TABLE OF CONTENTS

	Page	
ACKNOWLEDGEMENTS	iii	
ABSTRACT (ENGLISH)	v	
ABSTRACT (THAI)	vii	
LIST OF TABLES	xiii	
LIST OF FIGURES	xvii	
ABBREVIATIONS AND SYMBOLS	xxiii	
CHAPTER 1 INTRODUCTION	d	
Research objectives	6	
CHAPTER 2 LITERATURE REVIEW	7	
2.1 Electronic properties of semiconductors	7	
2.1.1 Band structure	7	
2.1.2 Equilibrium carrier concentrations	20	
2.1.3 Light absorption	24	
2.1.4 Luminescence and light emission in solid	28	
2.1.5 Interband luminescence of direct gap materials	30	
2.1.6 Photoluminescence of direct gap materials	32	
2.1.7 Photoluminescence for low carrier densities	35	
2.2 Physics of solar cell	36	
2.2.1 Basic structures for photovoltaic action	39	

	2.2.2 PN-junction	43
	2.3 Dye-sensitized solar cells (DSSCs)	46
	2.3.1 Materials and structure of DSSCs	48
	2.3.2 The mechanism of the DSSCs	48
	2.4 J-V measurement	53
	2.5 Dielectric heating with microwave energy	54
	2.5.1 Dielectric heating	55
	2.5.2 Effect of the loss factor	58
	2.5.3 Penetration depth	58
	2.5.4 Microwave plasma	59
	2.5.5 RF and microwave discharge	60
	2.5.6 Microwave plasma source	62
	2.5.6 Generation of a plasma by microwave	63
	2.6 Properties and synthesis of cadmium sulfide (CdS)	69
	2.7 Properties and synthesis of cadmium telluride (CdTe)	76
	2.8 Properties and synthesis of zinc telluride (ZnTe)	77
	2.9 Properties and synthesis of zinc oxide (ZnO)	84
CH	APTER 3 EXPERIMENTAL PROCEDURE	85
	3.1 Chemical reagents and equipments	85
	3.1.1 Chemical reagents	85
	3.1.2 Equipments and instruments	86
	3.2 Synthesized methods	87
	3.2.1 Synthesis of CdS using microwave plasma	87
	2.2.2 Synthesis of CdTe using microways plagues	00
	5.2.2 Synthesis of Cure using inclowave plasma	00

х

	3.2.3 Synthesis of ZnTe using microwave plasma	89
	3.2.4 Synthesis of ZnO using microwave plasma	90
	3.2.5 Synthesis of ZnO using using sonochemical process	90
3.3 Cha	racterization	91
	3.3.1 X-ray diffraction (XRD)	91
	3.3.2 Scanning electron microscope (SEM) and energy	92
	dispersive X-ray analyser	
	3.3.3 Transmission electron microscope (TEM)	93
	3.3.4 Luminescence spectrometer	94
	3.3.5 UV-Vis-NIR spectrophotometer	95
	3.3.6 Raman spectrometer	96
	3.3.7 Solar simulator	97
CHAPTER 4 F	RESULTS AND DISCUSSION	98
4.1 CdS	synthesized by a microwave plasma technique	98
4.2 Cd7	Te synthesized by a microwave plasma technique	118
4.3 Zn7	e synthesized by a microwave plasma technique	130
4.4 Zn0) film on FTO for DSSCs synthesized by a microwave	143
plas	sma technique	
4.5 Cd7	Fe-GPE composited electrolyte on quasi solid-state	145
ZnC	D Based dye-sensitized solar cells	
4.6 Zn]	Fe-GPE composited electrolyte on quasi solid-state	148
opyright zno) Based dye-sensitized solar cells	
CHAPTER 5 C	CONCLUSIONS	152
REFERENCES		155 E

APPENDICES	168
APPENDIX A Analytical equipments	169
APPENDIX B Camera constants used for the indexing of SAED pattern	172
APPENDIX C Microwave induced plasma system	173
APPENDIX D International publications	174
CURRICULUM VITAE	187

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table

Page

4.1	Calculated lattice parameter of CdS from the experiment	101	
	(molar ratio of Cd:S=1:2, 100 min), comparing with		
	the JCPDS file (Reference code: 06-0314 [110] for CdS)		
4.2	Calculated lattice parameter of CdS from the experiment	102	
	(molar ratio of Cd:S=1:2, 120 min), comparing with		
	the JCPDS file (Reference code: 06-0314 [110] for CdS)		
4.3	Calculated lattice parameter of CdS from the experiment	103	
	(molar ratio of Cd:S=1:2, 140 min), comparing with		
	the JCPDS file (Reference code: 06-0314 [110] for CdS)		
4.4	The 2θ diffraction angles and intensities of the JCPDS no. 06-0314	104	
	and for the 1:2 molar ratio of Cd:S and 100 min product obtained		
	from the experiment and simulation.		
4.5	The 2θ diffraction angles and intensities of the JCPDS no. 06-0314	105	
	and for the 1:2 molar ratio of Cd:S and 120 min product obtained		
	from the experiment and simulation.		
4.6	The 20 diffraction angles and intensities of the JCPDS no. 06-0314	106	
	and for the 1:2 molar ratio of Cd:S and 140 min product obtained		
	from the experiment and simulation.		

4.7	Crystallinities percentage of 1:2 molar ratio for 100, 120, 140 min	107	
	and standard values.		
4.8	The crystallite size (D) of 1:2 molar ratio CdS for 100, 120	109	
	and 140 min products calculated from the scherrer's formula		
	and the full width at half maximum (FWHM) of the XRD spectra		
4.9	Ring diffraction pattern values of 1:2 molar ratio CdS produced	116	
	for 100 min, and the parameters of the JCPDS standard.		
4.10	Ring diffraction pattern values of 1:2 molar ratio CdS produced	117	
	for 120 min, and the parameters of the JCPDS standard.		
4.11	Calculated lattice parameter of CdTe from the experiment	120	
	(molar ratio of Cd:Te=1:1, 10 min), comparing with		
	the JCPDS file (Reference code: 15-0770 [110])		
4.12	Calculated lattice parameter of CdTe from the experiment	120	
	(molar ratio of Cd:Te=1:1, 20 min), comparing with		
	the JCPDS file (Reference code: 15-0770 [110])		
4.13	Calculated lattice parameter of CdTe from the experiment	121	
	(molar ratio of Cd:Te=1:1, 30 min), comparing with		
	the JCPDS file (Reference code: 15-0770 [110])		
4.14	The 2θ diffraction angles and intensities of the JCPDS no. 15-0770	121	
	of Cd:Te, 900W and 10 min product obtained from the experiment		
	and simulation.		
4.15	The 2θ diffraction angles and intensities of the JCPDS no. 15-0770	122	
	of Cd:Te, 900W and 20 min product obtained from the experiment		
	and simulation.		

xiv

4.16 The 20 diffraction angles and intensities of the JCPDS no. 15-0770 122 of Cd:Te, 900W and 30 min product obtained from the experiment and simulation. Crystallinities percentage of 1:1 molar ratio for 10, 20, 30 min 4.17 123 and standard values. 4.18 The crystallite size (D) of 1:2 molar ratio CdTe for 10, 20 123 and 30 min products calculated from the scherrer's formula and the full width at half maximum (FWHM) of the XRD spectra 4.19 Ring diffraction pattern values of 1:1 molar ratio CdTe produced 124 for 10 min, and the parameters of the JCPDS standard. 4.20 Ring diffraction pattern values of 1:1 molar ratio CdTe produced 125 for 30 min, and the parameters of the JCPDS standard. 4.21 Calculated lattice parameter of ZnTe from the experiment 132 (molar ratio of Zn:Te = 1:1, 600 watt.) comparing with the JCPDS file (15-0746) 4.22 Calculated lattice parameter of ZnTe from the experiment 132 (molar ratio of Zn:Te = 1:1, 900 watt.) comparing with the JCPDS file (15-0746) 4.23 The 20 diffraction angles and intensities of the JCPDS no. 15-0746 133 of Zn:Te, 600W for 30 min product obtained from the experiment and simulation. The 20 diffraction angles and intensities of the JCPDS no. 15-0746 of Zn:Te, 900W for 30 min product obtained from the experiment

- 4.25 The crystallite size (D) of 1:1 molar ratio ZnTe for 30 min products 134 calculated from the scherrer's formula and the full width at half maximum (FWHM) of the XRD spectra
- 4.26 Ring diffraction pattern values of ZnTe produced under the 1:1 137 molar ratio of Zn:Te, 600W and 30 min condition, and the parameters of the JCPDS standard.
- 4.27 Ring diffraction pattern values of ZnTe produced under the 1:1 138 molar ratio of Zn:Te, 900W and 30 min condition, and the parameters of the JCPDS standard.
 4.28 Voc, Jsc, *ff* and η for different wt% CdTe-GPE 147

150

4.29 Voc, Jsc, *ff* and η for different wt% ZnTe-GPE

LIST OF FIGURES

Figure

Page

2.1	Schematic band diagrams for the photoluminescence processes	13	
	in a direct gap material (left) and an indirect gap material (right)		
2.2	A simplified energy band diagram at T> 0 K for a direct band gap (E_g)	19	
2.3	The Fermi function at various temperatures	20	
2.4	Donor and acceptor levels in a semiconductor.	23	
2.5	Photon absorption in a direct band gap semiconductor for an incident	25	
	photon with energy $hv > E_g$		
2.6	Photon absorption in an indirect band gap semiconductor for a photon	27	
	with energy $hv < E_2 - E_1$ and a photon with energy $hv > E_2 - E_1$.		
	Energy and momentum in each case are conserved by the absorption		
	and emission of a phonon, respectively		
2.7	General scheme of luminescence in a solid	29	
2.8	The interband luminescence process in a direct gap semiconductor	31	
2.9	The processes occurring during photoluminescence	33	
	in a direct gap semiconductor after excitation at frequency ν_L		
2.10	A schematic of a simple conventional solar cell. Creation of	37	
	electron-hole pairs, e- and h+, respectively, is depicted		
2.11	The radiation spectrum for a black body at 5762 K, an AM0 spectrum	39	
	, and an AM1.5 global spectrum		

2.12	(a) Two semiconductors prior to contact, (b) the same two	41
	semiconductors during contact and (c) the same two	
	semiconductors after contact, in thermodynamic equilibrium.	
2.13	Equilibrium conditions in a solar cell: (a) energy bands;	45
	(b) electric field; and (c) charge density	
2.14	Operation mechanism of the dye sensitized electrochemical	47
	solar cell (DSSCs). D: Dye, O: Oxidant (e,g, I ₃)	
	, R: Reductant (e.g. I). (a) Wet-type DSSC with redox couple	
	in the liquid electrolyte (b) Solid state DSSCs with a p-type	
	semiconductor to replace the electrolyte containing	
	the redox couple.	
2.15	The DSSCs mechanism for generating electric power.	50
2.16	The current density-voltage curve. In this, point of maximum	53
	output power is found.	
2.17	(a) Dipole rotations of molecule occurs in materials containing	55
	polar molecules having an electrical dipole moment, which	
	will align molecules in a microwave electromagnetic field.	
	(b) Molecular rotation for the generation of energy in the form	
	of microwave electromagnetic radiation.	
2.18	Power flow when an electromagnetic wave strikes a dielectric material	58
	with high loss factor	
2.19	Schematic diagram of Cober microwave system used in the synthesis	65
	of binary nitride materials by exposing in a nitrogen plasma.	

2.20	Schematic diagram of (a) the apparatus for plasma modification	67
	by making use of an atmospheric microwave plasma torch, and	
	(b) the construction of the plasma nozzles.	
2.21	A schematic diagram of microwave plasma equipment.	68
2.22	The properties and structure of CdS (wurtzite)	69
2.23	The properties and structure of CdTe (cubic)	76
2.24	The properties and structure of ZnTe (cubic)	78
2.25	The ZnTe applications (a) semiconductor diodes, (b) electro-optics,	79
	(c) solar cells, (d) assorted discrete transistors and	
	(e) light-emitting diodes (LED).	
2.26	The properties and structure of ZnO (wurtzite)	84
3.1	Schematic diagram of microwave induced plasma system.	88
3.2	X-ray diffractometer.	92
3.3	Scanning electron microscope.	93
3.4	Transmission electron microscope.	94
3.5	Luminescence spectrometer.	95
3.6	UV-Vis-NIR Spectrophotometer.	95
3 7	Raman spectrometer	97
3.8	Solar simulator	97
J.0	(a) XPD patterns of CdS synthesized using power 000W	08
4.1	(a) ARD patterns of CdS synthesized using power 900 w	90
iak	and different Cd:S molar ratios for 20 min	iversit
4.1	(b) XRD patterns of CdS synthesized using power 900W,	9921511
	1:2 molar ratio of Cd:S and different lengths of time for	
	heating by microwave plasma.	

4.2	Particles sizes of CdS synthesized using (a) different molar ratio	108
	at 20 min (b) different lengths of time for heating at 1:2 molar ratio.	
4.3	Raman spectra of 1:2 molar ratio CdS synthesized for 120 min	110
	and 140 min.	
4.4	SEM image and clusters sizes of 1:2 molar ratio CdS product	111
	for 120 min	
4.5	SEM image and clusters sizes of 1:2 molar ratio CdS product	112
	for 140 min	
4.6	Photoluminescence of CdS produced under the 1:2 molar ratio	114
	of CdS condition	
4.7	The $(\alpha hv)^2$ versus hv plots of CdS synthesized by the solid state	115
	microwave-plasma for 120 and 140 min	
4.8	TEM image (a), and SAED pattern(b) of 1:2 molar ratio CdS produced	116
	for 100 min.	
4.9	TEM image (a), and SAED pattern(b) of 1:2 molar ratio CdS produced	117
	for 120 min.	
4.10	XRD patterns of CdTe synthesized using different 1:1(Cd:Te)	118
	molar ratios for 10, 20 and 30 min	
4.11	TEM images (a) and ED patterns (b) of CdTe synthesized	124
	via the 900W microwave plasma for 10 min.	
4.12	TEM images (a) and ED patterns (b) of CdTe synthesized	125
	via the 900W microwave plasma for 30 min.	
4.13	SEM image and clusters sizes of 1:1 molar ratio CdTe product	126
	for 10 min	

XX

4.14	SEM image and clusters sizes of 1:1 molar ratio CdTe product	126
	for 20 min	
4.15	SEM image and clusters sizes of 1:1 molar ratio CdTe product	127
	for 30 min	
4.16	Raman spectra of CdTe synthesized under microwave power at	128
	900 watt various the length of time for heating on 10, 20 and 30 min	
4.17	The $(\alpha h\nu)^2$ versus hv plots of CdTe synthesized under various of length	129
	of time on 10 and 30 min	
4.18	XRD patterns of ZnTe synthesized using different 1:1(Zn:Te)	131
	heating power for 300, 450, 600 and 900 W for 30 min.	
4.19	SEM image and clusters sizes of 600W and 1:1 molar ratio ZnTe	135
	product for 30 min at x20,000 (a) x50,000 (b)	
4.20	SEM image and clusters sizes of 900W and 1:1 molar ratio Zn:Te	136
	product for 30 min at x5,000 (a) x20,000 (b)	
4.21	SAED pattern of ZnTe produced under the 1:1 molar ratio of	137
	Zn:Te condition (a) 600 W (b) 900 W	
4.22	Photoluminescence of ZnTe produced under various of microwave	139
	power at 600 and 900 watt	
4.23	The $(\alpha h\nu)^2$ versus hv plots of ZnTe synthesized under various of	140
	microwave power at 600 and 900 watt	
4.24	Raman spectra of ZnTe synthesized under various of microwave	141
	power at 300, 450, 600 and 900 watt	
4.25	SEM images 600 W (a) 900 W (b) SAED patterns of ZnTe synthesized	142
	via the 900W microwave plasma for 30 min (c) simulation	

4.26	XRD patterns of (a) deposit ZnO thin film on FTO, (b) calcinations	143
	of porous Zn film to porous ZnO film, (c) FTO	
4.27	FE-SEM image of ZnO particles that deposited on FTO	144
4.28	The flow chart for preparation the p-CdTe gel polymer	145
	composite electrolyte	
4.29	A schematic diagram of the CdTe-GPE-DSSC	146
4.30	The simplified energy level diagram of the CdTe-GPE-DSSC	146
4.31	J-V characteristic curves of DSSCs for different	147
	wt % CdTe-GPE electrolyte.	
4.32	The flow chart for preparation the p-ZnTe-GPE	148
4.33	A schematic diagram of the ZnTe-GPE-DSSC	149
4.34	The simplified energy level diagram of the ZnTe-GPE-DSSC	149
4.35	J-V characteristic curves of DSSCs for different wt % CdTe-GPE	150

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

Physical constants

ADDKEV		NS AND SYMBU	11.5
al constants			
Avogadro constant, N_A		6.022×10^{23}	mol ⁻¹
Boltzmann constant, k		1.3806 x 10 ⁻²³	J K ⁻¹
Elementary charge, e	<u>(</u> 9	1.602 x 10 ⁻¹⁹	С
Electron mass, me	7=	9.109 x 10 ⁻¹⁹	kg
Planck constant, h	G =)	6.626 x 10 ⁻³⁴	Js
Vacuum permittivity, ε_0	_₹	8.854 x 10 ⁻¹²	F m ⁻¹
Velocity of light, c		2.998 x 10 ⁸	m s ⁻¹
1 electron volt, 1eV	=	1.602 x 10 ⁻¹⁹	J

Physical variables

v	= 0	Frequency
ω	=	Angular frequency
ω _c	=	Plasma frequency
λ	=	Wavelength
k	-	Wave vector
m*	7	Effective mass
m _e *	7	Electron effective mass
m_h*	=	Hole effective mass
ff	ŧ	Fill factor C C C C C C C C C C C C C C C C C C C
η	=	Energy conversion efficiency

J_{sc}	=	Short circuit current density
V_{oc}	318	Open circuit voltage
P _{in}	=	Incident light power
P _{max}	₹	Maximum power output
V _{max}	=	Maximum photovoltage
Eg	=	Energy band gap
E _F	=	Fermi energy
g _c (E)	=	Density of states in the conduction band
g _v (E)	= 6	Density of states in the valence band
n ₀		Electron concentrations
p_0	=	Hole concentrations
N _C	=	Conduction-band effective densities of state
N_V	=	Valence-band effective densities of state
n_i	=	Intrinsic carrier concentration
Ei	= 6	Fermi energy in an intrinsic semiconductor
χ	=	Electron affinity
\$	= [Work function
V _{bi}	=	Built-in potential
W _D	=	Depletion width
ε'	31	Relative permittivity or dielectric constant
θ_{A}	=	Mean power transfer per electron
δ		Loss angle
E _{rms}	4	Root-mean-square electric field

xxiv

Abbreviations

A° =	Angstrom
PL =	Photoluminescence Spectrometry
SEM =	Scanning Electron Microscopy
TEM =	Transmission Electron Microscopy
XRD =	X-Ray Diffraction Spectrometer
JCPDS=	The Joint Committee for Powder
	Diffraction Standards
GPE =	Gel Polymer Electrolyte
DSSCs=	Dye sensitized solar cells
HOMO=	Highest occupied molecular orbital
LUMO=	Lowest unoccupied molecular orbita
AM =	Air mass
LHE =	Light harvesting efficiency

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved