (28 cases)	26 (92.9%)	2 (7.1%)	1.00	
No (9 cases)	9 (100%)	0 (0%)	rv	

Table 3.4 Expression of glucosidaseII in relation to clinicopathologic feathers oftumor tissues. (p < 0.05 was considered significant)

*Chi-square test

3.3 Characterization the CM5pAb reactive protein (glucosidase II) in response to stress signals compared with p53Protein expression when response to stress in cell culture model

3.3.1. Expression and cellular localization of p53 and glucosidase II in response to UV irradiation

Characterization of p53 and glucosidase II in response to stress signals was carried out utilizing a human lung adenocarcinoma epithelial cell line (A549) as a cell model. In order to induce DNA damage and genotoxic stress, cultured cells were irradiated with Ultraviolet (UV) 287 nm ray. To achieve optimal dose of UV irradiation, A549 cells were irradiated with various doses of UV (0, 8, 16, 32, 48, 64 J/m^2) and whole cell lysate was prepared at 3 hours after irradiation to determine protein expression levels of glucosidase II and p53. Morphologies of the irradiated cells and non-treated control cells before harvesting are shown in Figure 3.5. Nonirradiated A549 was in spindle-shaped morphology and it appeared that cells irradiated at dose 8 J/m² showed no morphology change in comparison to non-treated cells. However, cells irradiated with higher dose of UV became rounded and smaller in size. Expression levels of glucosidase II and p53 determined by western blot analysis are shown in Figure 3.6. The result showed that there was an increase in protein level of glucosidase II and p53 in response to UV irradiation. From this optimization result, UV irradiation at dose 8 J/m^2 was chosen for further experiment because it induces the expected response of p53 as previously described^(33, 35) and with minimal cell morphology alteration.

Cell lysate was prepared from irradiated cells at different time points (3, 6, 24, 36 hours) and subjected to Western blot analysis in order to determine protein expression levels of glucisidase II, p53 and GRP (glucose regulated protein)-78, GRP-94, key regulators of the ER stress response. Blots were also probed for GAPDH to check for equal loading of protein. As shown in Figure 3.7, protein levels of both p53 and glucosidase II were increased in UV-irradiated cells. The induction appeared as quickly as 3 hours after treatment and continued to increase until after 24 hours. The induction was observed at 24 hours for both p53 and glucosidase II. The results showed that UV irradiation did not affect expression level of GRP-78 and GRP-94. An investigation of sub-cellular localization of these two proteins showed that p53 was translocalized to the nucleus in response to UV irradiation, whereas glucosidase II remained in the cytoplasm (Figure 3.8). Interestingly, it appeared that there were smaller bands of protein recognized by anti-glucosidase II mAb whose nuclear level was increased in response to UV irradiation.

ลิขสิทธิ์มหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

Figure 3.5 A549 cell morphology after UV treatment. A549 cells were observed after UV treatment, to optimize the exposure time by UV irradiation with various UV dose at (A) non-exposed, (B) 8 J/m², (C) 16 J/m², (D) 32 J/m², (E) 48 J/m² and (F) 64 J/m².

Copyright[©] by Chiang Mai University All rights reserved

Figure 3.6 Western blot showing protein levels of p53 and glucosidase II after irradiated with various dose of UV. Glucosidase II (a) and p53 (b) protein levels were determined at 3 hours after UV treatment, (U_0) non-exposed, (U_8) 8 J/m², (U_{16}) 16 J/m², (U_{32}) 32 J/m², (U_{48}) 48 J/m² and (U_{64}) 64 J/m².

Figure 3.7 Western blot analysis (a) and quantification value (b) showing changes of various protein levels in A549 lung adenocarcinoma cells at various time points following UV irradiation. Western blot bands were quantified using Quantity One (Bio-Rad Laboratories). The quantification values of each band were normalized to corresponding values of GAPDH. The normalized values for each time points were then compared to the corresponding band of the untreated sample (0 hours).

51

Figure 3.8 Western blot analysis showing sub-cellular localization of p53 and glucosidase II in response to UV irradiation

Cell lysate from cytosolic and nuclear fraction was prepared from UV irradiated cells at 0 (Uo) and 6 hours (U6) after UV treatment

ลิปสิทธิมหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved 3.3.2 Expression and cellular localization of p53 and glucosidase II in response to tunicamycin-induced ER stress

In order to induce ER stress, cultured cells were treated with tunicamycin. To get optimal dose, A549 cells were cultured with various doses of tunicamycin (0, 1, 3, 5 μ g/ml) and whole cell lysate was prepared at 3 hours after treatment to determine protein expression levels of glucosidase II and p53. Morphologies of the tunicamycintreated cells and vehicle control cells before harvesting are shown in Figure 3.9. No significant morphology alteration was observed in all tested doses. Expression levels of glucosidase II and p53 were determined by western blot analysis are shown in Figure 3.10. The result showed that there was a reduction of protein level of glucosidase II and p53 in response to tunicamycin-induced ER stress. From this optimization result, tunicamycin at dose 3 µg/ml was chosen for further experiment because it induces the prominent expected response of p53 as previously described⁽⁴⁵⁾ with minimal toxicity. Levels of both p53 and glucosidase II was found to be suppressed in tunicamycin-treated cells with maximum reduction appeared at 6 hours after treatment for both p53 and glucosidase II (Figure 3.11). The sub-cellular localization study showed the disappearance of both p53 and glucosidase II in response to tunicamycin-induced ER stress (Figure 3.12). Interestingly, although protein level of glucosidase II was decreased and disappeared from the cytoplasm in response to tunicamycin-induced ER stress, the smaller of protein bands recognized by anti-glycosidase II mAb was increased in the nucleus.

Figure 3.9 A549 cell morphology after tunicamycin treatment. A549 cells were observed after tunicamycin treatment for 3 hours with (A) 0.1% DMSO, (B) 1 μ g/ml tunicamycin, (C) 3 μ g/ml tunicamycin, and (D) 5 μ g/ml tunicamycin.

Copyright[©] by Chiang Mai University A I I rights reserved

Figure 3.10 Western blot analysis showing protein levels of p53 and glucosidase II after Tunicamycin treatment. p53 (a) and glucosidase II (b) protein expression were determined at 3 hours after tunicamycin treatment with (T_0), vehicle control (0.1% DMSO); (T_1), 1 µg/ml tunicamycin; (T_3), 3 µg/ml tunicamycin; (T_5) 5 µg/ml tunicamycin.

(a)

Western blot bands were quantified using Quantity One (Bio-Rad Laboratories). The quantification values for each band were normalized to the corresponding values of GAPDH. The normalized values for each time point were then compared to the corresponding band of the untreated sample (0 hours).

Figure 3.12 Western blot analysis showing sub-cellular localization of p53 and glucosidase II in response to Tunicamycin-induced ER stress

Cell lysate from cytosolic and nuclear fraction was prepared from Tunicamycin treated cells at 0 (To) and 6 hours (T6) after tunicamycin treatment.

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

57