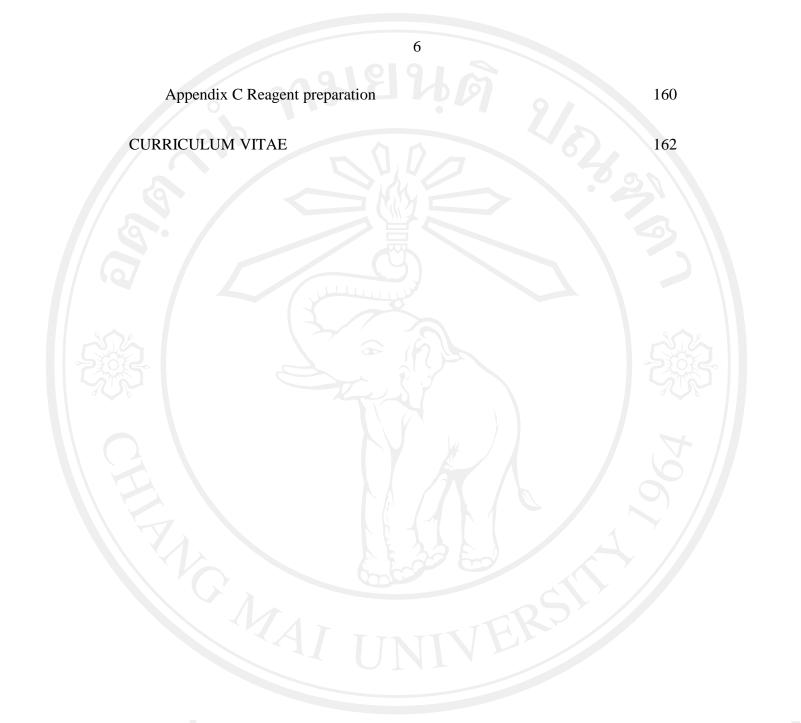
TABLE OF CONTENTS

	Page
ACKNOWNLEDGMENTS	iii
THAI ABSTRACT	V
ENGLISH ABSTRACT	vi
LIST OF TABLES	xiv
LIST OF FIGURES	xvi
	Y //
ABBREVIATIONS AND SYMBOLS	xxvii
CHAPTER 1 INTRODUCTION	1
1 Statement and significance of the problem	- 19
1. Statement and significance of the problem	Reializi
2. Literature review	UOUINU
	5
2.1 Human hemoglobin	Uni ₃ /ersity
	erved


2	
2.2 Globin gene clusters, globin genes and hemoglobin	5
switching	
2.3 Thalassemia	2 10
2.4 Alpha (α)-thalassemia	-11
2.5 Beta (β)-thalassemia	14
2.6 Hemoglobinopathies	15
2.7 Incidence of thalassemia and hemoglobinopathies in	17
Thailand	
2.8 Clinical classification of thalassemia and	18
hemoglobinopathies	
2.9 Laborarory diagnosis of thalassemia and	19
hemoglobinopathies	
2.10 DNA analysis for diagnosis of thalassemia and	21
hemoglobinopathies	
2.11 PCR from whole blood without DNA preparation	24
Objectives	26
TER 2 MATERIALS AND METHODS	nizversity

2.1 Materials	27
2.1.1Chemicals and instruments used in this thesis are	27
indicated in the Appendix.	
2.1.2 Blood samples	27
2.2 Methods	27
2.2.1 Development of the in-house multiplex allele-specific	28
PCR	
2.2.1.1 Extraction of genomic DNA	28
2.2.1.1 Extraction of genomic DIVA	
2.2.1.2 Determination of locations of allele-specific primers	29
in the corresponding globin genes	
2.2.1.3 Optimization of the singleplex allele-specific PCR	33
2.2.1.4 Development and optimization of developed in-	38
house multiplex allele-specific PCR	
2.2.1.5 Evaluation of efficiency of the developed in-house	43
multiplex allele-specific PCR	
2.2.2 Development of whole-blooded PCR protocols for	48
identifying globin gene mutations	

2.2.2.1 Determining optimal thermal cycling pattern and 48 suitable form of blood samples to be used in the PCR reaction

	2.2.2.2 Search for the best PCR facilitators	49
	2.2.2.3 Determining appropriate volume of blood samples	50
	used in the whole-blooded PCR	
	2.2.2.4 Applying the developed technique in detecting the	50
	carriers of α - and β -thalassemia and hemoglobinopathies	
	common in Thailand	
СНАР	TER 3 RESULTS	54
3.1	Development of the in-house multiplex allele-specific PCR	54
	3.1.1 Determination of locations of allele-specific primers in	54
	the corresponding globin genes	
	3.1.2 Optimization of the singleplex allele-specific PCR	58
	3.1.3 Development and optimization of in-house multiplex	73
	allele-specific PCR	
	3.1.4 Evaluation of efficiency of the developed in-house	99
	multiplex allele-specific PCR	

	5	
3.2	Development of whole blood PCR protocols for identifying	105
globi	in gene mutations	
	3.2.1 Determining optimal thermal cycling pattern and suitable form of blood samples to be used in the PCR	105
	reaction	
	3.2.2 Search for the best PCR facilitators	109
	3.2.3 Determining appropriate volume of blood samples used in the whole blood PCR	113
	3.2.4 Applying the developed technique in detecting the	115
	carriers of α - and β -thalassemia and	
	hemoglobinopathies common in Thailand	
СНА	APTER 4 DISCUSSION	127
СНА	APTER 5 CONCLUSIONS	136
REFI	ERENCES	140
APPI	ENDICES	154
	Appendix A List of chemicals	155
	Appendix B List of instruments	158 niversity

<mark>ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table	Page
1.1 Differences of length of UTR and IVS of the human globin genes	8
1.2 Hemoglobin constituents in each developmental stage in human	9
1.3 Mutations of β -globin genes commonly found in Thailand	16
2.1 Names and sequences of oligonucleotide primers utilized in the	32
developed PCR protocols	
2.2 "Checker board" pattern used in optimization of oligonucleotide	38
primers for α-thalassemia/hemoglobinopathies	
3.1 Numerical positions of α - and β -globin gene specific primers in	57
the GenBank database	
3.2 Sizes of amplified products deduced from position of each primer	58
in the AE006462 and HUMHBB GenBank databases	
3.3 The optimized condition of the in-house multiplex allele-specific	84
PCR for α-thalassemia and hemoglobinopathy	

3.4 The optimized condition of the in-house multiplex allele-specific	98
PCR for β -thalassemia and hemoglobinopathy	
3.5 Frequencies of globin gene mutations in 70 thalassemia carriers	100
as detected by the in-house multiplex allele-specific PCR	
3.6 The optimized condition of the whole blood Gap PCR for	119
detecting SEA- α thalassemia 1	
3.7 The optimized condition of the whole blood PCR for detecting	123
HbCS	
3.8 The optimized condition of the whole blood multiplex allele-	126
specific PCR for detecting the common β-	
thalassemia/hemoglobinopathy	

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure	Page
1.1 Structure of functional human hemoglobin molecule	4
1.2 Structure of the human α -like globin gene clusters and β -like	6
globin gene clusters	
1.3 Developmental stage specific production of globin genes in	7
human	
1.4 Structure of the human α -globin gene and β -globin gene	8
1.5 Deletions of α -globin gene cluster in α -thalassemia 1	13
1.6 Reciprocal crossovers on α -globin cluster causing 3.7-kb (Z-Z	
boxes) and 4.2-kb (X-X boxes) deletions causing α -thalassemia 2	
or α ⁺ -thalassemia Chiang Mai	

10	
2.1 Schematic locations of α -globin and β -globin genes common	30
mutations in Thailand	
2.2 Locations of oligonucleotide primers used in the multiplex allele-	31
specific PCR	
2.3 Locations of PCR primers and sequencing primer used for β -	45
globin gene sequencing	
3.1 Part of the "AE006462" GenBank database as source of α -globin	55
gene sequences used in this thesis	
3.2. Part of the "HUMHBB" GenBank database as source of β -globin	56
gene sequences used in this thesis	
3.3 PCR products (391-bp) of internal control primers; αG-17 + C3	59
3.4 The optimization of annealing temperature for the singleplex	60
Gap-PCR for detection of the SEA- α thalassemia 1.	
3.5 The optimization of concentration of MgCl ₂ for the singleplex	61
Gap-PCR for detection of the SEA- α thalassemia 1.	
3.6 Titration of amount of SEA primers for the singleplex Gap-PCR	62
for detection of the SEA- α thalassemia 1.	

3.7 The titration of amount of SEA primers for the singleplex Gap-	63
PCR for detection of the SEA- α thalassemia 1.	
3.8 The titration of amount of SEA primers for the singleplex Gap-	64
PCR for detection of the SEA- α thalassemia 1.	
3.9 The titration of amount of SEA primers for the sin66gleplex Gap-	65
PCR for detection of the SEA- α thalassemia 1.	
3.10 The titration of amount of SEA primers for the singleplex Gap-	66
PCR for detection of the SEA- α thalassemia 1.	
3.11 Agarose electrophoretic pattern of the amplified fragments of	67
the single plex Gap-PCR for detection of the SEA- α	
thalassemia 1.	
3.12 Titration of amount of α G-17 primer in the single plex allele-	68
specific PCR for HbCS.	
specific relevies.	
3.13 Agarose electrophoresis pattern of the amplified fragment of the	69
singleplex allele-specific PCR for detection of the HbCS	
employing the optimized conditions.	
3.14 Titration of concentration of MgCl ₂ in the singleplex allele-	000 JUNU
specific PCR for α -thalasseia 2 (3.7-kb deletion).	

3.15 Titration of concentration of betaine in the singleplex allele-71 specific PCR for α -thalasseia 2 (3.7-kb deletion). 3.16 Agarose electrophoresis pattern of the amplified fragment of the 72 singleplex allele-specific PCR for detection of the α -73thalassemia 2 (3.7 kb deletion) after addition of aG-17 and C3 primers and 22-round thermal cycle performed. 3.17 Agarose electrophoresis pattern of the amplified fragment of the 73 singleplex allele-specific PCR for detection of the α thalassemia 2 (3.7 kb deletion). 3.18 Agarose gel electrophoresis of amplified fragments for the inhouse multiplex allele-specific PCR for αthalassemia/hemoglobinopathy. 3.19 Agarose gel electrophoresis of amplified fragments for the in-75 house multiplex allele-specific PCR for αthalassemia/hemoglobinopathy. 3.20 Agarose gel electrophoresis of amplified fragments for the in-76 house multiplex allele-specific PCR for αthalassemia/hemoglobinopathy.

3.21 Agarose gel electrophoresis of amplified fragments for the in-77 house multiplex allele-specific PCR for athalassemia/hemoglobinopathy for the titration of MgCl₂ concentration. 3.22 Agarose gel electrophoresis of amplified fragments for the inhouse multiplex allele-specific PCR for αthalassemia/hemoglobinopathy. 3.23 Agarose gel electrophoresis of amplified fragments for the inhouse multiplex allele-specific PCR for αthalassemia/hemoglobinopathy. 3.24 Agarose gel electrophoresis of amplified fragments for the in-80 house multiplex allele-specific PCR for αthalassemia/hemoglobinopathy. 3.25 Agarose gel electrophoresis of amplified fragments for the in-81 house multiplex allele-specific PCR for αthalassemia/hemoglobinopathy. 3.26 Agarose gel electrophoresis of amplified fragments for the inhouse multiplex allele-specific PCR for αthalassemia/hemoglobinopathy.

3.27 Agarose gel pattern of amplified products generated by the 83 optimized in-house multiplex allele-specific PCR for αthalassemia and hemoglobinopathy. 3.28 Agarose gel electrophoresis of amplified fragments for the in-86 house multiplex allele-specific PCR for β thalassemia/hemoglobinopathy. 3.29 Agarose gel electrophoresis of amplified fragments for the in-87 house multiplex allele-specific PCR for βthalassemia/hemoglobinopathy. 3.30 Agarose gel electrophoresis of amplified fragments for the in-88 house multiplex allele-specific PCR for βthalassemia/hemoglobinopathy. 89 3.31 Titration of concentration of MgCl₂ to be used in the in-house multiplex allele-specific PCR for βthalassemia/hemoglobinopathy. 3.32 Agarose gel electrophoresis of amplified fragments for the in-90 house multiplex allele-specific PCR for βthalassemia/hemoglobinopathy.

15	
3.33 Agarose gel electrophoresis of amplified fragments for the in-	91
house multiplex allele-specific PCR for β-	
thalassemia/hemoglobinopathy.	
3.34 Agarose gel electrophoresis of amplified fragments for the in-	92
house multiplex allele-specific PCR for β-	
thalassemia/hemoglobinopathy.	
3.35 Agarose gel electrophoresis of amplified fragments for the in-	93
house multiplex allele-specific PCR for β-	
thalassemia/hemoglobinopathy.	
3.36 Agarose gel electrophoresis of amplified fragments for the in-	94
house multiplex allele-specific PCR for β-	
thalassemia/hemoglobinopathy.	
3.37 Agarose gel electrophoresis of amplified fragments for the in-	95
house multiplex allele-specific PCR for β-	
thalassemia/hemoglobinopathy.	
3.38 Agarose gel electrophoresis of amplified fragments for the in-	96
house multiplex allele-specific PCR for β-	
thalassemia/hemoglobinopathy.	

16	
3.39 Agarose gel electrophoresis of amplified fragments genetared	97
from the optimized in-house multiplex allele-specific PCR for	
β-thalassemia/hemoglobinopathy.	
3.40 Nucleotide sequences of SEA- α thalassemia 1 breakpoint in	101
blood sample.	
3.41 Nucleotide sequences of HbCS in blood sample	102
3.42 Nucleotide sequences of $\beta^{17(A-T)}$ in blood sample	102
3.43 Nucleotide sequences of $\beta^{41/42(-TTCT)}$ in blood sample	103
3.44 Nucleotide sequences of $\beta^{26(G-A)}$ or HbE in blood sample	104
3.45 Nucleotide sequences of $\beta^{-28(A-G)}$ in known blood sample	104
3.46 Amplification of 665-bp $^{G}\gamma$ -globin specific fragments using	106
blood lysate	
3.47 Amplification of 665-bp $^{G}\gamma$ -globin specific fragments using	107
fresh blood with three repeating extra heat-cool steps	
3.48 Amplification of 665-bp $^{G}\gamma$ -globin specific fragments using	108
fresh blood with five repeating extra heat-cool steps	

3.49 Amplification of 665-bp $^{G}\gamma$ -globin specific fragments using	109
fresh blood with ten repeating extra heat-cool steps	
3.50 Amplification of 665-bp $^{G}\gamma$ -globin specific fragments in	110
presence of varying amount of BSA.	
3.51 Amplification of 665-bp $^{G}\gamma$ -globin specific fragments in	111
presence of varying amount of BSA.	
3.52 Amplification of 665-bp $^{G}\gamma$ -globin specific fragments in	-111
presence of varying amount of betaine.	
3.53 Amplification of 665-bp $^{G}\gamma$ -globin specific fragments in	112
presence of varying amount of betaine.	
3.54 Amplification of 665-bp $^{G}\gamma$ -globin specific fragments in	113
presence of fixed amount of betaine at 9% and varying	
concentration of BSA.	
3.55 Amplification of 665-bp $^{G}\gamma$ -globin specific fragments using	114
varying volume of blood lysate.	
3.56 Amplification of 665-bp $^{G}\gamma$ -globin specific fragments using	
varying volume of fresh blood.	

18	
3.57 Titration of SEA1 primer concentration used in the whole blood	115
Gap-PCR of SEA-α thalassemia 1.	
3.58 Titration of SEA2 primer concentration used in the whole blood	9 116
Gap-PCR of SEA-α thalassemia 1.	
3.59 Titration of SEA3 primer concentration used in the whole blood	117
Gap-PCR of SEA-α thalassemia 1.	
3.60 Detection of the SEA- α thalassemia 1 by the whole blood Gap	118
PCR	
3.61 Titration of CS-2 primer concentration used in the whole blood	120
allele-specific PCR for HbCS.	
3.62 Titration of α G-17 primer concentration used in the whole blood	121
allele-specific PCR for HbCS.	
363 Detection of carrier of HbCS by the whole blood allele-specific	122
PCR	
3.64 Titration of concentration of "beta-E multiplex" primer used in	124
whole blood multiplex allele-specific PCR of common β -	
thalassemia in Thailand.	

3.65 Whole blood multiplex allele-specific PCR for detecting the

common β -thalassemia/hemoglobinopathy in Thailand.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

bp	base pair
conc.	concentration
DNA	deoxyribonucleic acid
dNTPs	deoxynucleotide triphosphates
DMSO	dimethyl sulfoxide
EDTA	ethylenediamine tetraacetic acid
g/dl	gram per deciliter
Hb Bart's	hemoglobin Bart's
HbCS	hemoglobin Constant Spring
HbE	hemoglobin E
нын by Chiang	hemoglobin H
	eserved

21 intervening sequence IVS kb kilobase pairs potassium chloride KCl Μ molar MgCl₂ magnesium dichloride milliliter ml millimolar mМ nucleotide nt SEA Southeast Asia weight/volume w/v microliter μl micromolar μM

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved