Thesis Title Alkaloids Production and Proteomics Profiling

of In Vitro Culture of Stemona sp.

Author Miss Natthiya Chaichana

Degree Doctor of Philosophy (Biology)

Thesis Advisory Committee Asst. Prof. Dr. Srisulak Dheeranupattana Advisor

Assoc. Prof. Dr. Araya Jatisatienr Co-advisor

Asst. Prof. Dr. Sunanta Wangkarn Co-advisor

Lect. Dr. Pitchaya Mungkornasawakul Co-advisor

Lect. Dr. Padchanee Sangthong Co-advisor

ABSTRACT

An unidentified *Stemona* sp. was collected from Mae Moh District, Lampang, Thailand. The root extract of this species shows pharmaceutical activities. The alkaloids, 1',2'-didehydrostemofoline and stemofoline compounds, have the inhibitory activity against acetylcholinesterase, thus, indicating their being a potential therapeutic agent in the treatment of the initial symptoms of Alzheimer's disease. Moreover, stemofoline was able to significantly increase the sensitivity of the anticancer drugs to drug resistant

cancer cells. Therefore, plant tissue culture technique has been used as a possible raw material production method for *Stemona* alkaloids. For multiple shoot induction benzyladenine (BA) was found to be more effective than thidiazuron (TDZ). MS medium supplemented with 3 mg/L BA for 8 weeks gave 100 percentage shoot induction with 4.4 shoots per explant. For root induction, half-MS medium supplemented with 2 mg/L indolebutyric acid (IBA) was the best selection as it could provide 80 percentage of root induction and produce an average of 20.6 roots per explant after being transferred to the medium for 8 weeks.

The effects of elicitors and precursors on *Stemona* alkaloids production were investigated to determine the highest potentially. It was found that all the elicitors (methyl jasmonate, salicylic acid, chitosan and yeast extract) and precursors (sodium acetate and sucrose) under experiment could enhance the alkaloids production beyond the control's level. Treatment with chitosan elicitor at the concentration of 25 mg/L for 1 week resulted in the highest production of *Stemona* alkaloids. It was found that 1', 2'-didehydrostemofoline and stemofoline productions were 3.05 fold and 4.34 fold higher than these from the control, respectively. For precursor treatment, sodium acetate could induce 1',2'-didehydrostemofoline and stemofoline contents up to 2.35 fold and 2.04 fold of these from the control, respectively. The combination of chitosan and sodium acetate yielded less effective result than feeding individual elicitor or precursor in isolation.

The relationship between *Stemona* alkaloids production and protein profiling was investigated. The total proteins extraction of *Stemona* roots were performed for

comparison with the control and chitosan treatments. It was found that 15 out of 150 protein spots exhibited different expression between control and chitosan. The identified 15 protein spots were subjected to amino acid sequencing and two proteins appeared interesting for examining *Stemona* alkaloids biosynthesis. After treated with chitosan, glutathione S-transferase became down-regulated while heat shock protein up-regulated in relation to the control treatment. These proteins may play roles in alkaloids biosynthesis via plant defense metabolism from the presumptions that chitosan might weaken the detoxifying function of glutathione S-transferase, then, heat shock protein is probably produced to signal for tissue protection mechanism. Thus, *Stemona* alkaloids may be responsive to this stress.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ชื่อเรื่องวิทยานิพนธ์

การผลิตอัลกาลอยด์และการหาแบบแผนโปรตีนของ ต้นหนอนตายหยากที่เพาะเลี้ยงในสภาพปลอดเชื้อ

ผู้เขียน

นางสาว ณัตฐิยา ชัยชนะ

ปริญญา

วิทยาศาสตรคุษฎีบัณฑิต (ชีววิทยา)

คณะกรรมการที่ปรึกษาวิทยานิพนธ์

ผศ. คร. ศรีสุลักษณ์ ธีรานุพัฒนา อาจารย์ที่ปรึกษาหลัก รศ. คร. อารยา จาติเสถียร อาจารย์ที่ปรึกษาร่วม
ผศ. คร. สุนันทา วังกานต์ อาจารย์ที่ปรึกษาร่วม
อ.คร. พิชญา มังกรอัศวกุล อาจารย์ที่ปรึกษาร่วม
อ.คร. พัชณี แสงทอง อาจารย์ที่ปรึกษาร่วม

บทคัดย่อ

ด้นหนอนตายหยากจากอำเภอแม่เมาะ จังหวัดลำปาง ประเทศไทย มีฤทธิ์ทางด้านเภสัชวิทยา โดยสารสกัดจากรากหนอนตายหยากทั้งสองตัว ได้แก่ 1',2'-didehydrostemofoline และ stemofoline สามารถยับยั้งการทำงานของเอนไซม์ acetylcholinesterase ซึ่งช่วยในการบรรเทา อาการ โรคอัลไซเมอร์ ได้ นอกจากนี้ยังมีรายงานว่า stemofoline สามารถช่วยเพิ่มประสิทธิภาพในการ ทำงานของยารักษาโรคมะเร็งได้ ดังนั้นการเพาะเลี้ยงเนื้อเยื่อพืชจึงเป็นวิธีการหนึ่งที่นำมาใช้ในการผลิต สารอัลคาลอยด์ การเพิ่มจำนวนยอดของหนอนตายหยากพบว่า benzyladenine (BA) ให้ผลดีกว่า thidiazuron (TDZ) โดยอาหารสูตร MS ที่เติม BA 3 มก./ล. เป็นเวลา 8 สัปดาห์ สามารถชักนำให้เกิด ยอดได้ 100 เปอร์เซ็นต์ และ ให้จำนวนยอดเฉลี่ย 4.4 ยอดต่อชิ้นเนื้อเยื่อ สำหรับการชักนำราก พบว่า อาหารสูตร 1/2 MS ที่เติม indolebutyric acid (IBA) 2 มก./ล. เป็นอาหารที่เหมาะสม โดยสามารถชัก

นำให้เกิดรากได้ 80 เปอร์เซ็นต์ และ ให้จำนวนรากเฉลี่ย 20.6 รากต่อชิ้นเนื้อเยื่อเมื่อเลี้ยงเป็นเวลา 8 สัปดาห์

การศึกษาผลของสารกระตุ้นและสารตั้งต้นต่อการเพิ่มการผลิตสารอัลคาลอยด์ พบว่าสารกระตุ้น (เมทิลจัสโมเนต, กรดซาลิซิลิก, ไคโตซาน และสารสกัดจากยีสต์) และสารตั้งต้น (โซเดียมอะซิเตต และน้ำตาลซูโครส) ทั้งหมดสามารถผลิตสารอัลคาลอยด์ได้มากกว่าชุดควบกุม สารกระตุ้นที่ดีที่สุด คือ ไคโตซาน 25 มก./ล. เลี้ยงเป็นเวลา 1 สัปดาห์ สามารถผลิตสาร 1',2'-didehydrostemofoline และ stemofoline ได้ 3.05 และ 4.34 เท่าของชุดควบกุมตามลำดับ สำหรับสารตั้งต้น โซเดียมอะซิเตต สามารถผลิตอัลคาลอยด์ 1',2'-didehydrostemofoline และ stemofoline ได้ 2.35 และ 2.04 เท่าของชุดควบกุมตามลำดับ เมื่อเติมไคโตซานและโซเดียมอะซิเตตร่วมกันพบว่าปริมาฉอัลคาลอยด์ที่ได้น้อย กว่าเติมสารกระตุ้นหรือสารตั้งต้นแยกกัน

ความสัมพันธ์ระหว่างการสร้างสารอัลคาลอยด์และแบบแผนการแสดงออกของโปรตีนที่อาจ เกี่ยวข้องกับกลไกการผลิตอัลคาลอยด์ได้ทำการศึกษา โดยสกัดโปรตีนจากรากของหนอนตายหยากจาก ชุดควบคุมและชุดทดลองที่เติมไคโตซาน พบว่ามีโปรตีน 15 จุดจาก 150 จุด ที่แสดงออกแตกต่างกัน ระหว่างชุดควบคุมและชุดทดลองที่เติมไคโตซาน หลังจากเก็บโปรตีนทั้ง 15 จุดมาวิเคราะห์ลำดับ กรดอะมิโน พบว่ามีโปรตีนที่น่าสนใจซึ่งอาจเกี่ยวข้องกับการสังเคราะห์สารอัลคาลอยด์ คือ glutathione S-transferase และ heat shock protein โดย glutathione S-transferase มีการ แสดงออกของโปรตีนที่ลดลงจากชุดควบคุม ขณะที่ heat shock protein มีการแสดงออกของโปรตีน ที่เพิ่มขึ้นจากชุดควบคุม โปรตีนทั้งสองคาดว่าจะเกี่ยวข้องกับการสร้างอัลคาลอยด์ผ่านกระบวนการ ป้องกันตัวเองของพืช (plant defense metabolism) ใคโตซานอาจจะส่งผลให้ลดหน้าที่ของ glutathione S-transferase ในการกำจัดสารพิษ (detoxifying) จากนั้น heat shock protein อาจจะ ถูกผลิตขึ้นเพื่อส่งสัญญาณในการป้องกันเนื้อเชื่อไม่ให้ถูกทำลายและสารอัลคาลอยด์ทั้งสองอาจจะ ตอบสนองต่อสภาวะเครียด (stress) ดังกล่าว