Thesis Title Application of Fungal Enzymes for Bio-ethanol

Production from Agricultural Residues

Author Miss Thanunchanok Chairin

Degree Doctor of Philosophy (Biotechnology)

Thesis Advisory Committee Prof. Dr. Saisamorn Lumyong Advisor

Asst. Prof. Dr. Chartchai Khanongnuch Co-advisor

Prof. Dr. Yasuhiko Asada Co-advisor

ABSTRACT

The objectives of this study are to find out the applications of fungal enzymes for bio-ethanol production from agricultural residues. White-rot fungus was selected for laccase production and hydrolysate fungus was selected for cellulase and xylanase production. The optimum conditions for these enzymes and sugar production were investigated.

White-rot fungi were primary screened for laccase production by degrading with Poly-R dye and enzyme activity were determined using 2,6-dimethoxyphenol (2,6-DMP) as a substrate. Isolate WR710-1, which produced the highest laccase activity was selected from 31 isolates. Molecular identification using an ITS gene sequence analysis indicated that the selected isolate was *Trametes polyzona* (accession number JN848329). Mycelial colonies of *T. polyzona* on PDA media were off-white, showing high density, velvety texture, and abundant aerial hyphae.

Trametes polyzona WR 710-1 completed colonization of an entire Petri dish after 5 days at 37°C. The fungus had generative hyphae with clamp connections, thin-walled and 1.5-2.5 μm wide.

In this study, the optimal conditions for laccase production were determined. Among 10 agricultural residues, orange peel showed the highest level of laccase at 12-14 days incubation (0.69 U/gds). The chemical composition of orange peel substrate was shown; 16.5% cellulose, 9.31% hemicelluloses, and 8.99% lignin. For cultures grown with different nitrogen sources, peptone exhibited the highest activity of laccase (1.67 U/gds). The optimal carbon to nitrogen (C/N) ratio was done by central composite design (CCD). From the significance equation, the optimal C/N ratio at a 15/2 % (w/v) when a predicted laccase activity of 1.0 U/gds. The solid to liquid (S/L ratio) of solid state cultivation condition was 1:4, initial pH of 6.0, incubated temperature at 37°C, and an addition of 50 mM CuSO₄ increased the amount of laccase produced 4.48-folds.

Laccase from *T. polyzona*, was produced under solid state fermentation using the peel of Tangerine orange (*Citrus reticulata*) as a substrate, and was purified to homogeneity. This laccase was found to be a monomeric protein with a molecular mass of about 71 kDa estimated by SDS-PAGE. The optimum pH were 2.0 for ABTS, 4.0 for L-DOPA, guaiacol and catechol, and 5.0 for 2,6-DMP. The $K_{\rm m}$ value of the enzyme for substrate ABTS was 0.15 mM, its corresponding $V_{\rm max}$ value was 1.84 mM min⁻¹ and $k_{\rm cat}/K_{\rm m}$ value was 3960 s⁻¹ mM⁻¹. The enzyme activity was stable between pH 6.0 and 8.0, and temperature up to 40 °C. Laccase was inhibited more than 50 % by 20mM NaCl, 95 % inhibition at 5 mM of Fe²⁺ and completely inhibited by 0.1 mM NaN₃. The N-terminal amino acid sequence of this laccase was

AVTPVADLQISNAGISPDTF, which is highly similar to laccases from other whiterot basidiomycetes.

Purified laccase from *T. polyzona* was used as biocatalyst for bisphenol A biodegradation and decolorization of synthetic dyes. Degradation of bisphenol A by laccase with or without redox mediator, 1-hydroxybenzotriazole (HBT), was studied. A quantitative analysis by HPLC showed that bisphenol A was rapidly oxidized by laccase with HBT. Bisphenol A was completely removed within 3 hours and 4-isopropenylphenol was found to be the oxidative degradation product from bisphenol A when analyzed by GC-MS. All synthetic dyes used in this experiment, Bromophenol Blue, Remazol Brilliant Blue R, Methyl Orange, Relative Black 5, Congo Red, and Acridine Orange were decolorized by *Trametes*' laccase and the percentage of decolorization increased when 2mM HBT was added in the reaction mixture. This is the first report showing that laccase from *T. polyzona* is an effective enzyme for environmental detoxification, bisphenol A degradation and synthetic dye decolorization.

Three lignocelluloses (sugarcane bagasse, coffee husk and rice husk) were used as solid substrates for bio-ethanol fermentation. Pretreatment of lignocelluloses were done by biological (by *T. polyzona*) and chemical methods. The surface morphology of these lignocelluloses, showed some decreasing in cell wall thickness and crystallinity during pretreatment. Lignin content was greatly removed by 2% NaOH (remaining lignin 8.73%) followed by enzymatic pretreatment (23.13%) while, lignin content was unchanged when pretreated by 2% H₂SO₄. Cellulose content significantly increased to 59.65% by alkali, 43.89% by acid pretreatment, and slightly increased by using biological pretreatment (38.87%). Although, the cellulose content in samples

pretreated biologically were low, but their surface structure contained a lot of micropores, increasing the available surface area (pore volume) leading to an increase of fungal hydrolysis by *Thermoascus aurantiacus*. Total soluble sugar increased 85% when compared with untreated control.

The optimal growth conditions for production of cellulase and xylanase by Thermoascus aurantiacus SL16W were studied. The fungus T. aurantiacus completely covered a PDA Petri dish after 4 days (colony diameter of 9 cm) and spores were produced on the 7th day at the optimal incubation temperature (45°C). Among different residues, coffee husk ensured the highest cellulase (8.72 U/mg) and xylanase (86.6 U/mg) yield. Three agricultural wastes with high enzyme activity (Rice husk, coffee husk and sugarcane bagasse) were combined following a mixture design experiment. From the significance quadratic model, the optimal combination ratio for both cellulase and xylanase production were 37% (w/w) rice husk; 6% (w/w) coffee husk and 57% (w/w) sugarcane bagasse, when the predicted activity of cellulase was 20.0 U/mg and xylanase was 157 U/mg. Among the cultures tested with different sources of nitrogen, peptone showed the highest activity for both cellulase and xylanse 13.08 and 253.92 U/gds, respectively. The optimal concentration of each component in mineral solution was determined by a CCD experiment. From the significance quadratic model, the optimal concentration of mineral solution components were 0.89 %(w/v) of peptone, 0.46 %(w/v) of KH₂PO₄, 0.09 %(w/v) of MgSO₄.7H₂O and 0.07 %(w/v) of CaCl₂.2H₂O when predict activity of cellulase was 47.25 U/gds and xylanase was 333.06 U/gds. The modified mineral solution following CCD experiment showed an increase of cellulase and xylanase activities, 58.03 and 57.86% respectively, when compared with the mineral solution control. Moreover, the

S/L ratio for solid state cultivation was 1:4, with a range of pH 6.0-8.0 and incubated at 45°C for 10-12 days was optimal for cellulase (112.3 U/gds), and xylanase (989.2 U/gds) production. Characterization of cellulase and xylanase showed that cellulase activity was highly stable in the pH 6.0-8.0 range and 30-50°C temperature range. Xylanase activity showed a high stability in the pH 4.0-8.0 range and 30-65°C temperature range for 1 hr.

Fungal hydrolysis by *T. aurantiacus* showed the highest production of range reducing sugar (0.15 mg/ml) at the 10th day of incubation. The pretreated substrates produced more reducing sugars compared with control (unpretreated) substrates, increasing the rate by 78.72%. The optimal levels of some important factors; initial pH, the inoculums (yeast) concentration, and the incubation time of ethanol fermentation by *Sacchromycetes cerevisiae* were done by CCD experiment. The optimal values of the test variables were pH 5.04, the concentration of inoculums was 1.97% and incubation time 22.27 hr, and the predicted ethanol production (0.31 g/L) was observed when initial sugar was about 3 mg/ml. For ethanol production by separate saccharification and fermentation was 4.6 g/L of ethanol were produced from 19.3 mg/ml of initial reducing sugar. Based on a theoretical yield of 0.51 g ethanol/g sugars, the ethanol yield from this experiment was calculated to be 0.24 g ethanol/g sugar or 47.06% of the theoretical yield.

Keywords: biological pretreatment, fungal hydrolysis, white-rot fungus, enzyme, bioethanol ชื่อเรื่องวิทยานิพนธ์

การประยุกต์ใช้เอนไซม์จากฟังไจเพื่อผลิตไบโอ เอทานอลจากวัสดุเหลือใช้ทางเกษตร

ผู้เขียน

นางสาวธนัญชนก ใชยรินทร์

ปริญญา

วิทยาศาสตรคุษฎีบัณฑิต (เทคโนโลยีชีวภาพ)

คณะกรรมการที่ปรึกษาวิทยานิพนธ์

ศ. คร. สายสมร ลำยอง ผศ. คร. ชาติชาย โขนงนุช Prof. Dr. Yasuhiko Asada อาจารย์ที่ปรึกษาหลัก อาจารย์ที่ปรึกษาร่วม อาจารย์ที่ปรึกษาร่วม

บทคัดย่อ

วัตถุประสงค์ของงานวิจัยครั้งนี้คือ ศึกษาการประยุกต์ใช้เอนไซม์จากฟังไจเพื่อผลิตไบโอ เอทานอลจากวัสดุเหลือใช้ทางเกษตร ซึ่งรวมไปถึงการคัดเลือก white-rot fungus ที่สามารถผลิต เอนไซม์แลกเคสซึ่งใช้ในกระบวนการ pretreatement การใช้ฟังไจเพื่อผลิตเอนไซม์เซลลูเลสและไซ แลนเนสซึ่งใช้ในกระบวนการ hydrolysis และการศึกษาหาสภาวะที่เหมาะสมสำหรับการผลิต เอนไซม์ดังกล่าว รวมทั้งสภาวะที่เหมาะสมสำหรับการผลิตน้ำตาลรีคิวซ์จากประบวนการ hydrolysis

การกัดเลือกหาฟังใจที่มีคุณสมบัติในการผลิตเอนไซม์แลกเกสโดยเบื้องต้นโดยใช้ Poly-R dye และตรวจสอบค่ากิจกรรมของเอนไซม์โดยใช้ 2,6-DMP เป็นสับสเตรตนั้น พบว่าตัวอย่าง WR710-1 สามารถผลิตเอนไซม์แลกเกสได้สูงที่สุดจากทั้งหมด 31 ตัวอย่าง และเมื่อบ่งชนิดด้วยวิธี ทางชีวโมเลกุลจากลำดับเบสในส่วน ITS ของ rRNA พบว่าคือ Trametes polyzona (GenBack accession number JN848329) ซึ่งเส้นใยของฟังใจชนิดนี้บนอาหารแข็ง PDA จะมีสีขาวลักษณะ เหมือนกำมะหยี่ หนาแน่น และฟู โดยจะใช้เวลา 5 วันในการเจริญเติบโตจนเต็มจานอาหารเลี้ยงเชื้อ (9 cm) เมื่อบ่มที่อุณหภูมิ 37°C และเมื่อส่องคูภายใต้กล้องจุลทรรสน์จะพบเส้นใยที่มีขนาด 1.5-2.5 µm รวมถึงพบ clamp connections

เมื่อหาสภาวะที่เหมาะสมในการผลิตเอนไซม์แลกเกสโดยฟังไจ T. polyzona พบว่าเปลือกส้ม เป็นแหล่งการ์บอนที่ดีที่สุดเมื่อตรวจสอบจากวัสดุเหลือใช้ทางเกษตรทั้งหมด 10 ชนิด โดยมีค่า กิจกรรมของเอนไซม์แลกเกสเท่ากับ 0.69 U ต่อกรัมของน้ำหนักแห้ง เมื่อบ่มไว้ 12-14 วัน ซึ่งเมื่อ ตรวจสอบหาองค์ประกอบหลักในเปลือกส้มตัวอย่างพบเซลลูโลสร้อยละ 16.5 เฮมิเซลลูโลสร้อยละ 9.31 และลิกนินร้อยละ 8.99 จากนั้นเมื่อทดลองใส่ peptone ลงไปในอาหารเลี้ยงเชื้อพบว่ามีค่า กิจกรรมของเอนไซม์แลกเคสเท่ากับ 1.67 U ต่อกรัมของน้ำหนักแห้ง สูงกว่าแหล่งในโตรเจนอื่น และสูงกว่าตัวแปรกวบกุม (ไม่มีแหล่งในโตรเจน) อัตราส่วนที่เหมาะสมระหว่างแหล่งการ์บอน และในโตรเจน (C/N ratio) เมื่อใช้การวิเกราะห์ทางสถิติแบบ central composite design (CCD) คือ 15/2 %(w/v) ส่วนสภาวะที่เหมาะสมสำหรับการผลิตเอนไซม์แลกเคสอื่นๆ ในกระบวนการผลิต แบบ solid state cultivation ได้แก่ อัตราส่วนระหว่างของแข็งและของเหลว (S/L ratio) คือ 1:4 ค่า ความเป็นกรด-ค่าง (pH) เท่ากับ 6.0 อุณหภูมิในการบ่มคือ 37°C และการเติม CuSO4 ความเข้มข้น 50 mM จะส่งผลให้การผลิตเอนไซม์แลกเคสเพิ่มขึ้น 4.48 เท่า เมื่อเทียบกับตัวแปรควบคุม

จากนั้นผลิตเอนไซม์แลกเลสตามสภาวะที่เหมาะสมดังกล่าวข้างต้น และนำเอนไซม์ไปทำให้ บริสุทธิ์ (purification) ผลที่ได้พบว่าแลกเลสที่ผลิตจาก $T.\ polyzona$ เป็น monomeric protein และ จากการตรวจสอบด้วยวิธี SDS-PAGE แลกเลสมีขนาดโมเลกุลเท่ากับ 71 kDa และที่ N terminal ของสายโปรตีนมีลำดับกรดอมิโนคือ AVTPVADLQI SNAGISPDTF จากนั้นเมื่อตรวจสอบ กุณลักษณะต่างๆของเอนไซม์แลกเกสบริสุทธิ์พบว่า ก่า pH ที่เหมาะสมสำหรับสับเสรต ABTS คือ 2.0 สำหรับ L-DOPA, guaiacol และ catechol คือ 4.0 และสำหรับ 2,6-DMP คือ 5.0 โดยเมื่อ ตรวจสอบความจำเพาะ (substrate specificity) ของเอนไซม์แลกเกสกับ ABTS ที่ความเข้มข้น 0.15 mM พบว่ามีความจำเพาะมากกว่าสับเสรตอื่นๆ โดยมีก่า V_{\max} เท่ากับ 1.84 mM min และก่า $k_{\text{cal}}/K_{\text{m}}$ เท่ากับ 3960 s $^{-1}$ mM $^{-1}$ ซึ่งเอนไซม์แลกเกสบริสุทธิ์มีความเสถียร (enzyme stability) อยู่ระหว่างก่า pH ที่ 6.0 และ 8.0 และอุณหภูมิ 40 $^{\circ}$ C ซึ่งก่าความเสถียรจะลดลงร้อยละ 50 เมื่อเติม NaCl ความ เข้มข้น 20mM และลดลงร้อยละ 90 ด้วยการเติม Fe $^{-1}$ เข้มข้น 5 mM และจะไม่พบกิจกรรมของ เอนไซม์เหลืออยู่เลยเมื่อเติม NaN₃ ความเข้มข้น 0.1 mM ลงไปในสารละลายเอนไซม์ตัวอย่าง

ซึ่งกุณสมบัติหนึ่งของเอนไซม์แลกแคสคือเป็น biocatalyst ในการย่อยสลายสารพิษ bisphenol A โดยผลการทดลองพบว่า bisphenol A สามารถย่อยสลายได้อย่างรวดเร็วภายใน ระยะเวลา 3 ชั่วโมงเมื่อตรวจสอบด้วยวิธี HPLC โดยเอนไซม์แลกเกสที่ทำงานร่วมกับ redox mediator คือ 1-hydroxybenzotriazole (HBT) และเมื่อตรวจสอบด้วยวิธี GC-MS พบว่าผลผลิตที่ได้ จากการย่อย bisphenol A คือ 4-isopropenylphenol นอกจากนี้เอนไซม์แลกเกสยังสามารถย่อยสี สังเคราะห์ (synthetic dyes) ได้ โดยทดสอบในสีสังเกราะห์ 6 ชนิดคือ Bromophenol Blue, Remazol Brilliant Blue R, Methyl Orange, Relative Black 5, Congo Red, และ Acridine Orange ผลการทดลองพบว่าประสิทธิภาพของการย่อยเพิ่มสูงขึ้นเมื่อเอนไซม์แลกเกสทำงานร่วมกับ redox mediator การศึกษาครั้งนี้เป็นครั้งแรกที่ชี้ให้เห็นว่าเอนไซม์แลกเกสที่ผลิตได้จาก T. Polyzona มี ประสิทธิภาพในการย่อยสารพิษในธรรมชาติได้

กระบวนการ pretreatment ของวัสดุเหลือใช้ทางเกษตร 3 ชนิด (กากชานอ้อย เปลือกกาแฟ และแกลบ) ที่ผสมรวมกันเพื่อใช้เป็นสับสเตรตเพื่อผลิตใบโอเอทานอล โดยในการวิจัยครั้งนี้ได้ ศึกษาถึงวิธี pretreatment ด้วยวิธีชีวภาพ (biological pretreatment) ด้วย T. polyzona WR710-1 และ การใช้สารเคมี (chemical pretreatment) แล้วสังเกตการเปลี่ยนแปลงของลักษณะพื้นผิว (surface morphology) สับสเตรตที่เกิดขึ้นเมื่อผ่านกระบวนการ pretreatment ด้วยกล้องจุลทรรศอิเล็คตรอน พบว่าที่ผิวนอกของสับสเตรตทั้ง 3 ชนิดมีความหนาลคลง พบรูบนพื้นผิว และเส้นใย (fibre) จับกัน อย่างหลวมขึ้น และเมื่อตรวจสอบองค์ประกอบทางเคมี (chemical composition) ของสับสเตรต พบว่าปริมาณลิกนิน ลดลงเหลือเพียงร้อยละ 8.73 เมื่อ pretreatment ด้วย NaOH เข้มข้น 2% ตาม ด้วยเอนใชม์จากฟังใจมีปริมาณลิกนินร้อยละ 23.13 ในขณะที่ pretreatment ด้วย H₃SO, เข้มข้น 2% ไม่ทำให้ปริมาณลิกนินลดลงเมื่อเปรียบเทียบทางสถิติ เมื่อลิกนินถูกกำจัดก็ทำให้ปริมาณเซลลูโลส โดยรวมเพิ่มขึ้น โดยคิดเป็นร้อยละ 59.65 เมื่อใช้ย่อยด้วยด่างอ่อน มีปริมาณร้อยละ 43.89 เมื่อย่อย ด้วยกรด ส่วนการใช้วิธีทางชีวภาพพบเซลลูโลสเพิ่มขึ้นเพียงเล็กน้อย คือมีปริมาณร้อยล่ะ 38.87 ซึ่งถึงแม้ปริมาณเซลลูโลสในสับสเตรตที่ผ่านกระบวนการ ของปริมาณองค์ประกอบโดยรวม pretreatment แบบชีวภาพจะมีปริมาณน้อย แต่ที่พื้นผิวของสับสเตรตพบรูพรุนขนาดเล็ก (micropores) จำนวนมาก ซึ่งส่งผลดีต่อกระบวนการ hydrolysis เห็นได้จากเมื่อใช้ฟังใจ Thermoascus aurantiacus ในกระบวนการนี้เพื่อเปลี่ยนสับสเตรตจำพวก lignocellulose เป็นน้ำตาล พบว่าปริมาณ น้ำตาลรวม (total soluble sugar) เพิ่มขึ้นถึงร้อยละ 85 เมื่อเทียบกับสับสเตรตที่ไม่ผ่านกระบวนการ pretreatment

สภาวะที่เหมาะสมต่อการผลิตเอนไซม์เซลลู-เลสและไซแลนเนสโดยใช้ฟังใจ Thermoascus aurantiacus SL16W เพื่อใช้ในกระบวนการ hydrolysis ผลการศึกษาพบว่าเส้นใยของฟังใจเจริญ เต็มจานเลี้ยงเชื้อในวันที่ 4 ของการบ่ม และฟังไจผลิตสปอร์ในวันที่ 7 ของการบ่มที่อุณหภูมิ $45^{\circ}\mathrm{C}$ และเมื่อทคสอบการผลิตเอนไซม์ทั้งสองชนิคโดยใช้วัสดุเหลือใช้ทางเกษตรเป็นแหล่งคาร์บอน ผล ที่ได้พบว่าเปลือกกาแฟเป็นแหล่งคาร์บอนที่เชื้อสามารถผลิตเอนไซม์เซลลูเลสและไซแลนเนส สูง ที่สุด คือ 8.72 U/mg และ 86.6 U/mg ตามลำดับ จากนั้นเมื่อผสมวัสดุเหลือใช้ทางการเกษตร 3 ชนิด ้ (ที่มีค่ากิจกรรมของเอนไซม์ทั้งสองชนิดสูง 3 เป็นอันดับแรก) ได้แก่ เปลือกกาแฟ กากชานอ้อยและ แกลบ ด้วยวิธีทางสถิติ เลือกแบบการทคลอง mixture design พบว่าอัตราส่วนที่เหมาะสมที่สุดคือ แกลบ / เปลือกกาแฟ / กากชานอ้อย เท่ากับ 37: 6: 57 % (w/w) จะทำให้เชื้อสามารถผลิตเอนไซม์ เซลลูเลสและไซแลนเนสได้เพิ่มขึ้นเมื่อเทียบกับสับสเตรตเพียงชนิดเดียว ส่วนแหล่งในโตรเจนที่ เหมาะสมสำหรับการทดลองนี้คือ peptone ทำให้ค่ากิจกรรมของเอนไซม์เซลลูเลสเท่ากับ 13.08 U/gds และไซแลนเนสเท่ากับ 253.92 U/gds และจากการวิเคราะห์ทางสถิติตามการทดลองแบบ CCD พบว่าปริมาณของธาตุอาหารในสารละลายแร่ธาตุ (mineral solution) ที่เหมาะสมคือ peptone ปริมาณ 0.89 %(w/v) KH,PO, 0.46 %(w/v) MgSO, 7H,O 0.09 %(w/v) และ CaCl, 2H,O เท่ากับ 0.07 %(w/v) ซึ่งสารละลายธาตุอาหารที่ปรับปรุงสูตรแล้วนี้ส่งผลให้ค่ากิจกรรมของเอนไซม์เซลลู เถสและไซแลนเนสเพิ่มขึ้น 58.03 และ 57.86 % ตามลำดับเมื่อเทียบสารละลายแร่ธาตุชนิดเคิม นอกเหนือจากนี้สภาวะที่เหมาะสมอื่นๆ ที่ส่งผลฟังใจสามารถผลิตเอนใชม์เซลลูเลสและใชแลนเน สได้อย่างมีประสิทธิภาพ คือที่ S/L ratio เท่ากับ 1:4 ค่า pH เท่ากับ 6.0-8.0 อุณหภูมิในการบ่มเท่ากับ 45°C และระยะเวลาในการบ่มเท่ากับ 10-12 วัน โดยเอนไซม์เซลลูเลส มีค่ากิจกรรมของเอนไซม์ เพิ่มขึ้นเป็น 112.3 U/gds และ ใชแลนเนสเพิ่มเป็น 989.2 U/gds ซึ่งเอนใชม์เซลลูเลสมีค่ากิจกรรม ของเอนไซม์เสถียรที่ช่วง pH 6.0-8.0 และอุณหภูมิ 30-50°C ส่วนเอนไซม์ไซแลนเนสมีค่ากิจกรรม ของเอนใชม์เสถียรที่ช่วง pH ที่กว้างกว่าคือ 4.0-8.0 และอุณหภูมิ $30\text{-}65^{\circ}\mathrm{C}$ ในระยะเวลาบ่ม 1ชั่วโมง

หลังจากที่สับสเตรตผ่านกระบวนการ pretreatment ด้วยวิธีทางชีวภาพดังกล่าวแล้ว ขั้นตอน ต่อไปคือกระบวนการ hydrolysis เพื่อเปลี่ยนเซลลูโลสและเฮมิเซลลูโลสให้เป็นน้ำตาล ซึ่งเมื่อวัด ปริมาณน้ำตาลรีดิวซ์ที่ผลิตได้จากฟังใจ T. aurantiacus เท่ากับ 0.15 mg/ml ในวันที่ 10 ของการบ่ม

เพิ่มขึ้นสูงกว่าชุดตัวแปรควบคุม (ไม่ผ่านกระบวนการ pretreatment) ถึง 78.72 % หลังจากนั้นนำ สารละลายน้ำตาลไปทำให้เข้มข้นถึงประมาณ 3 mg/ml และนำไปหาระดับปัจจัยที่เหมาะสมสำหรับ การผลิตเอทานอลโดยใช้ยืส Sacchromycetes cerevisiae ในการหมัก ซึ่งจากการวิเคราะห์ทางสถิติ ตามการทดลองแบบ CCD พบว่าระดับปัจจัยที่เหมาะสมคือที่ pH เท่ากับ 5.04 ความเข้มข้นของเชื้อ ตั้งต้น (inoculums) เท่ากับ 1.97% และ ระยะเวลาบุ่มเท่ากับ 22.27 ชั่วโมง ทำให้ผลิตเอทานอลได้ เท่ากับ 0.31 g/L และเมื่อนำสารละลายน้ำตาลไปทำให้เข้มข้นถึงประมาณ 20 mg/ml ปริมาณเอทานอลที่วัดได้เท่ากับ 4.6 g/L ในเวลา 24 ชั่วโมง ซึ่งปริมาณเอทานอลที่ผลิตได้คิดเป็น 0.24 g ethanol/g sugar หรือกิดเป็น 47.06 % ของปริมาณเอทานอลที่ผลิตได้ตามทฤษฎี (Theoretical yield)

คำสำคัญ: กระบวนการ pretreatment ด้วยวิธีชีวภาพ การใช้ฟังใจ hydrolysis white-rot fungi เอนไซม์ ใบโอเอทานอล

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved