TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT (ENGLISH)	v
ABSTRACT (THAI)	viii
LIST OF TABLES	xxi
LIST OF FIGURES	xxvii
ABBREVIATIONS AND SYMBOLS	XXXV
CHAPTER 1 INTRODUCTION	\mathcal{Z}_1
1.1 Statement and significance of the problem	
1.2 Objectives	3
1.3 Scope of study	3
1.4 Literature reviews	6
1.4.1 Aging skin	6
1.4.1.1 Causes of aging skin	7
1.4.1.2 Mechanisms of aging skin	9
1.4.1.3 Types of aging skin	81 7 11 1 4
1.4.1.4 Treatments of aging skin	14
A. Medical treatments	Iniv 14 rsi
B. Cosmeceutical treatments	18
1.4.2 Anti-aging agents/products	18

1.4.2.1 Synthetic antioxidants	18
1.4.2.2 Natural antioxidants	20
1.4.2.3 Anti-aging products in the markets	23
1.4.3 Long Kong (Lansium domesticum Correa)	25
1.4.3.1 Botanical characteristics	25
1.4.3.2 Bioactive constituents	27
1.4.3.3 Applications and researches on Long Kong	33
A. Pharmaceuticals	33
B. Cosmetics	36
C. Foods and food supplements	37
D. Agriculture	38
1.4.4 The extraction processes of natural products	39
1.4.4.1 Crude extracts	40
A. Ultrasound extraction (Sonication)	41
B. Hot extraction	41
C. Supercritical carbon dioxide fluid	42
extraction (scCO ₂)	
1.4.4.2 Semi-purified extracts	42
1.4.4.3 Discolor subfractions from the	43
semi-purified extracts by partition technique	
1.4.5 Characteristic analysis of the extracts from the	44
natural products	
1.4.5.1 Phytochemical screening test	44
1.4.5.2 Specification test	54

1.4.5.3 HPLC fingerprint profile	56
1.4.6 Topical pharmaceutical and cosmetic	56
formulation development	
1.4.6.1 Types of formulations	56
1.4.6.2 Formulation development	58
A. Chemical stability	59
B. Physical stability	60
1.4.7 In vitro anti-aging assays	61
1.4.7.1 DPPH radical scavenging assay	61
1.4.7.2 Ferrous metal chelating activity assay	62
1.4.7.3 Lipid peroxidation inhibition by	62
ferric-thiocyanate complex activity assay	
1.4.7.4 Tyrosinase inhibition assay	63
1.4.7.5 Gelatinolytic activity on MMP-2	64
inhibition (Zymography) in	
human skin fibroblasts	
A. Types of collagen in the skin	65
B. Gelatinase A (MMP-2) in aging skin	65
C. MMP inhibitors for anti-aging skin	67
D. Zymography assay	68
1.4.7.6 Cytotoxicity by Sulphorhodamine B (SRB)	70
assay in human skin fibroblasts	
1.4.8 In vivo anti-aging biological assays	71
1.4.8.1 Irritation test in rabbit	71

1.4.8.2 Performance test in human volunteers	73
A. Skin elasticity measurement	73
B. Skin roughness measurement	75
C. Skin hydration measurement	76
D. Skin erythema and melanin measurements	77
CHAPTER 2 MATERIALS AND METHODS	79
2.1 Materials and equipments	79
2.1.1 Chemicals	81
2.1.2 Cell lines	81
2.1.3 Animals	81
2.1.4 Equipments	81
2.2 Methods	83
Part 1: Preparation and <i>in vitro</i> anti-aging activities of the crude extracts	84
from leaves of Long Kong	
1.1 Selection of the crude extract from eight parts of Long Kong	84
1.2 Preparation of the crude extracts	85
1.3 Characteristics of the crude extracts	85
1.3.1 Phytochemical test of the crude extracts	85
1.3.2 Determination of the total phenolic and flavonoid contents	87
of the crude extracts	
1.3.3 In vitro anti-aging activities of the crude extracts	88
determination hang Mai Univ	
1.3.4 Tyrosinase inhibition assay	90

	1.3.5 Cytotoxicity of the crude extracts on human skin fibroblasts	91
	by sulforhodamine B (SRB) assay	
	1.3.6 Gelatinolytic activity on MMP-2 inhibition zymography	92
	of the crude extracts on human skin fibroblasts	
	1.4 Selection of the crude extract	93
Part 2:	Preparation and in vitro anti-aging activities of the semi-purified	93
	extracts	
	2.1 Preparation of the semi-purified extracts from the selected	93
	crude extract	
	2.2 Characteristics of the prepared semi-purified extracts	94
	2.2.1 Phytochemical tests of the semi-purified extracts	95
	2.2.2 Determination of the total phenolic and flavonoid contents	95
	of the semi-purified extracts	
	2.2.3 <i>In vitro</i> anti-aging activities of the semi-purified extracts	95
	determination	
	2.2.4 Specification of the selected semi-purified extracts	95
	2.3 Selection of the semi-purified extract	98
Part 3:	Discoloration and <i>in vitro</i> anti-aging activities of the selected	99
i uit 5.	semi-nurified extracts	
	3.1 Discoloration of the selected semi-purified extract	00
	2.2 Characteristics of the discolored semi-purified fractions	00
	3.2 Characteristics of the discolored semi-purified fractions	99
	3.3 Selection of the discolored semi-purified fractions	99
	3.4 <i>In vivo</i> rabbit skin irritation by Draize test of the ethyl acetate	-99
	semi-purified extract and the discolored water fraction	

Part 4:	Development of the cosmetic base formulations	100
	4.1 Preparation of the cosmetic base formulations	100
	4.2 Physical stability determination of the cosmetic base formulations	103
	by heating cooling cycles	
	4.3 In vivo rabbit skin irritation by Draize test	103
	4.4 Selection of the cosmetic base formulations	103
Part 5:	Development of the cosmetic formulations containing the extract	104
	from leaves of Long Kong	
	5.1 Preparation of the cosmetic formulations containing the selected	104
	extract from leaves of Long Kong	
	5.2 Physico-chemical stability investigation of the cosmetic	105
	formulations containing the selected extract from leaves	
	of Long Kong	
	5.2.1 Physical stability determination	105
	5.2.2 Chemical stability determination	105
	5.3 Selection of the cosmetic formulations containing the extract	107
	from leaves of Long Kong	
Part 6:	In vivo anti-aging evaluation of the cosmetic formulations containing	108
	extract from leaves of Long Kong	
	6.1 <i>In vivo</i> irritation on rabbit skin by Draize test of the cosmetic	108
	formulations containing the semi-purified extract from leaves	
	of Long Kong	

xvi

6.2 In vivo anti-aging activities in human volunteers of the cosmetic	111
formulations containing the selected extract from leaves of	
Long Kong	
6.2.1 Subjects and study protocol	108
6.2.2 Skin elasticity measurement	109
6.2.3 Skin roughness measurement	110
6.2.4 Skin hydration measurement	111
6.2.5 Skin erythema and melanin measurements	111
6.2.6 Satisfactory questionnaires of the cosmetic formulations	111
CHAPTER 3 RESULTS AND DISCUSSION	113
Part 1: Preparation and <i>in vitro</i> anti-aging activities of the crude extracts	113
from leaves of Long Kong	
1.1 Preparation of the crude extracts	113
1.1.1 Percentages yield of the crude extracts	113
1.2 Characteristics of the crude extracts	114
1.2.1 Phytochemical constituents of the crude extracts	114
1.2.2 Total phenolic and flavonoid contents of the	115
crude extracts	
1.2.3 In vitro anti-aging activities of the crude extracts	116
1.2.4 Tyrosinase inhibition activity of the crude extracts	118
1.2.5 Cytotoxicity on human skin fibroblast of the crude extracts	; 119
1.2.6 Gelatinolytic activity on MMP-2 inhibition activity of the	120
crude extracts	
1.3 Selection of the crude extract	121

Part 2: Preparation and <i>in vitro</i> anti-aging activities of the semi-purified extracts	124
2.1 Percentages yield of the semi-purified extracts prepared from	124
the selected crude extract	
2.2 Characteristics of the prepared semi-purified extracts	124
2.2.1 Phytochemical analysis of the semi-purified extracts	124
2.2.2 Total phenolic and flavonoid contents of the	125
semi-purified extracts	
2.2.3 In vitro anti-aging activities of the semi-purified extracts	126
2.2.4 Tyrosinase inhibition activity of the semi-purified extracts	128
2.2.5 Cytotoxicity on human skin fibroblast of the	129
semi-purified extracts	
2.2.6 Gelatinolytic activity on MMP-2 inhibition activity of	130
the semi-purified extracts	
2.2.7 Specification of the semi-purified extract	132
2.3 Selection of the semi-purified extract	136
Part 3: Discoloration and <i>in vitro</i> anti-aging activities of the	139
semi-purified extract	
3.1 Percentages yield of the discolored fractions	139
3.2 Characteristic of the discolored fractions	139
3.2.1. Phytochemical tests of the discolored fractions	139
2.2.2 Determination of the total phonolic and flavonoid	140
3.2.2 Determination of the discolored fractions	140 /ers
3.2.3 In vitro anti-aging activities of the discolored fractions	141 E
determination	

3.2.4 Tyrosinase inhibition activity of the discolored fractions	143
3.2.5 Cytotoxicity on human skin fibroblasts of the discolored	144
fractions	
3.2.6 Gelatinolytic activity on MMP-2 inhibition activity of the	145
discolored fractions	
3.2.7 Specification of the selected discolored fractions	146
3.3 Selection of the discolored semi-purified fraction	150
3.4 In vivo rabbit skin irritation by Draize test of the ethyl acetate	151
semi-purified extract and the discolored water fraction	
Part 4: Development of cosmetic base formulations	153
4.1 Preparation of the cosmetic base formulations	153
4.2 Physical stability determination of the cosmetic base formulations	153
by using heating cooling cycles	
4.3 In vivo rabbit skin irritation by Draize test of the cosmetic base	156
formulations	
4.4 Selection of the cosmetic base formulations	157
Part 5: Development of cosmetic formulations containing the selected	157
semi-purified extract prepared from the hot water crude extract	
from leaves of Long Kong	
5.1 Preparation of the cosmetic formulations containing the	157
semi-purified extract at various concentrations	
5.2 Physico-chemical stability of the cosmetic formulations containing	158
the semi-purified extract at various concentrations	

Part 6: In vivo anti-aging activities on human volunteers of the cosmetic	165
formulations containing the extract from leaves of Long Kong	
6.1 In vivo rabbit skin irritation by Draize test of the cosmetic	165
formulations containing the semi-purified extract from leaves	
of Long Kong	
6.2 <i>In vivo</i> anti-aging activities in human volunteers of the cosmetic	166
formulations containing the semi-purified extract from leaves	
of Long Kong	
6.2.1 Skin elasticity	166
6.2.2 Skin roughness measurement	171
6.2.3 Skin hydration	173
6.2.4 Skin erythema and melanin	175
6.2.5 Satisfactory questionnaires on physical appearances of	177
the cosmetic formulations	
CHAPTER 4 CONCLUSION	178
REFERENCES	188
APPENDICES	215
APPENDIX A	216
APPENDIX B	218
APPENDIX C	220
APPENDIX D	225
APPENDIX E	227
CURRICULUM VITAE	230

LIST OF TABLES

Table		Page
1	The comparison between features of intrinsic and extrinsic factors	8
	of aging skin	
2	Criteria used for distinguish types of aging according to their	12
	characteristics by Procter & Gamble beauty researchers	
3	The laser beam used for aging skin treatments	17
4	The chemical structures of synthetic antioxidants used in cosmetics	19
5	Anti-aging compounds from natural resources	22
6	The global anti-aging market growth rate	23
7	Examples of anti-aging or wrinkle products in the markets	24
8	Chemical constituents of the essential oil from pulp of L. domesticum	32
9	Peak areas and quantities of organic acids in pulp of L. domesticum	33
10	Anti-malarial activity of natural compounds isolates from seeds of	34
	L. domesticum	
11	Percentages of inhibitory effect on EBV-EA activation on Raji cell	35
	inducing with TPA of seventeen derivatives of 3-oxo-24-cycloarten-	
	21-oic acid isolated from leaves of <i>L. domesticum</i> extract	
12	Anti-bacterial activities of nine compounds isolated from	36
	ethanolic extract from the twigs of L. domesticum	
13	cosmetic properties of extracts from various parts of L. domesticum	37
14	Food value per 100 g of edible portion of <i>L. domesticum</i>	38

15	Examples of the natural crude extracts and essential oil prepared from	39	
	various plants for cosmetic purposes		
16	Advantages and disadvantages of the popular extraction methods	43	
	for crude extract preparation from plants		
17	Phytochemical screening tests of the plant extracts	45	
18	Examples of specification for standardized Ginko extract	55	
19	Collagen family in the skin and other organs	66	
20	Classification system for skin reactions	73	
21	Response categories of irritation in rabbit	73	
22	Definitions of skin elasticity indices by Cutometer	75	
23	Parameters used in the assessment of skin visioscan® VC98	77	
24	The descriptive term used for explaining solubility of the substance	96	
25	Reagents used for the chemical resistant test	97	
26	The descriptive definition of the chemical stability test	98	
27	Compositions of the gel and serum base formulations	101	
28	Compositions of the cream base formulations	102	
29	Descriptions of the samples in skin anti-aging evaluation in human	109	
	volunteers		
30	The description of five levels of Likert's rating scale of the	112	
	satisfactory score estimation of volunteers Amounts of the		
	composition in the prepared nanovesicles		
31	Percentages yield of the crude extracts from leaves of Long Kong	114	
	prepared by six different processes		

xxii

32	Phytochemical constituents of the crude extracts from leaves of	115
	Long Kong prepared by six different processes	
33	Comparison of the antioxidant activities of the crude extract from	117
	leaves of Long Kong prepared by six different processes	
34	Comparison of the <i>in vitro</i> tyrosinase inhibition of the six crude	119
	extracts from the leaves of Long Kong	
35	Comparison of the percentages cell viability on human skin	120
	fibroblast of the crude extracts from leaves of Long Kong	
36	Percentages yield of the semi-purified extracts prepared from	124
	the hot water crude extract from leaves of Long Kong	
37	Phytochemical constituents of the semi-purified extract prepared	125
	from the hot water crude extract of leaves from Long Kong	
38	Comparison of the <i>in vitro</i> antioxidant activities (DPPH radical	127
	scavenging, metal ion chelating and lipid peroxidation inhibition) of	
	the three semi-purified extracts prepared from the hot water crude	
	extract of leaves from Long Kong	
39	Comparison of the in vitro tyrosinase inhibition of the three	129
	semi-purified extracts prepared from the hot water crude extract	
	of leaves from Long Kong	
40	Comparison of the percentages cell viability on human skin fibroblasts	130
	of the semi-purified extract prepared from the hot water crude extract of	
	leaves from Long Kong	
41	Physical appearances and pH values of the semi-purified extracts	133
	(0.1% dissolved in distilled water)	

xxiii

42	Solubility of the three semi-purified extracts prepared from the	134
	hot water crude extract of leaves from Long Kong	
43	Chemical stability of the three semi-purified extracts prepared	134
	from the hot water crude extract of leaves from Long Kong	
44	Percentages of the gallic acid contents in the hot water crude	135
	extract and its semi-purified extracts from leaves of Long Kong	
45	Percentages yield of the discolored water and chloroform fractions	139
46	Phytochemical constituents of the discolored fractions prepared from	140
	the ethyl acetate semi-purified extract	
47	Antioxidant activity of the discolored fractions prepared from the	142
	ethyl acetate semi-purified extract	
48	Tyrosinase inhibition activity of the discolored fractions prepared	144
	from the ethyl acetate semi-purified extract	
49	Cytotoxicity on the human skin fibroblasts of the discolored fractions	145
	prepared from the ethyl acetate semi-purified extract	
50	Physical appearances and pH values of the 0.1% discolored fractions	147
	dissolved in distilled water	
51	Solubility of the discolored water and chloroform fractions prepared	148
	from the ethyl acetate semi-purified extract of leaves from Long Kong	
52	Chemical stability of the discolored fractions prepared from the	149
	ethyl acetate semi-purified extract from leaves of Long Kong	
53	Percentages of the gallic acid contents of the discolored water fraction	150
	prepared from the ethyl acetate semi-purified extract	
	rgnis reser	

54 Comparison of the *in vitro* anti-aging activities of the ethyl acetate 151 semi-purified extract and the discolored water fraction prepared from leaves of Long Kong

- 55 Primary irritation index (PII) and category of irritation based on PII of the ethyl acetate semi-purified extract and the discolored water fraction prepared from leaves of Long Kong
- 56Physical appearances and characteristics (color, odor, texture154and pH value) of the nine cosmetic base formulations kept at the154heating and cooling cycle (4±2 and 45±2°C) for 6 cycles (12 days)
- 57 Primary irritation index (PII) and category of the irritation based on PII 155 of various cosmetic base formulations
- 58 The physical stability of the various cosmetic formulations containing 158 the ethyl acetate semi-purified at 0.1 and 0.5% kept at 4 ± 2 , 27 ± 2 and $45\pm 2^{\circ}$ C at the initial and after stored for 3 months
- 59The order of reactions, half lives and shelf lives of various cosmetic161formulations stored at various temperatures (27±2, 4±2 and 45±2°C)
- 60 Primary irritation index (PII) and category of irritation based on PII of 165
 various samples containing the ethyl acetate semi-purified extract at 0.1,
 0.3 and 0.5%
- 61 Percentages of the parameter changes (%) of before application and 166 after 4 weeks of application of various formulations and the untreated area
- 62 Percentages changes (%) of the skin roughness, skin hydration 171 and skin melanin of before and after 4 weeks of application of various formulations and the untreated area

- 63 Percentages of the satisfaction parameter scale of the human volunteers 177 on the cream formulations containing the semi-purified extract at 0.1,
 0.3 and 0.5%
- E1 General information summaries of human volunteers who have assessed 229 for *in vivo* anti-aging activities and satisfaction evaluations
- E2 Number out of 20 volunteers in the satisfaction evaluation of the 229 physical appearance and organoleptic evaluation on the cream formulations containing the ethyl acetate semi-purified extract at 0.1,

0.3 and 0.5% (w/w)

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

xxvii

LIST OF FIGURES

Figure		Page
1	Comparison of the skin cross-sections of the younger and older skin	6
2	A schematic cross-section through layers of the different aged skin	-10
3	The difference between line, wrinkle and fold of the facial aging skin	11
	base on the depth of crevices in each skin layer	
24	Histological features of the healthy young skin (a), old skin (b)	14
	and photodamaged aged skin (c) Upper panels are 5 mm hematoxylin	
	and eosin-stained sections (X160). Lower panels (X240)	
5	The major injectable locations of the facial dermal filler treatments	16
6	Chemical structure of the nordihydroguariaretic acid (NDGA),	21
	a natural antioxidants extracted from leaves of L. divaricata which	
	were used in drugs and cometics	
7	The appearance of tree (a), leaves (b), flowers (c), young fruit (d),	26
	ripening fruit (e) and seeds (f) of L. domesticum Corr.	
8	Chemical structures of the compounds exist in the seeds of	27
	L. domesticum	
9	The structure of tetranortriterpenoids found in seed of L. domesticum	28
10	The chemical structure of onoceranoid triterpenes were isolated	29
	from the fruit peels of <i>L. domesticum</i> together with two known	
	triterpenoids (methyl lasionate and lansic acid which exhibited mild	
	toxicity against brine shrimp (Artemia salina)	

xxviii

11	The chemical structure of lansioside A and its derivatives obtained	30
	from dry peel ethanolic extract of L.domestiucm	
12	The chemical structure of 3-oxo-24-cycloarten-21-oic	30
	which is a minor constituent of leaves of <i>L. domesticum</i>	
13	Nine new onoceranoid type triterpenoids were isolated from the	31
	ethanolic extract of twigs of <i>L. domesticum</i>	
14	Chemical derivatives of 3-oxo-24-cycloarten-21-oic acid isolated	35
	from leaves of L. domesticum extract which were further studied on	
	in vivo anti-skin tumor in mouse skin	
15	Structures of triterpenes isolated from L. domesticum which	39
	has insect antifeedant activity against rice weevil except	
	3-ketolansiolic acid	
16	The UV/Vis spectroscopy data of <i>A. thaliana</i> extract removal	44
	chlorophyll using chloroform extraction. The spectrum of the	
	extract before chlorophyll removal exhibited two maximum	
	peak of chlorophyll (A), while the upper (B) and lower (C) layer	
	which were aqueous phase and chloroform phase respectively	
	showing the broad spectrum	
17	Chemical structures of some common alkaloids	46
18	Chemical structures of flavonoid classes	47
19	Chemical structures of saponins	48
20	Common condensed tannin and hydrolysable tannin in plants	48
21	chemical structure of the reducing sugars which are qualitatively	-49
	determined in the plant extracts by Fehling's solution test	

		٠	
X	Х	1	Х

22	Major anthocyanins containing in the purple corn	50
23	Common anthocyanins visible in various color edible plants	51
24	Chemical structure of carotenoids presence in all-trans and cis	52
	isomers of zeaxanthin and β -carotene	
25	Major steroids determined in plants such as ouabain from	53
	Digitalis purpurea and Proscillararidin A from Urginea maritime,	
	and in animals such as marinobufagenin from Bufo marinus	
26	Example of tetracyclic and pentacyclic triterpenoids	54
27	HPLC chromatograms of mixture of the marker compounds	57
	valerenic acid and acetoxyvalerenic acid (upper) and valerian	
	tablets (lower)	
28	The process of pharmaceutical and cosmetic formulation development 5	9
29	Reaction of the DPPH radical in the presence of the antioxidant	61
	during the DPPH assay	
30	Melanogenesis pathway	64
31	Type of MMPs divided by substrate and catalytic domain	67
32	Zymograms of MMP-2 and -9 which exhibited distinguish molecular	69
	weight of pro- and active- enzymes	

ลิขสิทธิ์มหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

- 33 Skin deformation curve obtained with Cutometer. Cutometer parameters: Ue is the elastic deformation of the skin due to the application of stress (vacuum or torque) by the instrument; Uv is the visco-elastic creep occurring after the elastic deformation; Uf is the total extensibility of the skin; Ur is the elastic deformation recovery due to stress removal; Ua is the total deformation recovery at the end of the stress-off period; R is the amount of deformation not recovered by the end of the stress-off period
 - Examples of skin surface profiles of women evaluated with the surface evaluation of living skin method at week 0 (A) and after 12 weeks of consuming high flavanol cocoa beverages (B) The corresponding top view of the skin is shown in the lower Photographs
 - The reflectance of the simplified three-layer skin model. In the epidermis (layer 1), light is strongly absorbed by melanin and the non-absorbed part reaches the hemoglobin-rich papillary dermis (layer 2). The remaining part of the light is then diffusely reflected by dermal collagen (layer 3)
- 36 Scheme of the scope of the study

34

Scheme of purification of the water crude extract from old leaves of
 Long Kong which gave the three semi-purified extracts including
 ethyl acetate, butanol and water soluble fractions (in frames)

76

78

- Comparison of the total phenolic and flavonoid contents of 116
 the crude extracts from leaves of Long Kong prepared by
 six different processes
- 39 The gelatinolytic activity of pro (A) and active (B) MMP-2 inhibition (% of the control) of the six crude extracts prepared by the six different processes of Long Kong leaves and ascorbic acid at 0.01, 0.1 and 1 mg/ml
- 40 Zymograms of pro and active MMP-2 inhibition of the six crude extracts prepared by the six different processes from leaves of Long Kong and ascorbic acid at 0.01, 0.1 and 1 mg/ml
- 41 Comparison of the phenolic and flavonoid contents of the three semi-purified extracts prepared from the hot water crude extract of leaves from Long Kong
- 42 The gelatinolytic activity of pro (A) and active (B) MMP-2 Inhibition (% of the control) from the three semi-purified extracts prepared from the hot water crude extract of leaves of Long Kong and ascorbic acid at 0.01, 0.1 and 1 mg/ml.
- 43 Zymograms of pro and active MMP-2 inhibition of the
 semi-purified fractions partitioned from the hot water crude
 extract from leaves of Long Kong and vitamin C at 0.01, 0.1 and
 1 mg/ml and the negative control (5% DMSO)

123

126

131

44	Chromatograms of the gallic acid (1 mg/ml) at the retention time	137
	of 3.235 min and the hot water crude extract of leaves from	
	Long Kong (20 mg/ml) which gave the gallic acid peak at the	
	retention time of 3.188 min	
45	Chromatograms of the water, butanol and ethyl acetate	138
	semi-purified extracts prepared from the hot water crude extract of	
	the leaves from Long Kong showed the gallic acid peak at the	
	retention time of 3.012, 3.147 and 3.272 min, respectively.	
46	Total phenolic and flavonoid contents of the discolored fractions	141
	prepared from the ethyl acetate semi-purified extract	
47	Comparison of the percentages of pro and active MMP-2	146
	inhibition of the discolored water and chloroform fractions	
	prepared from the ethyl acetate semi-purified extract of leaves	
	from Long Kong	
48	Chromatograms of the gallic acid and the discolored water	149
	fraction indicating the gallic acid peak at the retention time	
	of 3.377 and 3.415 min, respectively	
49	Physical appearance of serum No.1, gel No.1 and cream No.1	155
50	Propylene glycol base (A), the ethyl acetate semi-purified extract	157
	at 0.1 (B), 0.3 (C) and 0.5% (D) dissolved in propylene glycol,	
	the commercial product (E), cream base (F) and cream	
	formulations containing the ethyl acetate semi-purified	
	extract at 0.1 (G), 0.3 (H) and 0.5% (I)	

- 51 The percentages of gallic acid remaining in various cosmetic 160 formulations at different storage temperatures $(27\pm2, 4\pm2 \text{ and } 45\pm2^{\circ}\text{C})$ for 3 months
- Comparison of the skin elastic extension values (A) and the 52 167 skin elastic recovery values (B) of the skin area treated between the cream formulations and propylene glycol solutions containing the extract at various concentrations, commercial product and the untreated area at before and after application for 1, 2,3 and 4 weeks Comparison of the skin roughness of skin area treated with the 171 53 various formulations at before, after applications and after 1 week of the wash-out period
- Comparison of the skin hydration of the skin area treated 54 with various formulations before application, after application and after 1 week of the wash-out period
- 55 Comparison of the skin melanin index of the various 175 formulations before application, after applications and after 1 week of the wash-out period
- C1 Linear graph plotting between time (x-axis) and remaining 223 gallic acid (μ g/ml) or [A]_t (y-axis) for determination of degradation rate constant of zero order
- Linear graph plotting between time (x-axis) and remaining C2gallic acid (µg/ml) or (y-axis) for determination of degradation rate constant of first order

173

C3 Linear graph plotting between time (x-axis) and a proportion
 224 remaining gallic acid (μg/ml) or 1/[A]t (y-axis) for
 determination of degradation rate constant of second order

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

CC ₅₀	chelating concentration at 50% activity
cm	centimeter
cm ²	square centimeter
DI	deformability index
DLS	dynamic light scattering
D-MEM	dulbecco's modified eagle's medium
DMSO	dimethyl sulfoxide
DPPH	1, 1-Diphenyl-2-picryhydracyl
EDTA	ethylenediaminetetraacetic acid
FBS	fetal bovine serum
g	gram
h	hour
HPLC	high performance liquid chromatography
IC ₅₀	tyrosinase inhibition concentration at 50% activity
IPC ₅₀	inhibition peroxidation concentration at 50% activity
kDa	kilodalton
kg	kilogram
MSIM	molar
mg	milligram
	milliliter hiang Mai University
mm	millimeter
MMP 5	matrix metalloproteinase

xxxvi

mV	millivolt
MW	molecular weight
nm	nanometer
OECD	Organisation for Economic Co-operation and Development
PBS	phosphate-buffered saline
РШ	primary irritation index
SC ₅₀	scavenging concentration at 50% activity
SD	standard deviation
SDS	sodium dodecyl sulfate
SEM	scanning electron microscope
SLS	sodium luaryl sulfate
SRB	sulphorodamine B
t ₅₀	half life
t ₉₀	shelf life
TEMED	N,N,N',N'-tetramethyl ethylenediamine
TFA	trifluoroacetic acid
Tween 20	polyoxyethylene sorbitan monolaurate
UV	ultraviolet
vs	versus
w/v	weight by volume
°CL	celcius degree
μg	microgram
μι σ	microliter S P E S E F V E O
μm Ο	micromiter