	TABLE OF CONTENTS	
	INDEE OF CONTENTS	
		Page
ACKNOWL	EDGEMENT	S iii
ABSTRACT	C (ENGLISH)	v
ABSTRACT	C (THAI)	vii
LIST OF TA	ABLES	xii
LIST OF FI	GURES	xiv
CHAPTER	1 INTRODUCTION	91
	1.1 Introduction	1
	1.2 Corundum	2
	1.3 Ion implantation modification of corundum	4
	1.4 PIXE for corundum analysis	5
	1.5 Ionoluminescence (IL) for corundum analysis	8
	1.6 Objective of this works	9
CHAPTER 2	2 BASIC PRINCIPLE	
	2.1 Corundum	Jniv ^a r
	2.1.1 Corundum and their coloration	11
	2.1.2 The corundum deposit	16

2.1.3 Color enhancement of corundum	18
2.2 Ion implantation for gemstone modification	19
2.2.1 Basic knowledge of ion-solid interaction	19
2.2.2 Ion implanter	23
2.3 Ion beam analysis (IBA)	28
2.3.1 Particle-induced X-ray emission (PIXE)	28
2.3.2 Ionoluminescence (IL)	31
2.3.3 Data accumulation, acquisition and analysis of	34
PIXE technique	
2.3.4 Data accumulation, acquisition of IL technique	35
CHAPTER 3 EXPERIMENTAL PROCEDURES	38
3.1 Sample preparation	41
3.1.1 Glyptography	41
3.1.2 Elimination of silicate and calcite	42
3.1.3 Elimination of contamination and cleaning	42
3.2 Photo taking	43
3.3 UV-Vis-NIR spectroscopy	44
3.4 Ion beam analysis	46
3.4.1 Particle-induced X-ray emission (PIXE) analysis	46
3.4.2 Ionoluminescence (IL) analysis	49
3.5 Ion beam enhancement	50
3.5.1 Nitrogen and argon ions beam modification	51
2.5.2 Orwan ion has modification	52

CHAPTER 4 RESULTS AND DISCUSSIONS	55
4.1 Fingerprint of deposit by PIXE analysis	55
4.2 Fingerprint of deposit by IL analysis	60
4.3 UV-Vis-NIR spectroscopy analysis	62
4.4 Corundum's deposit investigation	64
4.5 Ion beam modification	70
4.5.1 Nitrogen ion implantation	71
4.5.2 Argon ion implantation	79
4.5.3 Oxygen ion implantation	88
CHAPTER 5. CONCLUSIONS	
CHAPTER 5 CONCLUSIONS	102
5.1 Deposit characterization	102
5.2 Ion beam enhancement	104
5.3 Suggestions for further study	106
REFERENCES	107
APPENDICES	115
APPENDIX A Spectroscopic Notation	116
APPENDIX B Trajectory Simulation in Al ₂ O ₃	117
APPENDIX C Si(Li) X-ray Detector	118
APPENDIX D Converting .SPE File to .PIX File	119
APPENDIX E Fiber Optic Light Guide	121
APPENDIX F Ocean Optics S2000 Spectrometer	122
CURRICULUM VITAE TS LE C	123

CURRICULUM VITAE

Table		Pa
1.1	Top ten of Thai exports in 2011	33
3.1	Details of natural corundum being investigated by the PIXE technique	
3.2	Comparison between the measured values and the preferred average	
0.2	values by Pearce <i>et al.</i> (1997) of element concentration in the standard	
	sample (SRM610)	
4.1	The concentrations of Ti, V, Cr, Fe and Ga in each type of corundum,	
	in parts per million (ppm) by weight as measured by PIXE technique	
4.2	The color tone of Africa sapphire and the ratio of Fe/Ti concentrations	
4.3	The Fe/Ti concentration ratios of pre- and post- implantation of Y5	¥ /
4.4	The Fe/Ti concentration ratios of pre- and post- implantation of BG4	
4.5	The Fe/Ti concentration ratios of pre- and post- implantation of G11	
4.6	The Fe/Ti concentration ratios of pre- and post- implantation of B5	
4.7	The Fe/Ti concentration ratios of pre- and post- implantation of BG3	
4.8	The Fe/Ti and Fe/Cr concentration ratios of pre- and post-	
	implantation of R4	
4.9	The Fe/Ti concentration ratios of pre- and post- implantation of B8	
4.10	The Fe/Ti concentration ratios of pre- and post- implantation of DB8	ÍV

4.12	The Fe/Ti and Fe/Cr concentration ratios of pre- and post-	97
	implantation of R9	
В	The target depth parameters in Al ₂ O ₃	117
С	The parameters of Si(Li) X-ray detector	118
Е	The information of the fiber optic light guide	121
F	The \$2000 spectrometer information of Ocean Optics. Inc	122

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

Figu	re	Page
2.1	The red color appearance of corundum is happened from the	3 13
	substitution of Al ³⁺ by Cr ³⁺	
2.2	Tanabe-Sugano relation for 3d-orbital electrons	13
2.3	The energy level diagram, transition, and color	14
	absorption/fluorescence mechanisms in a ruby	
2.4	The sub-crust activity of the earth	17
2.5	The predominant of basaltic and metamorphic deposits of corundum	17
2.6	The incident ion induces several phenomena in the matter	20
2.7	The different types of ion track in GaN	22
2.8	(a) The photo of Varian Ion Implanter of Chiang Mai University	24
2.8	(b) The schematic diagram of Varian Ion Implanter	24
2.9	The schematic diagram of the focusing, scanning, and deflecting	25
	systems of the implanter	
2.10	The sample holder at the end of beamline	26
2.11	The diagram of the O ⁻ ions irradiation system	28
2.12	The 1.7 MV tandem "Tandetron" accelerator of Chiang Mai	29

2.13	The diagram of the characteristic X-ray production process	30
2.14	The diagram of the ionoluminescence process	32
2.15	The equipment set up inside the analysis chamber	35
2.16	The diagram of IL accumulation system	37
3.1	The overall process diagram	38
3.2	A photo of corundum used in this study	39
3.3	The ultrasonic bath (a) used for cleaning the particle on the sample	43
	surface, and the sample is soaked in the ethyl alcohol (b)	
3.4	Motic SMZ-168 Series of stereomicroscopes used in this study	44
3.5	Hitachi spectrophotometer U-4100: outside (a) and inside (b)	45
3.6	The holding of sample for UV-Vis-NIR spectroscopic measurement	46
3.7	Control system of the 1.7 MV tandem accelerator (a) and the data	47
	accumulation and acquisition system (b)	
3.8	The PIXE spectrum of a standard sample: NISM SRM610	48
3.9	Data accumulation system of the IL technique	50
3.10	The sample holder used for Ar^+ and N_2^+ ion beam irradiations	51
3.11	The fan-like sample holder for oxygen ion modification	53
3.12	Ion beam fluence estimation	54
4.1	PIXE spectra of all corundum investigated in this study	57
4.2	The five sapphires which were cut at five different color zone of a	60
	bigger piece of African sapphire: (a) from dark-blue zone, (b) from	
	yellow green zone, (c) from light-green zone, (d) from green zone, and	
	(e) from green blue zone	

XV

4.3	IL spectra of corundum in regions 200–600 nm (a) and 600–800 nm (b)	61
4.4	UV-Vis-NIR spectra of blue sapphire from Sri Lanka (light blue	63
	curve), ruby from Bo rai (red curve), blue-green sapphire from Bang	
	Kha Cha (green curve), dark-blue sapphire from Pailin (navy blue	
	curve), and yellow sapphire from Montana (yellow curve)	
4.5	The relation between the ratio of Cr/Ga and Fe/Ti concentrations	65
4.6	The relation between the Cr and Fe concentrations $(a) - (b)$	65
4.7	The relation between the Ti and Fe concentrations $(a) - (b)$	67
4.8	The relation between the Ga and Fe concentrations	69
4.9	The relation between the ratio of Ti/V and Fe/Ga concentrations	69
4.10	The changing from yellow to green-blue color of yellow sapphire (Y5)	72
	(a) – (b), UV-Vis-NIR spectrum (c), PIXE spectrum (d), and the	
	relation between the Ti and Fe concentrations of the before and after	
	implantation (e)	
4.11	The brighter green tone of blue-green sapphire $(BG4)(a) - (b)$, UV-	75
	Vis-NIR spectrum (c), PIXE spectrum (d), and the relation between	
	the ratio of Cr/Ga and Fe/Ti concentrations of the before and after	
	implantation (e)	
4.12	The deep blue saturation of blue sapphire (B7) (a) – (b), and UV-Vis-	76
	NIR spectrum of the before and after implantation (c)	
4.13	The clarity enhancement of dull white sapphire (G6) (a) – (b), UV-	78
	Vis-NIR spectrum (c), and the relation between the ratio of Cr/Ga and	
	Fe/Ti concentrations of the before and after implantation (d)	

- 4.14 The clarity enhancement of dull white sapphire (G11) (a) (b), UV80 Vis-NIR spectrum (c), PIXE spectrum (d), and the relation between the ratio of Cr/Ga and Fe/Ti concentrations of the before and after implantation (e)
- 4.15 The discoloration of blue sapphire (B5) (a) (b), UV-Vis-NIR spectrum (c), PIXE spectrum (d), and the relation between the ratio of Cr/Ga and Fe/Ti concentrations of the before and after implantation (e)
- 4.16 The discoloration of blue-green sapphire (BG3) (a) (b), UV-Vis-NIR spectrum (c), PIXE spectrum (d), and the relation between the ratio of Cr/Ga and Fe/Ti concentrations of the before and after implantation (e)
- 4.17 The more violet tint of ruby (R4) (a) (b), UV-Vis-NIR spectrum (c),PIXE spectrum (d), and the relation between the ratio of Cr/Ga andFe/Ti concentrations of the before and after implantation (e)
- 4.18 The less brownish tint of blue sapphire (B8) (a) (b), UV-Vis-NIR spectrum (c), PIXE spectrum (d), and the relation plot between the ratio of Cr/Ga and Fe/Ti concentrations of the before and after implantation (e)
- 4.19 The reduction of green color in blue green sapphire (BG8) (a) (b) of the before and after implantation
- 4.20 The lightener bluish tone of dark-blue sapphire (DB8) (a) (b), UV-Vis-NIR spectrum (c), PIXE spectrum (d), and the relation between the ratio of Cr/Ga and Fe/Ti concentrations of the before and after implantation (e)

82

83

86

89

91

4.21 The more vivid of yellowish zone of yellow sapphire (Y9)(a) - (b), 94 UV-Vis-NIR spectrum (c), PIXE spectrum (d), and the relation between the ratio of Cr/Ga and Fe/Ti concentrations of the before and after implantation (e) 4.22 The implanted effect for ruby (R9)(a) - (b), UV-Vis-NIR spectrum 97 (c), PIXE spectrum (d), and the relation between the ratio of Cr/Ga and Fe/Ti concentrations of the before and after implantation (e) The pink sapphire (Moz7) before implantation (a) has more reddish 98 4.23 tone after implantation (b) 4.24 The pink sapphire (PS12) before implantation (a) has less violet tint 99 after implantation (b) 4.25 The dull white sapphire (G13) before implantation (a) has more pale 99 pink tint after implantation (b) 100 4.26 The change in appearance of the faceted ruby after being consecutively irradiated, with 23 keV O ions beam, at different period of time in hr:min:sec. d-1 The .SPE spectrum file 119 The .PIX spectrum file 120 d-2

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงไหม่</mark> Copyright[©] by Chiang Mai University All rights reserved