TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	Yan ii
ABSTRACT (THAI)	v
ABSTRACT (ENGLISH)	vi
LIST OF TABLES	x
LIST OF SCHEMES	xi
LIST OF FIGURES	xvi
ABBREVIATIONS AND SYMBOLS	xviii
CHAPTER 1 INTRODUCTION	
1.1 Synthesis of (\pm) -phenylephrine	2
1.2 Synthesis of (R) -phenylephrine	4
1.3 Asymmetric reduction of carbonyl compound	9
1.3.1 Modified lithium aluminium hydride	10
1.3.2 Modified Borane	12
1.3.3 Corey-Bakshi-Shibata (CBS) reduction	15
1.3.4 Cyclodextrins	18
1.3.5 Enzyme Reducing Agents	20
1.4 Retrosynthetic pathways	24
CHAPTER 2 EXPERIMENTAL	28

2.1 Instruments	28
2.2 Chemicals	29
2.3 Synthesis of (\pm) -Phenylephrine hydrochloride	34
2.3.1 Preparation of 3-((<i>tert</i> -butyldimethylsilyl)oxy)benzaldehyde (83)	34
2.3.2 Preparation of <i>tert</i> -Butyldimethyl(3-vinylphenoxy)silane (84)	35
2.3.3 Preparation of <i>tert</i> - Butyldimethyl(3-(oxiran-2-yl)phenoxy)	
silane (85)	37
2.3.4 Preparation of 2-Bromo-1-(3-(<i>tert</i> -butyldimethylsilyloxy)	
phenyl)ethanol (86)	38
2.3.5 Preparation of (\pm) -Phenylephrine hydrochloride (87)	
via epoxide compound (85)	39
2.3.6 Preparation of (\pm) -Phenylephrine hydrochloride (87)	
via bromohydrine compound (86)	40
2.4 Synthesis of (<i>R</i>)-Phenylephrine hydrochloride	42
2.4.1 Preparation of <i>tert</i> -butyl(2-hydroxy-2(3-hydroxyphenyl)	
ethyl) (methyl)carbamate (89)	42
2.4.2 Preparation of <i>tert</i> -butyl(2-(3-((<i>tert</i> -butyldimethylsilyl)	
oxy)phenyl)-2-hydroxyethyl)(methyl)carbamate (90)	43
2.4.3 Preparation of <i>tert</i> -butyl(2-(3-((<i>tert</i> -butyldimethylsilyl)	
oxy)phenyl)-2-oxoethyl)(methyl)carbamate (91)	45

2.4.4 Preparation of (<i>R</i>)-tert-butyl-(2-(3-((tert-butyldimethylsilyl)	
oxy)phenyl)-2-hydroxyethyl)(methyl)carbamate (92)	
from asymmetric reduction of <i>tert</i> -butyl(2-(3-((<i>tert</i> -butyl	
dimethylsilyl)oxy)phenyl)-2-oxoethyl)(methyl)carbamate (91)	46
2.4.5 Preparation of (R) -Phenylephrin hydrochloride (3)	55
CHAPTER 3 RESULTS AND DISCUSSION	57
3.1 The synthesis of (\pm) -phenylephrine	57
3.2 The synthesis of (R) -phenylephrine	74
CHAPTER 4 CONCLUSIONS	95
REFERENCES	100
APPENDIX	106
VITA	137

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table	Page
1 Asymmetric reduction of ketone (91) at various the amount	
of (R) -2-Methyl-CBS-oxazaborolidine at room temperature	49
2 Asymmetric reduction of ketone (91) at various temperature	
with 0.1 eq of (R) -2-Methyl-CBS-oxazaborolidine	49
3 The reduction of amino ketone (91) with (R) -2-Methyl-CBS-	
Oxazaborolidine and borane-tetrahydrofuran complex	83
4 Asymmetric reduction of amino ketone (91)	90

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF SCHEMES

Scheme	Page
1 Synthesis of (\pm) -phenylephrine by Bergmann and Sulzbacher pathway	3
2 Synthesis of (\pm) -phenylephrine by Russell and Childress pathway	4
3 Synthesis of (R) -phenylephrine by Takeda and co-workers pathway	5
4 Synthesis of (R) -phenylephrine by Gujar and co-workers pathway	6
5 Synthesis of (R) -phenylephrine by Pandey and co-workers pathway	7
6 Synthesis of (R) -phenylephrine by Klingler pathway	8
7 Synthesis of (R) -phenylephrine by McGarrity and	
Zanotti-Gerora pathway	8
8 Synthesis of (R) -phenylephrine by Lin and co-workers pathway	9
9 Asymmetric reduction of prochiral acetophenone by BINAL-H (27)	11
10 Asymmetric reduction of prochiral acetophenone by BINAL-H (31)	11
11 Asymmetric reduction of unsaturated ketone by BINAL-H (31)	12
12 The asymmetric synthesis of β -amino alcohols by Beardsley and	
co-workers	14
13 The asymmetric reduction of acetophenone by Eisenberg	15
14 The asymmetric reduction of ketones by Singh and co-workers	16

15 The asymmetric reduction of bromoketone by Hett and co-workers	17
16 The asymmetric reduction of aminoketones by Ya-Wen and co-workers	18
17 The asymmetric reduction of aminoketones by Shin and Cho	18
18 The asymmetric reduction of ketones by Park and Sim	19
19 The asymmetric reduction of acetophenones and their derivatives by	
Tang and co-workers	20
20 The asymmetric reduction of aromatic ketones by Liu and co-workers	21
21 The asymmetric reduction of methyl acetoacetate by Wolfson and	
co-workers	21
22 The asymmetric reduction of ketones by Bawa and co-workers	22
23 The asymmetric reduction of ketones by Yadav and co-workers	23
24 The asymmetric reduction of ketones by Caron and co-workers	23
25 The asymmetric reduction of γ -nitroketones by Scapi and co-workers	24
26 The asymmetric reduction of cyclic 3-oxo-amines by Lacheretz and	
co-workers	24
27 The retrosynthesis pathway for (\pm) -phenylephrine	26
28 The retrosynthesis pathway for (R) -phenylephrine	27
29 The first attempt for (\pm) -phenylephrine pathway	57
30 The protection of hydroxyl group with trimethylsilyl chloride	58
31 The protection of hydroxyl group with <i>t</i> -butyl chloride	59
32 The protection of hydroxyl group with benzyl bromide	59
33 The epoxidation of aldehyde with trimethylsulfoxonium iodide	
and sodium hydride	59

34 The epoxidation of aldehyde with trimethylsulfoxonium iodide and	
sodium hydroxide	60
35 (\pm)-Phenylephrine synthesis pathway <i>via</i> epoxide	61
36 Wittig reaction of aldehyde (83) with phosphonium salt and <i>t</i> -BuOK	64
37 The proposed mechanism of Wittig reaction	65
38 The proposed mechanism of epoxidation reaction	67
39 The epoxide ring opening with methylamine in ethanol solution	67
40 (<u>+</u>)-Phenylephrine synthesis pathway via bromohydrin	71
41 The proposed mechanism of bromohydrin formation	72
42 The (\pm) -phenylephrine synthesis pathway	74
43 The key step of (R) -phenylephrine synthesis	75
44 The oxidation of (<u>+</u>)-phenylephrine hydrochloride with MnO_2	75
45 The protection of (\pm) -phenylephrine hydrochloride	76
46 The oxidation of amino alcohol (89) with MnO ₂	78
47 The protection of hydroxyl group at phenolic position with	
<i>t</i> -butyldimethylsilyl chloride	79
48 The oxidation of protected amino alcohol (90) with potassium	
permanganate and copper (II) sulfate	80
49 The reduction of amino ketone (91) with (R) -MeCBS and BH ₃ -THF	83
50 The proposed mechanism of reduction of amino ketone (91) with	
(R)-2-methyl-CBS-oxazaborolidine and borane-tetrahydrofuran complex	84
51 The reduction of amino ketone (91) with $(+)$ -B-chlorodiisopino-	
campheylborane	85

52 The proposed mechanism of reduction of amino ketone (91) with	
(+)-B-chlorodiisopinoampheylborane	85
53 The reduction of amino ketone (91) with	
(-)-B-chlorodiisopinocampheylborane	86
54 The reduction of amino ketone (91) with lithium aluminium hydride	
with (R)-1,1-binaphthol	86
55 The reduction of amino ketone (91) with lithium aluminium hydride	
with (S)-1,1-binaphthol	87
56 The proposed mechanism of reduction of amino ketone (91) with	
lithium aluminium hydride with (R) -1,1-binaphthol	88
57 The reduction of amino ketone (91) with sodium borohydride and	
L-tartaric acid	89
58 The reduction of amino ketone (91) with sodium borohydride and	
β -cyclodextrin	89
59 The reduction of amino ketone (91) with baker's yeast	90
60 The reduction of amino ketone (91) with <i>Daucus carota</i> from carrot	90
61 The (<i>R</i>)-phenylephrine synthesis pathway	94
62 The synthesis pathway for racemic phenylephrine and racemic	
phenylephrine hydrochloride	95
63 The synthesis pathway for (R) -phenylephrine (2) and (R) -phenylephrine	
Hydrochloride (3)	97

LIST OF FIGURES

LIST OF FIGURES	
Figure	Page
1 The ¹ H-NMR spectra of aldehyde (83) and alkene (84)	62
2 The IR spectra of aldehyde (83) and alkene (84)	63
3 The ¹ H-NMR spectrum of epoxide (85)	66
4 The IR spectrum of epoxide (85)	66
5 The ¹ H-NMR spectra of synthesized (\pm)-phenylephrine hydrochloride	
and its standard	69
6 The ¹ H-NMR spectra of (\pm)-phenylephrine and its standard	70
7 The ¹ H-NMR spectrum of bromohydrin (86)	73
8 The fragmentation of amino alcohol (89) in the mass spectrum	76
9 The IR spectrum of amino alcohol (89)	77
10 The ¹ H-NMR spectrum of amino alcohol (89)	77
11 The fragmentations of amino ketone (107) in the mass spectrum	78
12 The ¹ H-NMR spectrum of protected amino alcohol (90)	79
13 The IR spectra of protected amino alcohol (90) and protected	
amino ketone (91)	81
14 The ¹ H-NMR spectrum of protected amino ketone (91)	82
15 The ¹ H-NMR spectrum of (R) -phenylephrine hydrochloride	92
16 The ¹ H-NMR spectrum of (R)-phenylephrine	93

ABBREVIATIONS AND SYMBOLS

Ac	acetyl
Ar	aromatic
Bn	benzyl
Boc	di-t-butyl dicarbonate
br	broad
Bu	butyl
Cbz	benzylformate
CD	cyclodextrin
cm ⁻¹	reciprocal centimeter (wave number)
d	doublet
DCC	N,N'-dicyclohexylcarbodiimide
dd	doublet of doublet
DIP-Cl	B-chlorodiisopinocampheylborane
DMAP	N,N'-dimethylaminopyridine
DMSO	dimethylsulfoxid

ee	enantiomeric excess
Et	ethyl
FT-IR	fourier transform infra-red specscopy
g	gram (s)
h	hour (s)
HRMS	high resolution mass spectroscopy
J	coupling constant
LAH	lithium aluminium hydride
Lit.	literature
m	multiplet
m-CPBA	meta-chloroperoxybenzoic acid
Me	methyl
MeCBS	(R)-2-methyl-CBS-oxazaborolidine
MEM	methoxyethoxymethyl
m.p.	melting point
min	minute (s)
mL	milliliter

xvii

xviii

mmol	millimol
МТРА	α -Methoxy- α -trifluoromethylphenylacetic acid
NBS	N-bromosuccinimide
NMR	nuclear magnetic resonance
Ph	Phenyl
ppm	parts per million
s	singlet
t	triplet
TBAB	tetra-N-butylammonium bromide
TBDMS	<i>t</i> -butyldimethylsilyl
THF	tetrahydrofuran
TLC	Thin layer chromatography
TMS	tetramethylsilane
Ts	tosyl
°C	degree Celcius
v	wave number (cm ⁻¹)

[α]_D

specific rotation

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved