TABLE OF CONTENTS

TABLE OF CONTENTS	
	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT (ENGLISH)	v
ABSTRACT (THAI)	viii
LIST OF TABLES	xxiv
LIST OF FIGURES	xxviii
ABBREVIATIONS AND SYMBOLS	xxxii
CHAPTER 1 INTRODUCTION	1
1.1 Statement and significance of the problem	Sol 1
1.2 Objectives	3
1.3 Scope of study	3
1.4 Literature reviews	5
1.4.1 Hair loss and anti-hair loss products	5
1.4.1.1 Definition and types of hair loss	5
1.4.1.2 Mechanism of hair loss	7
1.4.1.3 Anti-hair loss agents	10
A. Synthetic products	10
B. Natural products	15
1.4.1.4 Anti-hair loss products in markets	15
1.4.2 Fatty acids	15
1.4.2.1 Types of fatty acids	19

	A. Unsaturated fatty acids	19
	B. Saturated fatty acids	20
	C. Fatty acids in rice bran	20
1.4.2.2	Applications of fatty acids in cosmetics	23
1.4.3 Nanove	sicles	25
1.4.3.1	Liposomes	26
1.4.3.2	Niosomes	26
	A. Components of niosomes	27
	B. Classification of niosomes	29
	C. Preparation of niosomes	31
	D. Physical characteristic of niosomes	35
	E. Mechanisms of niosomes penetration	36
	through skin and hair follicles	
	F. Applications of niosomes in topical	39
	pharmaceuticals	
	G. Advantages of niosomes	39
	H. Comparison between liposomes and	43
	niosomes	
1.4.4 Plants u	sed in the study	44
1.4.4.1	Plant selection	45
1.4.4.2	Fatty acids and anti-hair loss activities	50
1.4.5 Plant ex	traction method	51 S
1.4.5.1	Maceration P P P P	51

1.4.5.2 Supercritical carbon dioxide fluid	52
extraction (scCO ₂)	
1.4.5.3 Soxhlet method	53
1.4.5.4 Acid hydrolysis method	54
1.4.6 Problems of bioactive compounds from plants	54
in pharmaceutical and cosmetic applications	
1.4.6.1 Chemical stability	54
1.4.6.2 Formulation incompatibility	55
1.4.7 Phytochemicals	56
1471 Alkaloids	56
1.4.7.2 Elayopoids	56
1.4.7.2 Tanning	57
	57
1.4.7.4 Reducing sugars	57
1.4.8 <i>In vitro</i> biological assays to evaluate anti-	57
hair loss activity	
1.4.8.1 DPPH free radical scavenging	57
activity assay	
1.4.8.2 Ferrous metal chelating activity assay	58
1.4.8.3 Tyrosinase inhibition assay	59
1.4.8.4 Inhibition of 5α -reductase activity	60
1.4.9 In vivo anti-hair loss activity evaluation	62
assays hiang Mai Ur	
1.4.10 Safety evaluation for cosmetic formulations	63
1.4.10.1 <i>In vitro</i> cell cytotoxicity assay	63

1.4.10.2 In vivo rabbit skin irritation test	64
1.4.11 Transfollicular delivery systems	65
1.4.11.1 Hair follicle structure	65
1.4.11.2 Types of hair shafts	66
1.4.11.3 Hair growth cycle	67
1.4.11.4 The hair follicles as the targets	69
of drugs and cosmetics	
1.4.11.5 Transdermal delivery	71
1.4.11.6 Transfollicular delivery	72
A. Definition	72
B. Factors affected the transfollicular	73
delivery	
C. Techniques for investigating follicular	76
penetration	
D. Examples of transfollicular delivery	80
study for anti-hair loss	
E. Disadvantages of transfollicular	81
delivery	
CHAPTER 2 MATERIALS AND METHODS	82
2.1 Materials and equipments	82
2.1.1 Chemicals	82
2.1.2 Cell lines 1 ang 1 al Univ	85
2.1.3 Animals	85
2.1.4 Equipments	85

2.2 Methods	88
Part 1: Crude extracts preparation and their biological	89
activities	
1.1 Plant crude extract	89
1.1.1 Plant samples	89
1.1.2 Plant preparation	89
1.1.3 Maceration method	89
1.1.4 Supercritical carbon dioxide fluid technique	90
1.1.4.1 Optimization of the extraction	90
condition	
1.1.4.2 Supercritical carbon dioxide fluid	90
extraction	
1.2 Determination of bioactive compounds and biological	91
activities of the crude extract	
1.2.1 Determination of unsaturated fatty acid contents	91
in the extracts by HPLC	
1.2.2 Determination of total phenolic contents (TPC)	91
1.2.3 Phytochemical test of the extracts	91
1.2.4 Antioxidative activities of the extracts	93
1.2.4.1 DPPH radical scavenging assay	93
1.2.4.2 Lipid peroxidation inhibition activity	94
1.2.4.3 Metal ion chelating assay	94
1.2.5 Tyrosinase inhibition assay	95

1.2.6 Cytotoxicity on aged human skin fibroblasts	96
of the extracts	
	07
1.2.6.1 Cell culture	96
1.2.6.2 Cell proliferation by the SRB assay	96
Part 2: Semi-purified fractions preparation from the crude extracts	97
and their <i>in vitro</i> biological and anti-hair loss activities	
2.1 Preparation of the semi-purified fraction containing	97
unsaturated fatty acids from O. sativa, C. tinctorius	
and S. bicolor crude extracts	
2.2 Biological activities of the semi-purified fractions	98
2.3 Cytotoxicity of the semi-purified fractions on	98
DU-145 cell line	
2.3.1 Cell culture	98
2.3.2 Cytotoxicity by the SRB assay	98
2.3.3 Inhibition of 5α -reductase activity	99
2.3.3.1 Cultivation of cells	99
2.3.3.2 Total RNA extraction	99
2.3.3.3 Reverse transcription-polymerase	99
chain reaction (RT-PCR)	
Part 3: Development of blank neutral niosomes and the	100
niosomes loaded with O. sativa crude extract by	
chloroform film method and scCO ₂	
3.1 Niosomes preparation	100

3.1.1 The chloroform film method with	100
sonication (cm)	
3.1.2 The supercritical carbon dioxide fluid	101
technique with sonication (scCO ₂)	
3.2 Physical characteristics of niosomes	101
3.2.1 The maximum loading of the extracts	101
3.2.2 Particle size	101
3.2.3 Morphology	102
3.2.4 Transition temperature of niosomes	102
3.2.5 Microviscosity of the niosomal membrane	102
Part 4: Development of blank cationic niosomes and cationic	103
niosomes loaded with the rice (Oryza sativa) bran semi-	
purified fraction (OSF3) containing the unsaturated fatty	
acids by scCO ₂ technique	
4.1 Selection of the niosomal formulation	103
4.1.1 Niosome preparation	103
4.1.1.1 Loading of the OSF3 in niosomes	103
by supercritical carbon dioxide fluid	
technique with sonication ($scCO_2$)	
4.1.1.2 The maximum loading of	104
OSF3 in niosomes	
4.1.2 Physicochemical characteristics of the blank	104
and loaded niosomes	
4.1.2.1 Physical characteristics of niosomes	104

xvii

	٠	٠	٠
XV	1	1	1

A. Appearances	104
B. Particle sizes	105
C. Zeta potential	105
4.1.2.2 Chemical stability of the unsaturated	105
fatty acids in OSF3 loaded in niosomes	
4.1.3 Cytotoxicity on aged human skin fibroblasts	106
of niosomes	
4.2 Physico-chemical characteristics of CTAB cationic	106
niosomes loaded with OSF3 prepared by supercritical	
carbon dioxide fluid (scCO ₂)	
4.2.1 Preparation of CTAB cationic niosomes loaded	106
with OSF3 by supercritical carbon dioxide fluid	
technique with sonication (scCO ₂)	
4.2.2 Entrapment efficiency of OSF3 loaded in CTAB	106
cationic niosomes	
4.2.3 Physical characteristics of the blank and OSF3	107
loaded CTAB cationic niosomes	
4.2.3.1 Morphology	107
A. Transmission Electron Microscopic	107
observation	
B. Small Angle X-ray Scattering (SAXS)	108
measurements Mai Un	
4.2.3.2 Micropolarity environments of the	108
niosomal membrane	

Part 5:	In vitro transfollicular penetration of unsaturated fatty	108
	acids of gel OSF3 niosomes in porcine skin by Franz	
	diffusion cells	
	5.1 Preparation of gel containing the cationic niosomes	108
	loaded with OSF3	
	5.2 Physicochemical characteristics of the gel containing	109
	OSF3 loaded niosomes	
	5.3 In vitro transfollicular penetration of the unsaturated	109
	fatty acid containing in various samples through porcine	
	skin by Franz diffusion cells	
	5.3.1 Skin sample	109
	5.3.2 Preparation of the porcine skin	109
	5.3.3 Follicular closing technique	110
	5.3.4 Transfollicular delivery	110
	5.3.5 HPLC analysis	111
Part 6:	<i>In vivo</i> hair growth promotion activity of gel	112
	containing cationic niosomes loaded with OSF3	
	6.1 In vitro and in vivo toxicity evaluation of the	112
	formulations containing OSF3	
	6.1.1 <i>In vitro</i> cytotoxicity on aged human skin	112
	fibroblasts	
	6.1.2 <i>In vivo</i> rabbit skin irritation test by the	
	closed patch test	
	6.2 In vivo hair growth promotion activity	

6.2.1 Animals	113
6.2.2 The sample treatment	114
6.2.3 Determination of hair growth promotion activity	114
6.2.3.1 Observation and photography	114
6.2.3.2 Hair length determination	115
6.2.3.3 Histological studies	115
CHAPTER 3 RESULTS AND DISCUSSION	116
Part 1: Crude extracts preparation and their biological activities	116
1.1 Optimization of the extraction condition	116
1.1.1 Percentage yields of the extracts	117
1.1.2 Unsaturated fatty acid and the total phenolic	120
contents (TPC) in the extracts	
1.1.3 Antioxidative activity of the extracts	121
1.1.3.1 DPPH radical scavenging activity	121
1.1.3.2 Lipid peroxidation inhibition activity	123
1.1.3.3 Metal ion chelating assay	123
1.1.4 Tyrosinase inhibition activity	124
1.1.5 Cell proliferation activity on aged human skin	124
fibroblasts of the extracts	
1.2 Extraction of 10 edible plants	125
1.2.1 Unsaturated fatty acid and total phenolic	125
contents in the crude extracts	
1.2.2 Phytochemicals in the crude extracts	127
1.2.3 Biological activities of the crude extracts	128

Part 2:	Semi-purified fractions preparation from the crude	133
	extracts and their in vitro biological and anti-hair	
	loss activities	
	2.1 Unsaturated fatty acid and total phenolic contents in	133
	semi-purified fractions	
	2.2 Biological activities of the semi-purified fractions	135
	2.2.1 DPPH radical scavenging assay	135
	2.2.2 Lipid peroxidation inhibition assay	137
	2.2.3 Metal ion chelating assay	137
	2.2.4 Tyrosinase inhibition assay	138
	2.2.5 Cytotoxicity on the aged normal human	139
	skin fibroblasts	
	2.2.6 Cytotoxicity on DU-145 cell line	139
	2.3 The 5α -reductase type 1 inhibition assay	140
Part 3:	Development of blank neutral niosomes and the niosomes	145
	loaded with O. sativa crude extract by chloroform film	
	method and scCO ₂	
	3.1 The maximum loading of the extracts in niosomes	145
	3.2 Particle size and morphology determination	146
	3.3 Transition temperature analysis of niosomes	146
	3.4 Microviscosity of niosomal membrane	148
Part 4:	Development of the blank cationic niosomes and the	150
	cationic niosomes loaded with OSF3 containing unsaturated	
	fatty acids by $scCO_2$ technique	

	4.1 Characteristics of various blank neutral and cationic niosomes	150
	4.2 Physicochemical stability of niosomes loaded with	152
	OSF3	
	4.2.1 The maximum loading of OSF3 in niosomes	152
	4.2.2 Size and zeta potential of niosomes loaded with	152
	OSF3	
	4.2.3 Chemical stability of unsaturated fatty acids in	153
	OSF3 loaded in niosomes	
	4.3 Physico-chemical characteristics of CTAB cationic	157
	niosomes loaded withOSF3 prepared by supercritical	
	carbon dioxide fluid (scCO ₂)	
	4.3.1 Appearance of the formulations and the	157
	entrapment efficiency of OSF3 loaded in CTAB	
	cationic niosomes	
	4.3.2 Particle sizes and niosomal morphology	158
	4.3.3 Zeta potential values	160
	4.3.4 Transition temperatures of the CTAB cationic	162
	niosomes	
	4.3.5 Microviscosity of the niosomal membrane	163
	4.3.6 Micropolarity environment of the niosomal	165
	membrane	
Part 5	5: In vitro transfollicular penetration of unsaturated fatty	166 SIT
	acids of gel OSF3 niosomes in porcine skin by Franz	
	diffusion cells	

xxii

5.1 Physicochemical stability of gel containing OSF3	166
niosomes	
5.1.1 Physical stability of gel containing niosomes	166
loaded with OSF3	
5.1.2 Chemical stability of unsaturated fatty acids in	166
gel containing OSF3 loaded in niosomes	
5.2 In vitro transfollicular penetration of unsaturated fatty	167
acids of gel OSF3 niosomes in porcine skin	
Part 6: In vivo hair growth promotion activity of gel containing	172
cationic niosomes loaded with OSF3	
6.1 Toxicity evaluation of the formulations containing OSF3	172
6.2 Evaluation of <i>in vivo</i> hair growth promotion activity of OSF3	174
6.2.1 Observation and photography	174
6.2.2 Hair length determination	178
6.2.3 Histological studies	179
CHAPTER 4 CONCLUSION	181
REFERENCES	190
APPENDICES	229
APPENDIX A	230
APPENDIX B	233
APPENDIX C	234
OVIIGN APPENDIX D Chiang Mai Uni	236
CURRICULUM VITAE	238

xxiv

LIST OF TABLES

	LIST OF TABLES	
Tab	le	Page
	Supplements and over the counter products for hair growth	16
2	Anti-hair loss products in markets	17
3	Examples of unsaturated fatty acids	21
-S.T.L. 4	Examples of saturated fatty acids	22
285 5	Applications of niosomes in topical pharmaceuticals	40
6	The differences between liposomes and niosomes	44
7	Fatty acids profiles and advantages in food and cosmetic of	46
	selected ten plants	
8	Carriers for follicular delivery	77
9	Comparison of the percentage yields, unsaturated fatty acid	118
	contents of the rice bran extracts prepared by scCO ₂	
	process with various percentages of 95% v/v ethanol as a	
	co-solvent	
10	Comparison of the percentage yields, unsaturated fatty acid	119
	contents and total phenolic contents of the rice bran extracts	
	prepared by the two non- heated processes (scCO ₂ with	
	25% w/v of ethanol and maceration in 95% v/v ethanol)	

- Comparison of biological activities (antioxidative, 122 11 tyrosinase inhibition and the stimulation index (SI) on the 30th passage aged human skin fibroblasts) of the rice bran extracts prepared by the scCO₂ (with 25% w/v of 95% v/v ethanol as a co-solvent) and maceration in 95% v/v ethanol Comparison of the percentage yields, unsaturated fatty acid 12 126 contents and the total phenolic contents of the ten edible plant crude extracts prepared by the two non- heated processes (scCO₂ and ethanolic maceration) Comparison of phytochemical compounds of the ten edible 13 129 plant extracts prepared by the two non-heated methods
- (scCO₂ and ethanolic maceration)
 Comparison of antioxidative, tyrosinase inhibition activities and the stimulation index on human skin fibroblasts (30th passage) of the ten edible plant extracts prepared by the two

non-heated methods (scCO₂ and ethanolic maceration)

130

136

15 Comparison of the percentage yields, unsaturated fatty acid contents, stimulation index on human skin fibroblasts (30th passage) and percentages of cell viability on DU-145 cells of the fractions from *O. sativa*, *C. tinctorius* and *S. bicolor* crude extracts

- 16 The correlation matrix (Pearson's correlation coefficients) of the unsaturated fatty acid contents, total phenolic contents, stimulation index on human skin fibroblasts (passage 30^{th}) and the 5 α -reductase inhibition activity of *O*. *sativa* crude extract, fraction No.3 of *O*. *sativa* crude extract and *C*. *tinctorius* crude extract (at 95% confidence interval)
- 17 Comparison of the vesicular sizes and transition temperatures of blank niosomes and niosomes entrapped with the rice bran extract at various concentrations
- 18 Vesicular sizes (nm), zeta potential (mV) and percentages of cell viability on human skin fibroblast (passage 27th) of blank cationic niosomes prepared from various cationic surfactants at initial and after stored for 3 months
- 19 Vesicular sizes (nm), zeta potential (mV) and percentages of cell viability on human skin fibroblast (passage 27th) of cationic and neutral niosomes loaded with OSF3 at initial and after stored for 3 months at 4, 25 and 45 °C
- 20 Vesicular sizes, zeta potential values and transition temperatures of CTAB cationic niosomes loaded with OSF3 at various concentrations before and after centrifugation

147

151

154

- 21 The cumulative amounts (ng/cm²), fluxes (ng/cm²/hour) and follicular penetration per one hair follicle (ng/one hair follicle)] by follicular closing technique using Franz diffusion cells at 6 hours of gamma-linolenic acid (GLA), linoleic acid (LN) and oleic acid (OL) from various formulations containing *O. sativa* semi purified fraction 3 (OSF3)
- 22 *In vitro* cytotoxicity on human skin fibroblasts (passage 14th) and *in vivo* primary irritation index (PII) and category of irritation on rabbit skin based on PII of various formulations containing OSF3

•	٠	٠
XXV1	1	1

LIST OF FIGURES

ur	e S	Page
1	The Norwood–Hamilton scale of male pattern baldness	7
2	Diagrammatic representation of the scalp hair cycle	8
3	Involvement of androgens and the androgen receptor in male-	10
	pattern baldness	
4	Chemical structures of minoxidil	11
5	Chemical structures of finasteride	13
6	Chemical structures of dutasteride	14
7	Reaction of the DPPH radical in the presence of the antioxidant	58
	during the DPPH assay	
8	Melanogenesis pathway	61
9	Hair follicle structure	67
0	Hair growth cycle	68
1	Transepidermal (A) and transappendageal (B) route of transport	72
	into the skin	
2	Scope of the study	88

- 13 The 5 α -reductase (type 1) inhibition on DU-145 cells at 0.1 141 mg/ml of *O. sativa*, *C. tinctorius* and *S. bicolor* crude extracts and their fractions in comparing to the standards finasteride (0.1 mg/ml), dutasteride (0.1 mg/ml), standard unsaturated fatty acids, γ -linolenic acid (0.001 mg/ml), linoleic acid (0.01 mg/ml) and oleic acid (0.1 mg/ml). (A) agarose gel electrophoresis of dsDNA of 5 α -reductase (type 1) enzyme after the inhibition of the samples and (B) the percentages of 5 α -reductase (type 1) inhibition
- 14 The TEM image of niosomes (Tween61/cholesterol at 1:1 molar ratio) entrapped with the rice bran extract (by scCO₂) at 0.25% (w/w), prepared by scCO₂
- 15 The freezed fracture (FF) TEM images of niosomes (Tween61/cholesterol at 1:1 molar ratio) entrapped with the rice bran extract (by scCO₂) at 0.25% (w/w) prepared by (A) scCO₂ technique and (B) conventional chloroform film method
- 16 The relationship between the temperatures (°C) and the fluorescence polarization (P) of blank niosomes composed of Tween61/cholesterol at 1:1 molar ratio (not loaded with the rice bran extract) and niosomes entrapped with the extract prepared by scCO₂ technique, (A) the extract prepared by scCO₂ and (B) the extract prepared by ethanolic maceration

146

- Chemical stability of the unsaturated fatty acids (gamma-155 17 linolenic acid, linoleic acid and oleic acid) and the total unsaturated fatty acids in various formulations after stored at 4, 25 and 45 °C for 3 months
- 18 FF-TEM images before and after ultra-centrifugation of the 161 blank cationic CTAB niosomes and niosomes loaded with 0.1, 0.5, 1.0 and 2.0% (w/v) OSF3.
- Microviscosities of the blank cationic CTAB niosomes and 19 niosomes loaded with 0.1, 0.5, 1.0 and 2.0% (w/v) OSF3 before and after ultra-centrifugation at 47,000 rpm, 4°C for 90 minutes, (A) before ultra-centrifugation, (B) after ultra-centrifugation
- Cumulative amounts of gamma-linolenic acid, linoleic acid, oleic 20 acid and the total unsaturated fatty acids (ng/cm^2) in skin (A) and the receiver (B) by follicular closing technique using Franz diffusion cells at 0, 1, 2, 4 and 6 hours
- 21 Hair growth promotion activity on C57BL/6 mice of OSF3 containing in various formulations [OSF3 solution (OSF3 dissolve in 95%, v/v ethanol), OSF3 niosomes (OSF3 loaded in CTAB niosomes) and gel OSF3 niosomes (gel containing OSF3 loaded in CTAB niosomes)] after daily topical application for 21 days. Photographs of the dorsal skin of the mice were taken every week

169

- Evaluation of hair growth promotion activity (hair growth score 176 and hair length) in C57BL/6 mice of OSF3 containing in various formulations. (A): Hair growth scores from optical observation during the experiment. (B): Hair length was measured from the hair randomly plucked from the mice dorsal on day 7th, 14th, 21st, 28th, 35th and 42nd of sample application and wash-out period.
 Histological analysis of the dorsal skin specimens of C57BL/6 179
 - mice at day 21 treated with various formulations containing OSF3

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

xxxii

ABBREVIATIONS AND SYMBOLS

BZKC	benzalkonium chloride
BZT	benzethonium chloride
CaCl ₂	calcium chloride
CC ₅₀	chelating concentration at 50% activity
СРС	cetylpyridinium chloride
DDAB	didecyl dimethyl ammonium bromide
DLS	dynamic light scattering
D-MEM	dulbecco's modified eagle's medium
DMSO	dimethyl sulfoxide
DPH	1,6 diphenyl-1,3,5-hexatriene
DPPH	1, 1-Diphenyl-2-picryhydracyl
EDTA	ethylenediaminetetraacetic acid
FBS	fetal bovine serum
FeCl ₂	ferrous chloride
FF- TEM	freezed fracture transmission electron microscopy
h	hour
HPLC	high performance liquid chromatography
IC ₅₀	tyrosinase inhibition concentration at 50% activity
IPC ₅₀	inhibition peroxidation concentration at 50% activity
MEM	eagle's minimal essential medium
mg	milligram

xxxiii

ml	milliliter
mM	millimolar
mV	millivolt
NaN ₃	sodium azide
nm	nanometer
PBS	phosphate-buffered saline
PCR	polymerase chain reaction
rpm	revolutions per minute
S	second
SA	stearylamine
SC ₅₀	scavenging concentration at 50% activity
SDS	sodium dodecyl sulfate
SDS-PAGE	sodium dodecyl sulfate-polyacrylamide gel electrophoresis
SLS	sodium luaryl sulfate
SRB	sulphorodamine B
TEM	transmission electron microscopy
TLC	thin layer chromatography
Tween 61	polyoxyethylene sorbitan monostearate
μg	microgram
μSU	microliter
/right ^C	celcius degree Mai University