CHAPTER 4 CONCLUSIONS

4.1 Synthesis of TiO₂ and acid-modified TiO₂ by Thermal hydrolysis, characterization and its application as a photocatalyst

Titanium dioxide (TiO₂) and acid-modified TiO₂ were successfully synthesized by hydrolysis of titanyl sulfate (TiOSO₄). TiO₂ and TiO₂ modified with carboxylic acid calcination at 600 °C for 3h produced anatase titania, whereas the TiO₂ calcined at 900 °C showed a rutile phases. The phase composition of TiO₂ modified by carboxylic acid was not changed in comparison with the unmodified TiO₂ at the same condition. Crystallinity of the TiO₂ was enhanced upon increasing calcination temperature. At high thermal treatment temperature, the increase of crystal size upon high thermal treatment also accompanied with a significant decrease of BET specific surface area. However, the TiO₂ modified by cinnamic acid (CA) provided higher crystallite size compared with unmodified TiO₂. Increasing the mole ratio of cinnamic acid: Ti resulted in the enhancement of crystallite sizes and specific surface area of the samples. TiO₂ modified by benzoic acid (BA) provided the highest surface area compared with that from salicylic acid (SA) and cinnamic acid (CA). SEM images indicated that TiO₂ and TiO₂ modified with carboxylic acid were agglomerated irregular primary particles. The average size of TiO₂ and TiO₂ modified by cinnamic acid (CA) were found to be 16-22 and 6-20 nm, respectively. The loading amount of CA has no significant effect on the particle size. UV-vis DRS result of TiO₂ calcined at 600 °C had strong UV-light absorption which suggested the

great potential for use as a highly efficient photocatalyst. The IR peak of TiO₂ calcined at 300-600 °C and TiO₂ modified by carboxylic acid at 462 cm⁻¹ were a contribution from the anatase TiO₂. The sulphate group from the Ti precursor was decreased upon calcination above 500 °C 3h. The IR results of TiO₂ modified by carboxyliac acid indicated that carboxylate groups complexed with surface Ti atoms. The binding form of carboxylic acids on the TiO₂ nanoparticles in all samples was bidentate chelating type. Zeta potential result indicated that the surface charge of TiO₂:BA in 1:1 ratio was neutral at the pH of photocatalytic study (pH 7) whereas those of TiO₂:SA and TiO₂:CA were negative. Since at this pH phenol was in the form of non-dissociation which has neutral charge, therefore phenol would preferably bind with the TiO₂:BA surface resulting in high photocatalytic degradation.

4.2 Suggestions for future work

Study on the photocatalytic degradation of phenol derivatives over TiO₂:acid should be investigated.

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved