TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	iii
ABSTRACT (in English)	iv
ABSTRACT (in Thai)	vii
TABLE OF CONTENTS	x
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
ABBREVIATIONS AND SYMBOLS	xvii
CHAPTER 1 INTRODUCTION	1
1.1 Statement and significant of the problem	1
1.2 Literature Review	4
1.2.1 The role of insulin in the brain	4
1.2.2 The role of high-fat diet consumption on insulin resistance	8
1.2.3 The relationship between high-fat diet-induced insulin resistance	and
oxidative stress in the brain	
1.2.4 The role of eNOS in the brain1.2.5 The role of iNOS in the brain	15 16
1.2.6 The role of nNOS in the brain	16

1.2.7 The relationship between nNOS function and insulin activity in the brain	19
1.3 Objectives of this study	20
1.4 Hypothesis of this study	20
CHAPTER 2 MATERIALS AND METHODS	21
2.1 Animal preparation and study design	21
2.2 Measurement of plasma glucose concentration	25
2.3 Measurement of plasma insulin concentration	25
2.4 Measurement of plasma FFA concentration	26
2.5 Measurement of plasma TG concentration	27
2.6 Peripheral insulin resistance detection	28
2.7 Hippocampal morphological analysis	28
2.8 nNOS immunohistochemical analysis	29
2.9 Brain homogenate preparation	33
2.10 Protein concentration assay in brain homogenate	33
2.11 Determination of antioxidant level in brain homogenate	34
2.12 Determination of oxidant level in brain homogenate	35
2.13 Statistical analysis	37
CHAPTER 3 RESULTS	38
3.1 The peripheral insulin resistance was developed by long-term HFD	
consumption for 12 weeks	38
3.2 The 12-week HFD consumption did not change structure and number	
of hippocampal CA1 neuron	40
3.3 The nNOS expression in hippocampal CA1 regions was reduced	
following 12 weeks of HFD consumption	42 e

3.4 The 12 weeks of HFD consumption increased brain oxidative stress	44
3.5 The relationship among the peripheral insulin resistance, the hippocampal	
nNOS expression, and the brain oxidative stress	46
CHAPTER 4 DISCUSSION AND CONCLUSIONS	48
REFERENCES	54
APPENDICES	72
Appendix A	73
Appendix B	75
CURRICULUM VITAE	76

<mark>ລິບສິກສົນหາວົກຍາລັຍເຮີຍວໃหນ່</mark> Copyright[©] by Chiang Mai University All rights reserved

xiii

LIST OF TABLES

Table	Page
2-1 Composition of normal diet (ND)	22
2-2 Composition of high-fat diet (HFD)	22
3-1 The metabolic parameters between dietary groups at baseline	39
3-2 The metabolic parameters between dietary groups at week 12	40
3-3 Correlation among peripheral insulin resistance, hippocampal nNOS	
expression, and brain oxidative stress in rats that received normal diet or	
high-fat diet for 12 weeks	47

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

	LIST OF FIGURES	
Fig	ure	Page
1.1	Schematic illustration of insulin receptor structure including	
	α - and β -subunit	5
1-2	Schematic illustration of major intracellular signaling of insulin action	
	both IRS-dependent pathway (PI3K/Akt cascade) and Shc-dependent	
	pathway (classical MAPK cascade)	77
1-3	Schematic illustration of the significant role of high-fat diet consumption	
	on progressive response from healthy euglycemic state to unhealthy	
	diabetic state	9
1-4	Schematic illustration of basic concepts of brain oxidative stress	12
1-5	Schematic illustration of proposed mechanism of oxidative stress	
	-related insulin resistance	13
1-6	Schematic illustration of proposed mechanism of insulin resistance	
	-mediated oxidative stress via AGEs action	14

1-7	The schematic illustration of the metabolic pathway of NO formation	
	through nNOS activity	17
1-8	The schematic illustration of the significant role of nNOS-derived NO	
	function both physiological and pathophysiological condition	18
1-9	The schematic illustration of the significant role of insulin-mediated	
	PI3K/Akt cascade in glucose-inhibited (GI) neuron of ventromedial	
	hypothalamus (VMH) on nNOS-derived NO activity	19
2-1	Schematic representation of the summarized experimental protocol	24
2-2	Schematic representation for the estimation of insulin concentration	
	in the samples using rat/mouse insulin ELISA kit	26
2-3	Schematic representation for nNOS immunohistochemical method	31
2-4	Schematic representation for slide preparation	32
2-5	Schematic representation for protein quantification	34
2-6	Schematic representation for determination of antioxidant level	35
2-7	Schematic representation for determination of oxidant level	37
3-1	The effect of high-fat diet feeding for 12 weeks on structure and number	
	of the hippocampal neuron	41

43

45

53

3-2 The effect of high-fat diet feeding for 12 weeks on the nNOS expression

in CA1 regions of hippocampus

3-3 The effect of high-fat diet feeding for 12 weeks on the oxidative stress

in brain

4-1 The proposed mechanism of high-fat diet (HFD) feeding for 12 weeks

on the reduction of nNOS expression in the hippocampal CA1 regions

through peripheral insulin resistance or brain oxidative stress

<mark>ลิขสิทธิ์มหาวิทยาลัยเชียงใหเ</mark> Copyright[©] by Chiang Mai University All rights reserved

xvii

ABBREVIATIONS AND SYMBOLS

percent of total energy

degree Celsius

microgram

microliter

micrometer

micromolar

μg

%E

Ĉ

,

μl

μm

 μM

4-AAP

Αβ

4-aminoantipyrine

amyloid β

Acyl-CoA acetyl-coenzyme A

ACOD

acyl-CoA oxidase

ACS

AD

AGEs

Akt

AMP

acyl-CoA synthase

Alzheimer's disease

advanced glycation end-products

serine/threonine protein kinase

adenosine 5' monophosphate

xviii

Akt	serine/threonine protein kinase
AMP	adenosine 5' monophosphate
АМРА	α -amino-3-hydroxy-5-methylisoxazole-4-propionic acid
АТР	adenosine 5' triphosphate
BBB	blood brain barrier
внт	butyrated hydroxytoluene
BMI	body mass index
BSA	bovine serum albumin
BW	body weight
Ca ²⁺	calcium
CaM	calmodulin
CAT	catalase
СВВ	Coomassie Brilliant Blue
CNS	central nervous system
CO ₂	carbondioxide
CoA	coenzyme A
Da	dalton
DAP	dihydroxyacetone phosphate

dl	deciliter
DTNB	5, 5'-dithiobis (2-nitrobenzoic acid)
EDTA	ethylene diamine tetraacetic acid
EGTA	ethylene glycol tetraacetic acid
eNOS	endothelial nitric oxide synthase
Fe	iron
FFA	free fatty acid
g	gram
GE neuron	glucose-excited neuron
GI neuron	glucose-inhibited neuron
GK	glycerolkinase
GLIA	glial cell
GLUT	glucose transporter
GOD	glucose oxidase
GPO	glycerol-3-P-oxidase
GPx	glutathione peroxidase
Grb2	growth factor receptor-bound protein 2
GSH 5	reduced glutathione

H&E	hematoxylin and eosin
H ₂ O ₂	hydrogen peroxide
H ₃ PO ₄	phosphoric acid
HDL	high-density lipoprotein
HFD	high-fat diet
HFS	high-fat, high-sucrose
НОМА	homeostasis model assessment
HPLC	high performance liquid chromatography
HRP	horseradish peroxidase
IDDM	insulin-dependent diabetic mellitus
IL-6	interleukin-6
iNOS	inducible nitric oxide synthase
IRS	insulin receptor substrate
JNK	c-Jun N-terminal kinase
kcal	kilocalories
kDa	kilodalton hiang Mai University
KH ₂ PO ₄	potassium dihydrogen phosphate
L-NAME	N^{ω} -nitro-L-arginine methyl ester

LTD	long term depression
LTP	long term potentiation
МАРК	mitogen-activated protein kinase
MDA	malondialdehyde
МЕНА	3-methyl-N-ethyl-N-(β-hydrooxyethyl)-aniline
mg	milligram
ml	milliliter
mm	millimeter
mM	millimolar
mRNA	messenger RNA
NADPH	reduced nicotinamide adenine dinucleotide phosphate
NaCl	Sodium chloride
NaF	Sodium fluoride
ND	normal diet
NEFA	non-esterified fatty acid
NF-ĸB	nuclear factor-kappa B
ng	nanogram
NGS	normal goat serum

xxii

N-GSN	non-glucose-sensing neuron
nm	nanometer
nM	nanomolar
nNOS	neuronal nitric oxide synthase
NO	nitric oxide
NOS	nitric oxide synthase
NOS-1	neuronal nitric oxide synthase
NOS-2	inducible nitric oxide synthase
NOS-3	endothelial nitric oxide synthase
NP	nonyl phenoxypolyethoxylethanol
NTS	nucleus tractus solitarii
O_2	superoxide anion
ONOO	peroxynitrite
PD	Parkinson's disease
PDK1	3-phosphoinositide dependent protein kinase-1
РІЗК	phosphoinositide-3 kinase
PIP ₂	phosphatidylinositol 4,5-bisphosphate
PIP ₃	phosphatidylinositol 3,4,5-triphosphate

xxiii

РКВ	protein kinase B
РКС	protein kinase C
POD	peroxidase
PPi	pyrophosphoric acid
PNS	peripheral nervous system
РТВ	phosphotyrosine-binding
PTEN	phosphatase and tensin homolog deleted on chromosome 10
r	Correlation coefficient
RMT	receptor-mediated transcytosis
RNS	reactive nitrogen species
ROS	reactive oxygen species
rpm	rounds per minute
Ser	serine residue
Ser/Thr	serine/threonine
sGC	soluble guanylate cyclase
SH	sulfhydryl Chiang Mai University
SH2	Src homology 2
Shc	SH2-domain containing protein

xxiv

SOD	superoxide dismutase
SOS	Son of sevenless homolog
STZ	streptozotocin
ТВА	thiobarbituric acid
TBARS	thiobarbituric acid reactive substances
ТСА	trichloroacetic acid
ТЕР	1, 1, 3, 3-tetramethoxypropane
TG	triglyceride
TMB	3, 3', 5, 5'-tetramethylbenzidine
TNB	5-thio-2-nitrobenzoic acid
TNF-α	tumor necrosis factor-alpha
WKY	Wistar-Kyoto
VF	visceral fat
VMH	ventromedial hypothalamus

ลปสทธมหาวทยาลยเชยงเหม Copyright[©] by Chiang Mai University All rights reserved