TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT IN THAI	iv
ABSTRACT IN ENGLISH	vi
TABLE OF CONTENTS	viii
LIST OF TABLES	x
LIST OF FIGURES	xi
CHAPTER 1 INTRODUCTION	1
1.1 Research Objective	2
1.2 Study Scope	2
1.3 Seismic Data Set from Mae Sot	3
1.3.1 Study Area	5
1.3.2 Morphology and Geology of Mae Sot Basin	7
1.4 GPR data set from Wat Pan Sao	9
1.4.1 Study Area	12
1.5 Literature Review	13
CHAPTER 2 NOISE SUPPRESSION THEORY	15
2.1 F-x prediction filtering	15
2.2 Median filtering	16
2.3 Singular value decomposition filtering	19
CHAPTER 3 NOISE SUPPRESSION IN REAL DATA APPLICATION	24
3.1 Seismic data sets	24

viii

3.1.2 Tested data set 2: CDP gather (#1072)	
3.1.3 Tested data set 3: NMO corrected CDP supergath	er
(#1072)	
3.1.4 Tested data set 4: Stacked section	
3.2 GPR data set	
3.2.1 Tested data set 5: GPR section	
3.3 Seismic data improvement using SVD filter	
CHAPTER 4 SEISMIC SECTION CORRELATION WITH BOB	REHOLE
LOGGING	
4.1 CDP 1072	
4.2 CDP 1691	
CHAPTER 5 DISCUSSION AND CONCLUSIONS	
5.1 Disscussion	
5.2 Advantage and disadvantage of each filtering	
5.3 Conclusions	
REFERENCES	
APPENDIX MATHEMATICA SOURCE CODE	

ix

LIST OF TABLES

Table		Page
1-1	Parameters of seismic data acquisition	5
1-2	Parameters of GPR data acquisition	11
3-1	Processing step (A) and parameters of seismic data	26
3-2	Processing step and parameters of GPR data.	41
3-3	Processing steps (B) and parameters of seismic data.	46

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University AII rights reserved

Х

LIST OF FIGURES

Fi	gure		Page
1	l-1	An example of a raw shot gather.	4
]	1-2	The seismic surveys map in Mae Sot district. The red line is MSO-	
		0450 seismic line, the black dots are location of wells MS-184 and	
		MS-190.	6
1	1-3	The gravity anomaly of Mae Sot Basin at Bann Huai Kalok, (A)	
		northern sub-basin, (B) southern sub-basin (Suwannathong and	
		Khummongkol, 2007).	8
1	1-4	The sample excavation at the site with layers labeled at Wat Pan Sao.	10
1	1-5	An example of GPR section from study area Wat Pan Seo study area	
		after time-zero correction and DC remover.	11
1	1-6	Map of the data acquisition area at Wat Pan Sao. The green box	
		shows the coordinates in the study work field (Modified from Google	
		Inc, 2013).	12
2	2-1	Process flowchart for the f-x prediction filtering (Modified Harrison,	
		1990).	16
2	2-2	The calculating the median value of an amplitude value neighborhood	
		(modified from Fisher et al., 2013). filter is used in the input sequence	
		(From Stewart, 1985).	18

xi

2-3 A flat event is contaminated with noise and the reformation by p = q = 1 (from Signal Analysis and Imaging Group Department of Physics, University of Alberta, Available: http://saig.physics.ualberta.ca/s/sites/default/files/chapter6.pdf. 2013, 21 March 16).

2-4

The singular value spectrum graph was an abrupt change within the singular values for the data in Figure 2-*3* (from Signal Analysis and Imaging Group Department of Physics, University of Alberta, Available: http://saig.physics.ualberta.ca/s/sites/default/files/chapter6. pdf. 2013, March 16).

21

2-5	Process flowchart for the SVD filter.	23
3-1	Flowchart of seismic processing.	25
3-2	(left) The f-k filter of 0-500 m/s fan shape, (middle) before f-k filter	
	and (right) after f-k filter.	27
3-3	(left) The f-k filter of 0-2500 m/s fan shape, (middle) before f-k filter	
	and (right) after f-k filter	27
3-4	Singular value spectrum of a shot gather record number 533.	28
3-5	(a) A raw shot gather (b) A shot gather with SVD filter using $p=1$ to	
	q=4. (c) A shot gather with SVD filter using $p=4$ to $q=11$. (d) A shot	
	gather with SVD filter using $p=10$ to $q=31$.	29

3-6 The comparison result of (a) SVD filter with p=10 to q=31, (b) f-x

prediction filter with filter length of 4 traces and design windows of 15 traces, (c) 2-D median filter with window length of 2 traces and 3 samples and (d) f-k filter of 0-500 m/s fan shape.

30

32

33

- 3-7 Singular value spectrum of a CDP gather number 1072. 31
- 3-8 (a) A raw CDP gather (b) A CDP gather with SVD filter using p=1 to
 q=3. (c) A CDP gather with SVD filter using p=3 to q=20. (d) A CDP gather with SVD filter using p=10 to q=20.
- 3-9 The comparison result of (a) SVD filter with p=3 to q=20, (b) f-x prediction filter with filter length of 4 traces and design windows of 9 traces, (c) 2-D median filter with window length of 2 traces and 3 samples and (d) f-k filter of 0-500 m/s fan shape.
- 3-10 Singular value spectrum of a CDP supergather record number 1072.
 34
 3-11 (a) A raw NMO corrected CDP supergather. (b) A NMO corrected
 CDP supergather with SVD filter using *p*=1 to *q*=7. (c) A NMO corrected CDP supergather with SVD filter using *p*=7 to *q*=30. (d) A NMO corrected CDP supergather with SVD filter using *p*=30 to *q*=91.
- 3-12 The comparison result of (a) SVD filter with *p*=7 to *q*=30, (b) f-x prediction filter with filter length of 4 traces and design windows of 48 traces, (c) 2-D median filter with window length of 5 traces and 3 samples and (d) f-k filter of 0-2500 m/s fan shape.
 - 3-13 Singular value spectrum of the final stack section with residual static 37

xiii

correction.

3-14 (a) The final stack section with residual static correction. (b) The final stack section with residual static correction with SVD filter using p=1to q=15. (c) The final stack section with residual static correction with SVD filter using p=1 to q=25. (d) The final stack section with residual static correction with SVD filter using p=1 to q=40.

38

39

41

44

3-15 The comparison result of (a) SVD filter with p=1 to q=15, (b) f-x prediction filter with filter length of 4 traces and design windows of 48 traces, (c) 2-D median filter with window length of 5 traces and 3 samples.

3-16 The GPR data processing step. 40

- 3-17 The f-k filter zone selection of GPR data.
- 3-18 Singular value spectrum of GPR common offset gather. 42
- 3-19 (a) Amplitude correction GPR common offset gather. (b) Amplitude correction GPR common offset gather with SVD filter using p=1 to q=10. (c) Amplitude correction GPR common offset gather with SVD filter using p=1 to q=18. (d) Amplitude correction GPR common offset gather with SVD filter using p=1 to q=44.
- 3-20
- The comparison result of (a) SVD filter with p=1 to q=18, (b) f-x prediction filter with filter length of 4 traces and design windows of 48 traces, (c) 2-D median filter with window length of 3 traces and 5 samples and (d) f-k filter shape presented in Figure 3-17.

- 3-21 The improved seismic data processing flowchart.
- 3-22 (a) CDP gather before applying SVD filter, (b) CDP gather after applied with parameters of SVD filter used p=3 to q=20. (c) CDP gather after applied f-k filter of 0-500 m/s fan shape.
- 3-23 (a) NMO correction CDP supergather before applying f-k filter. (b)
 NMO correction CDP supergather after applied f-k filter of 0-2500
 m/s fan shape. (c) NMO correction CDP supergather after applied
 SVD filter with parameters of SVD filter used *p*=3 to *q*=30.
- 3-24 Velocity analysis, (left) the semblance analysis with the black line was velocity picking and (right) the common offset stacking.
- 3-25 The final stack section with residual static correction, (a) from basic processing steps (A) and (b) from processing steps (B).
- 4-1 Correlation at CDP 1072. Track 1: gamma ray (NGAM) was represented from 0.00 CPS to 300.00 CPS. Track 2: high resolution density (HRD) scale ranges in value from 1000.00 CPS to 5000.00 CPS. Track 3: neutron logs (NEUT) was displayed from 0.00 CPS to 500.00 CPS.
 - I-2 Correlation at CDP 1691. Track 1: gamma ray (NGAM) was represented from 0.00 CPS to 400.00 CPS. Track 2: high resolution density (HRD) scale ranges in value from 1000.00 CPS to 5000.00 CPS. Track 3: neutron logs (NEUT) was displayed from 0.00 CPS to 600.00 CPS.

45

49

50

51

51

53

54