	TABLE OF CONTENTS	
		Page
ACKNOWL	EDGEMENTS	iii
THAI ABSTI	RACT	iv
ENGLISH A	BSTRACT	vi
LIST OF TAI	BLES	xi
LIST OF FIG	URES	xiii
ABBREVIAT	TIONS AND SYMBOLS	xvi
CHAPTER I	INTRODUCTION	1 500
CHAPTER I	I LITERATURE REVIEW	4
2.1.	Essential oils	4
2.2.	Biosynthesis of essential oils	11
	2.2.1. Acetate-mevalonic acid pathway	11
	2.2.2. Shikimic acid pathway	13
2.3.	Orchid	15
	2.3.1 Description of Dendrobium parishii Rchb.f.	19
	2.3.2. Rhynchostylis gigantea Ridl. and Rhynchostylis	
	gigantea var. harrisonianum Holtt	19
	2.3.3. Vanda coerulea	20
2.4.	Plant cell culture	20
	2.4.1. History	22
	2.4.2. Requirement of cell culture	22
	2.4.3. Culture media	24
	2.4.4. Sterilization	24 Vers
2.5.	Production of essential oil by plant cell culture	25
	2.5.1. Precursor feeding	27
	2.5.2. Elicitor	27

		2.5.3.	Permeabilization	28
		2.5.4.	Two-phase system	28
CHAF	TER I	II MAT	TERIALS AND METHODS	34
	3.1.	Chemi	icals	34
	3.2.	Instru	ments	36
	3.3.	Materi	ials	36
	3.4.	Time a	and place	36
	3.5.	Metho	bds	37
		3.5.1.	Extraction and identification of essential oil	
			from fresh plant of D. parishii	37
		3.5.2.	Preparation of media	38
		3.5.3.	Aseptic work	39
		3.5.4.	Suspension culture	39
		3.5.5.	Fresh and dry weight measurements	39
		3.5.6.	Extraction and identification of essential oil	
			from plant cell culture of <i>D. parishii</i>	39
		3.5.7.	Improving of essential oil level production	
			in plant cell culture	40
			3.5.7.1. Elicitation with chitosan	40
			3.5.7.2. Permeabilization	40
			3.5.7.3. Two-phase system	40
			3.5.7.4. Feeding precursor	40
CHAP	TER I	V RES	ULTS	42
	4.1.	Identif	fication of essential oil from fragrant orchids	42
		4.1.1.	Identification of essential oil from R. gigantea	42
		4.1.2.	Identification of essential oil from R. gigantea	
			var. harrisonianum	49
		4.1.3.	Identification of essential oil from V. coerulea	55
		4.1.4.	Identification of essential oil from D. parishii	61

4.2.	Identification of essential oil from cell culture of	
	D. parishii	69
4.3.0	Methods for improving chemical constituents	
	of essential oil produced by plant cell cultures	77
	4.3.1. Elicitation with chitosan	77
	4.3.2. Permeabilization	85
	4.3.3. Two-phase system	92
	4.3.4. Feeding precursor	102
CHAPTER V	DISCUSSION	112
5.1.	Identification of essential oils from fragrant orchids	113
	5.1.1. Identification of essential oil from R. gigantea	113
	5.1.2. Identification of essential oil from R. gigantea	
	var. harrisonianum	114
	5.1.3. Identification of essential oil from V. coerulea	116
	5.1.4. Identification of essential oil from <i>D. parishii</i>	117
5.2.	Identification of essential oil from cell culture of	
	D. parishii	120
5.3.	Methods for improving chemical constituents of	
	essential oil produced by plant cell cultures	121
	5.3.1. Elicitation with chitosan	122
	5.3.2. Permeabilization	122
	5.3.3. Two-phase system	123
	5.3.4. Feeding precursor	124
CHAPTER V	T CONCLUSION	127
REFERENCE		129
APPENDICE	s by Chiang Mail	140
APPE	NDIX A CHI ALI S MAL C	141
APPEI	NDIX B	144
APPE	NDIX C	145
CURRICULU	JM VITAE	146

LIST OF TABLES

	LIST OF TABLES	
Table		Page
1	Extraction techniques for aromatic plant	5
2	Example of essential oil plants and plant organs for synthesizing	
	essential oils	5
3	The use of essential oil for some aromatic plants	6
4	Composition of essential oils of some aromatic plants	7
5	The use of some orchids as traditional medicines	16
6	The pharmacological properties of some orchids	17
7	Bioactive compounds are extracted and used from some plants	21
8	Production of secondary metabolites which are produced by	
	plant cell culture technique	23
9	Essential oils are produced by cell culture of some plants and	
	their metabolites	25
10	Approaches used for improve secondary metabolites	26
11	Precursor feeding for essential oils production by cell culture	
	of some plants and their products	30
12	Elicitation for essential oils production by cell culture of	
	some plants and their products	32
13	Two-phase system for essential oils production by cell culture	
	of some plants and their products	33
14	Chemical constituents of essential oil analyzed from three	
	different parts of R. gigantean	44
15	Chemical constituents of essential oil analyzed from three	
	different parts of R. gigantea var. harrisonianum	50
16	Chemical constituents of essential oil analyzed from three	
	different parts of V. coerulea	56

xi

17	Chemical constituents of essential oil analyzed from four	
	different parts of D. parishii	63
18	Chemical constituents of cell culture analyzed at 7 days	
	interval of D. parishii	73
19	Chemical constituents of elicited cells analyzed at 7 days interval	81
20	Chemical constituents of permeabilized cells analyzed at 7 days	
	Interval	89
21	Chemical constituents of two-phased cells analyzed at 7 days	
	Interval	95
22	Chemical constituents of cell culture of D. parishii after 28 days	
	of cell culture treated with three different methods of improving	
	essential oil constituent	98
23	Biotransformation products fed by menthyl acetate	102
24	Biotransformation products fed by geranyl acetate	103
25	Biotransformation products fed by nerol	104
26	Biotransformation products fed by geraniol	105
27	Biotransformation products fed by citral	106
28	Biotransformation products fed by eugenol	107
29	Biotransformation products fed by <i>alpha</i> -humulene	108
30	Biotransformation products fed by limonene	109
31	Biotransformation products fed by phellandrene	110
32	Biotransformation products fed by terpinene	111
33	The chemical constituents of Murashige and Skoog media	144
34	The chemical constituents of Modified Vacin and Went media	145

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงไหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure

	LIST OF FIGURES	
Figur		Page
1	Biosynthesis pathway of terpenes via acetate-mevalonic acid	
	pathway	12
2	Biosynthesis pathway of phenylpropanoid compounds	14
3	Growth curve of suspension culture analyzed at 7 days interval	
	of D. parishii	71
4	Suspension cultures of D. parishii (side view)	71
5	Suspension cultures of D. parishii (top view)	72
6	Main constituents of suspension culture analyzed at	
	7 days interval of D. parishii	72
7	The effect of chitosan concentrations on cell growth	79
8	Growth curve of elicited cells treated with 150 ppm chitosan	
	compared with control cell culture	79
9	Elicited cells treated with various chitosan concentrations	80
10	Main volatile constituents of elicited cells analyzed at 7 day	
	Interval	80
11	The effect of Tween 20 concentrations on cell growth	87
12	Growth curve of permeabilized cells treated with Tween20	
	compared with control cell culture	87
13	Main volatile constituents of permeabilized cells analyzed at	
	7 days interval	88
14	Growth curve of two-phased cells treated with hexadecane	
	compared with control cell culture	94
15	Main volatile constituents of two-phased cells analyzed at 7 days	
	Interval	94
16	Molecular structures of menthol, a biotransformation products	
	fed by menthyl acetate in cell cultures	102

xiii

17	Molecular structures of geranial, geraniol, neral and nerol, the	
	biotransformation products fed by geranyl acetate in cell cultures	103
18	Molecular structures of geranial, geraniol and neral, the	
	biotransformation products fed by nerol in cell cultures	104
19	Molecular structures of geranial, neral and nerol, the	
	biotransformation products fed by geraniol in cell cultures	105
20	Molecular structures of geraniol and nerol, the biotransformation	
	products fed by citral in cell cultures	106
21	Molecular structures of methyl eugenol, a biotransformation	
	products fed by eugenol in cell cultures	107
22	Molecular structures of humulene oxide, a biotransformation	
	products fed by alpha-humulene in cell cultures	108
23	Molecular structures of carveol and limonene oxide, the	
	biotransformation products fed by limonene in cell cultures	109
24	Molecular structures of carvone and phellandrene epoxide, the	
	biotransformation products fed by phellandrene in cell cultures	110
25	Molecular structures of p-cymene and thymol, the	
	biotransformation products fed by terpinene in cell cultures	111
26	Chemical constituents of essential oil analyzed from flowers,	
	leaves and roots of R. gigantea	114
27	Chemical constituents of essential oil analyzed from flowers,	
	leaves and roots of R. gigantea var. harrisonianum	115
28	Chemical constituents of essential oil analyzed from flowers,	
	leaves and roots of V. coerulea	116
29	Chemical constituents of essential oil analyzed from flowers,	
	leaves, root and pseudobulbs of <i>D. parishii</i>	118
30	Chemical constituents of essential oil analyzed from flower	
	parts of D. parishii, R. gigantea, R. gigantea var. harrisonianum	
	and V. coerulea	119 VEIS
31	Chemical constituents of essential oil analyzed from cell cultures	
	of D. parishii	121 e

32	The possibility of biotransformation pathways of geranyl acetate				
	by cell culture of D. parishii	125			
33	Chemical group of cell cultures of <i>D. parishii</i> treated with				

three different methods

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

%	Ξ	Percentage
μg	=	Microgram
μl	=	Microliter
1	=	Per
°C	=	Degree Celsius
DW	=	Dry weight
EI	=	Electron impact
eV	=	Electron volt
FW	2	Fresh weight
GC-MS	=	Gas Chromatography-Mass Spectrometry
KI	=	Kovat retention indices
1	=	Litre
mg/l	=	Milligram per liter
min	=	Minute
ml	=	Milliliter
MS	=	Murashige and Skoog media
MW	=	Molecular weight
рН	-	The negative logarithm of the molar concentration of
		dissolved hydronium ions
ppm	Ξ	Part per million
rpm	=	Round per minute
RT	Ē	Retention time
VW	=	Vacin and Went media
w/v	bу	Weight by volume