CONTENTS

Acknowledgement	d
Abstract in Thai	f
Abstract in English	h
List of Tables	r
List of Figures	u
List of Abbreviation	Z
List of Symbols	bb
Statement of Originality	сс
Chapter 1 Introduction	1
Chapter 2 Enzymes in starch degrading system in Lactobacillus sp. S21	3
2.1 Introduction	3
2.2 Literature review	5
Starch	5
Amylose	5
Amylopectin	5

	Starch degrading enzymes	6
	Family 13 Glycoside hydrolases	9
	Family 14 Glycoside hydrolases	12
	Family 15 Glycoside hydrolases	12
	Amylolytic enzymes from amylolytic lactic acid bacteria	13
	Lactobacillus sp. S21	15
2.3]	Materials and methods	16
	Media	16
	Chemical reagents	16
	Equipment and instrument	16
	Species identification of Lactobacillus sp. S21	17
	Enzyme production	17
	Enzyme purification	19
	Characterization of purified amylase	20
	Elucidation of starch degrading system in L. plantarum S21	23
2.4]	Results	23
	Species identification	24

Enzyme production	24
Enzyme purification	26
Properties of purified amylase	27
Starch degrading system in L. plantarum S21	36
2.5 Discussion	37
2.6 Conclusion	44
Chapter 3 Homologous and heterologous expression of α -amylase gene	46
3.1 Introduction	46
3.2 Literature review	48
Production of recombinant enzyme by microbes	48
Basic of gene cloning	48
Expression host	49
Expression of amylase gene in <i>E. coli</i> for heterologous expression	52
Expression of amylase gene in L. plantarum for homologous expression	55
3.3 Materials and methods	58
Microorganisms	58
Materials	58

	Equipment and instrument	58
	Isolation of maltose forming α -amylase gene from <i>L. plantarum</i> S21	59
	Construction of recombinant plasmids	59
	Ligation and transformation	60
	Expression of amylase gene	61
	Preparation of recombinant α -amylase from <i>E. coli</i>	61
	Purification and characterization of recombinant α -amylase from <i>E. coli</i>	61
Preparation of recombinant α -amylase from <i>L. plantarum</i>	62	
	Purification and characterization of recombinant α -amylase from	62
	L. plantarum	
3.4 R	Lesults	63
	Isolation of α -amylase gene	63
	Expression of α -amylase gene in <i>E. coli</i>	64
	Purification and characterization of recombinant α -amylase from <i>E. coli</i>	66
	Overexpression of recombinant α -amylase from <i>E. coli</i>	70
	Expression of α -amylase gene in <i>L. plantarum</i>	71
	Purification and characterization of recombinant α -amylase from	72

L. plantarum TGL02 harboring pAmyW61	
Expression of mature α -amylase gene in <i>L. plantarum</i>	76
3.5 Discussion	77
3.6 Conclusion	79
Chapter 4 Direct conversion of starch to lactic acid by L. plantarum S21	81
4.1 Introduction	81
4.2 Literature review	83
Lactic acid and its applications	83
Synthetic of lactic acid	83
Lactic acid bacteria (LAB)	84
Substrate for lactic acid fermentation	85
Starch as substrate for lactic acid production	85
Lactic acid production from starch	86
Fermentation strategies for direct lactic acid fermentation	90
by amylolytic lactic acid bacteria	
Amylolytic enzymes from amylolytic lactic acid bacteria	91
4.3 Materials and methods	95

	Media	95
	Chemical reagents	95
	Equipment and instrument	95
	Media preparation and sterilization	95
	Preparation of seed inoculum and culture condition	96
	Effect of different concentration of mMRS on direct	96
	lactic acid production	
	Direct conversion of starch to lactic acid using diluted mMRS medium	96
	in 1 and 10 liter fermenter operated by batch system	
	Direct conversion of starch to lactic acid using diluted mMRS medium	97
	in 1 liter fermenter operated by repeated batch system	
	Efficiency evaluation on direct conversion of starch to lactic acid	97
	Direct conversion of starch to lactic acid using starchy wastewater	97
	Analytical methods	99
4.4	Results	99
	Effect of different concentration of mMRS medium on	99
	lactic acid production	
	Direct conversion of starch to lactic acid using mMRS and	100
	optimal medium operated by batch system	

	Page
Direct conversion of cassava starch to lactic acid operated	102
by repeated batch system	
Feasibility in direct conversion of high starch concentration	103
to lactic acid	
Direct conversion of starch to lactic acid using starchy effluent	104
from rice noodle manufacturing process	
4.5 Discussion	108
4.6 Conclusion	114
Chapter 5 General discussion and conclusion	115
References	118
Appendices	133
Appendix A	134
Appendix B	136
Appendix C	141
Appendix D	142
Appendix E	145
Appendix F	146
Appendix G	147

Page

Appendix H 148 Appendix I 149 Appendix J 151 2104.9% Appendix K 152 Appendix L 154 Appendix M 156 Appendix N 157 Curriculum Vitae 160 AWG MAI ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table 2.1	Classification of amylases	9
Table 2.2	Amylases from amylolytic lactic acid bacteria	14
Table 2.3	Level of coded and actual values of temperature and pH for CCD	21
Table 2.4	Purification of extracellular amylase from L. plantarum S21	26
Table 2.5	Effect of cations and chemical reagents on enzyme activity	30
Table 2.6	Substrate specificity	30
Table 2.7	Kinetic constants of amylase from L. plantarum S21	31
Table 2.8	Percentage of maltooligosaccharides liberated from starch amylose, and amylopectin by amylase from <i>L. plantarum</i> S21	35
Table 2.9	Amylases found in culture supernatant and cell extract of <i>L. plantarum</i> S21	37
Table 3.1	Advantages and disadvantages of <i>E. coli</i> expression system	50
Table 3.2	Advantages of <i>Bacillus</i> sp. expression host	51
Table 3.3	Primers used in this study	58
Table 3.4	Effect of IPTG concentration on recombinant α -amylase induction	66
Table 3.5	Effect of temperature on recombinant α -amylase production	66

LIST OF TABLES (CONTINUED)

Table 3.6	Purification of recombinant α -amylase from <i>E. coli</i>	67
Table 3.7	Substrate specificity of recombinant α -amylase from <i>E. coli</i>	69
Table 3.8	Comparison of K_m and V_{max} values of recombinant α -amylase from <i>E. coli</i> to the wild type enzyme	69
Table 3.9	Comparison of k_{cat} and k_{cat}/K_m values of recombinant α -amylase from <i>E. coli</i> to the wild type enzyme	70
Table 3.10	Over expression of α -amylase gene (<i>AmyM</i>) in <i>E. coli</i>	71
Table 3.11	Expression of α -amylase genes in <i>L</i> . <i>plantarum</i> TGL02	72
Table 3.12	Effect of IP concentration on induction of recombinant α -amylase from <i>L. plantarum</i> TGL02 harboring pAmyW61	72
Table 3.13	Purification of recombinant α -amylase from <i>L. plantarum</i> TGL02 harboring pAmyW61	73
Table 3.14	Substrate specificity of recombinant α-amylase from <i>L. plantarum</i> TGL02 harboring pAmyW61	74
Table 3.15	Comparison of K_m and V_{max} values of recombinant α -amylase (<i>AmyW</i>) from <i>L. plantarum</i> TGL02 to the wild type enzyme	75
Table 3.16	Comparison of k_{cat} and k_{cat}/K_m values of recombinant α -amylase (<i>AmyW</i>) from <i>L. plantarum</i> TGL02 to the wild type enzyme	75
Table 3.17	Expression of α -amylase genes in <i>L. plantarum</i> WCFS1	76

LIST OF TABLES (CONTINUED)

Table 4.1	Comparison of lactic acid from starch by different	89
	lactic acid bacteria operated by various fermentation strategies	
Table 4.2	Comparison of lactic acid volume and lactic acid production	92
	efficiency obtained from different ALAB	
Table 4.3	Advantages and disadvantages of different fermentation strategies	93
Table 4.4	Amylases from ALAB	94
Table 4.5	Growth kinetic of direct lactic acid production using mMRS	101
	and optimal medium	
Table 4.6	Content of starchy effluent and gelatinized starchy waste	104
	based on wet weight	
Table 4.7	Comparison of lactic acid, lactic acid yield and lactic acid	107
	productivity of L. plantarum S21 from starchy effluent with	
	various concentration of rice starch	
Table 4.8	Comparison of lactic acid volume obtained from different ALAB	112
Table A.1	Reaction mixture for amylase activity assay	137
Table A 2	Reaction mixture for a glucosidase activity assay	130
Table A.2	Reaction mixture for u-glucosidase activity assay	137
Table A.3	Composition of gel for SDS-PAGE	143
Table A.4	Composition of gel for native-PAGE	144

LIST OF FIGURES

Figure 2.1	Structure of amylose	5
Figure 2.2	Structure of amylopectin	6
Figure 2.3	Modes of action of amylases	8
Figure 2.4	Cell morphology of L. plantarum S21	15
Figure 2.5	Phylogenetic trees of L. plantarum S21 and its related species	16
Figure 2.6	The PCR products from <i>recA</i> amplification	24
Figure 2.7	Effect of monosaccharides (a), disaccharides (b) and starch (c) on amylase production	25
Figure 2.8	SDS-PAGE, zymogram (a) and native PAGE of purified amylase (b)	27
Figure 2.9	pH optimum (a) and stability for 24 h at 4°C (solid line) and 37°C (dotted line) (b) of amylase and temperature optimum (c) and stability for 1 h (d) of amylase from <i>L. plantarum</i> S21	28
Figure 2.10	pH stability of amylase from <i>L. plantarum</i> S21 at 37°C	28
Figure 2.11	Quadratic response surface represented the optimum pH and temperature of amylase from <i>L. plantarum</i> S21	29
Figure 2.12	Alignment of amino acid sequence of α-amylase from <i>L. plantarum</i> S21. Catalytic conserved domains were shaded; repeat amino acid started at arrow; intermediary regions (IR) were underline; flanking regions were bold	32

Figure 2.13	TLC plates of hydrolysis products from G2-G6 (Lane 1-5) (a) and products from starch (Lane 6), amylose (Lane 7), amylopectin	33
	(Lane 8) and glycogen (Lane 9) (b) and time course of starch	
	hydrolysis at 6-96 h of incubation at 37°C (c)	
Figure 2.14	Hydrolysis products from starch of purified enzyme (PE),	36
	crude extracellular enzyme (CEE), crude intracellular enzyme	
	(CIE) and combination of (CEE+CIE) compared to standard (a)	
	and hydrolysis products of maltose of crude α -glucosidase from	
	<i>L. plantarum</i> S21 (b)	
Figure 2.15	Proposed starch degrading mechanism of <i>L. plantarum</i> S21 for	44
	lactic acid fermentation	
	EL VALS	
Figure 3.1	Schematic of basic of cloning	49
Figure 3.2	pET21-a-d (+) vector	54
Figure 3.3	pSIP401 expression vector (a), pSIP409 vector carrying GusA as	57
	reported promoter gene (b) and pSIP609 carrying GusA, a food	
	grade expression vector (c)	
Copy	right [©] by Chiang Mai University	~ =
Figure 3.4	The α -amylase gene of <i>L. plantarum</i> S21; nucleotides sequence	65
	encoded signal peptide was underlined; <i>Bam</i> HI restriction site	
	represented in box; start and stop codon represented in triangle	
Figure 3.5	SDS-PAGE of recombinant α -amylase from <i>E. coli</i>	67
Figure 3.6	pH optimum (a) and stability (b); temperature optimum (c) and	68
	stability (d) of recombinant α -amylase from <i>E. coli</i>	

Figure 3.7	Pattern of hydrolysis products from recombinant α -amylase	
	from E. coli	
Figure 3.8	SDS-PAGE of recombinant α -amylase from <i>L. plantarum</i> TGL02	73
	harboring pAmyW61	
Figure 3.9	pH optimum (a) and stability (b); temperature optimum (c)	74
	and stability (d) of recombinant α -amylase from L. plantarum TGL02	2
	harboring pAmyW61	
Figure 3.10	Pattern of hydrolysis products from recombinant α -amylase	76
	from food grade L. plantarum TGL02 harboring pAmyW61	
	al Nylly	
Figure 4.1	Profile of lactic acid production from different concentration of	100
	mMRS medium containing 10 g/L cassava starch as the sole carbon	
	source	
Figure 4.2	Profiles of direct lactic acid production from cassava starch	102
	using mMRS medium in 1 liter fermenter (a), 50% diluted	
	mMRS medium in 1 and 10 liter fermenter (b and c), optimal	
	medium in 1 and 10 liter fermenter (d and e)	
Figure 12	Profile of direct conversion of access to terch to lectic acid using	102
Figure 4.3	mMPS medium operated by repeated batch system	105
	miviks medium operated by repeated batch system	
Figure 4.4	Effect of different concentration of cassava starch on production	104
	of lactic acid (a) and α -amylase (b)	
Figure 4.5	Profile of lactic acid production, total carbohydrate consumption	105
	and viable cells during lactic acid fermentation by L. plantarum S21	
	W	

	at 37°C in mMRS broth containing 10 g/L rice starch (RS) and starchy effluent (SE).	
Figure 4.6	Profile of amylase activity (A), total carbohydrate (B) and lactic acid (C) during direct conversion of rice noodle factory effluent containing various concentrations of the starchy carbon source to lactic acid by <i>L. plantarum</i> S21 at 37°C	107
Figure A.1	Calibration curve of glucose concentration and absorbance at 540 nm	137
Figure A.2	Calibration curve of 4-Nitrophenol concentration and absorbance at 405 nm	139
Figure A.3	Calibration curve of glucose concentration and absorbance at 490 nm	141
Figure A.4	Lineweaver-Burk and Michaelis-Menten plot of purified α-amylase from <i>L. plantarum</i> S21 towards starch (a), amylose (b), amylopectin (c), and glycogen (d)	156
Figure A.5	Chromatogram of starch hydrolysis product at 12 h (a), 24 h (b), 48 h (c) and 72 h (d) compared to standard maltooligosaccharides (G1-G6)	157
Figure A.6	Chromatogram of amylose hydrolysis product at 12 h (a), 24 h (b), 48 h (c) and 72 h (d) compared to standard maltooligosaccharides (G1-G6)	158

Page

- Figure A.7 Chromatogram of starch hydrolysis product at 12 h (a), 24 h (b), 158 48 h (c) and 72 h (d) compared to standard maltooligosaccharides (G1-G6)
- Figure A.8 Profiles of hydrolysis products from starch (a), amylose (b) and 159 amylopectin

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University AII rights reserved

LIST OF ABBREVIATIONS

ALAB	Amylolytic lactic acid bacteria
CCD	Central composite design
CEE	Crude extracellular enzyme
CIE	Crude intracellular enzyme
EC	Enzyme commission number
EDTA	Ethylenediaminetetraacetic acid
G1	Glucose
G2	Maltose
G3	Maltotriose
G4	Maltotetraose
G5	Maltopentaose
G6	Maltohexaose
G7 g7 gright O	Maltoheptaose
GH	Glycoside hydrolase
Glu	Glutamic acid
GusA	β-glucoronidase enzyme
HPLC	High performance liquid chromatography

LIST OF ABBREVIATIONS (CONTINUED)

IP	Induction peptide
IPTG	Isopropyl β-D-1-thioglactopyranoside
IR	Intermediary region
IUBMB	International Union of Biochemistry and
	Molecular Biology
LAB	Lactic acid bacteria
LC-ESI-MS/MS	Liquid chromatography electrospray ionization
	tandem mass spectrometry
PAGE	Polyacrylamide gel electrophoresis
RU	Repeat unit
SBD	Starch binding domain
SLSF	Simultaneous liquefaction, saccharification and
	fermentation
SSF	Simultaneous saccharification and fermentation
Thr opyright [©]	Threonine Mai University
TLC	Thin layer chromatography
TSF	Two steps fermentation
RS	Rice starch
SE	Starchy effluent

LIST OF SYMBOLS

STATEMENT OF ORIGINALITY

- 1. An amylolytic lactic acid bacterium, *Lactobacillus plantarum* S21 is a rare strain of lactic acid bacteria capable of producing extracellular amylase and produce high concentration of lactic acid from starch. This thesis presented potential of the bacterium and proposed action mechanism for starch degradation
- 2. In order to express amylase gene from *L. plantarum* S21 in form of extracellular enzyme in other *Lactobacillus* sp., gene cloning in pSIP vector has been performed for investigation of feasibility to construct *Lactobacillus* sp. with amylase activity which rarely occur in nature. Moreover, signal peptide sequence from *L. plantarum* S21 has significant impact to regulate *L. plantarum* WCFS1 and *L. plantarum* TGL02 to produce extracellular enzyme. Therefore, this method could be an option to construct *Lactobacillus* sp. with other extracellular enzymes.

Copyright[©] by Chiang Mai University AII rights reserved