
CHAPTER 2

INFORMATION EXTRACTION BACKGROUND

 Information Extraction (IE) [16] is any process which selectively structures and

combines data which is found, explicitly stated or implied, in one or more texts. It is a

part of text mining that refers to the process of extracting patterns or knowledge from

unstructured text documents. It can be viewed as an extension of data mining or

knowledge discovery [17]. The most natural form of storing information is in text where

each text element depends on the topic fields. This thesis focuses on the biological

extraction of textual information from literature which is related to specific functional

genomics. Chapter 1 explored how biological terms are very special and have a different

form from other words. Hence, the preliminary of bio text mining and techniques which

are used for information extraction is explained in the next section.

2.1 Introduction

The large volume of biological or biomedical literature and its continuing fast growth

has created an increasingly important need for text mining tools. Text mining and

information-extraction approaches have been developed to extract relevant information

such as proteins, and DNA Analysis with the aim of helping biologists to transform

available data into usable information and knowledge.

 In biology, the information resources available are, essentially, a vast collection of

databases that cover a broad range of source types such as keywords, protein sequences,

10

abstracts and structural information. In addition, some databases focus on specific aspects

of protein function. The primary source of free textual data information in molecular

biology and biomedicine is Medline, which is a collection of more than 12,000,000

abstracts maintained by the National Library of Medicine (NLM) that is commonly

accessed by biologists using the PubMed suite as shown in Figure 2.1

Figure 2.1 Number of MEDLINE-indexed articles published per year

 In general, text mining applications take advantage of a range of domain-

independent methods such as part of speech (POS) taggers, which label each word with

its corresponding part of speech (e.g. noun, verb or adjective), or stemmers, which are

algorithms that return the morphological root of a word form. Also, domain specific tools

and resources such as protein taggers and ontologies are employed. Information

extraction attempts to identify biologically meaningful semantic structures within free

text using strategies based on POS information, ontologies or the identification of

11

patterns. An example of the use of information extraction applications in molecular

biology is the identification of protein interactions.

 In the biological domain, extracted entities often correspond to proteins, genes,

diseases or chemical compounds, for which automated identification methods are often

incorporated. For the extraction of entities, parsing tools and POS taggers that can detect

verbs of interest are also often useful. The pattern matching and syntactic analysis

techniques can also highlight relevant text passages from large abstract collections.

 For the analysis of biological literature using NLP, the field of NLP is concerned

with the analysis of free textual information and has been applied recently in the context

of molecular biology. Biological text mining approaches also involve analyzing and

extracting information from large collections of free textual data by using automatic or

semiautomatic systems. Currently, text mining applications are being employed in the

identification of biological entities such as protein or gene names, automated protein

annotation, analysis of microarrays and extraction of protein–protein interactions.

 However, generating new insights to direct future research is far more complex.

The goal of knowledge discovery is to find hidden information in the literature by

exploring the internal structure of the knowledge network created by the textual

information. Knowledge discovery could be of major help in the discovery of indirect

relationships, which might imply new scientific discoveries. Such new discoveries might

provide hints for experts working on specific biological processes.

 There are many applications relates with biological text mining such as information

retrieval of biological articles, DNA expression arrays, functional annotation and tagging

12

biological entities. In biomedical literature, the identification of biological entities such as

gene and protein names, chemical compounds and diseases is crucial for facilitating the

retrieval of relevant documents and the identification of relationships between those

biological entities (e.g. between proteins and diseases). Most TM systems have not relied

on ontologies or terminologies, which is a main reason why biomedical TM systems

generally provide poorer results compared to other domains (e.g. newswire) [18].

Biological language and vocabulary is highly complex and rapidly evolving, making the

identification of entities a cumbersome task, especially in the case of protein and gene

names. When labeling text relative to the occurrence of genes or proteins, several

obstacles are encountered. First, a variety of alternative expressions can occur that refer

to the same protein object are often encountered; proteins might be mentioned in

documents in terms of gene symbols, protein names, synonymous gene names and

typographical variants. Moreover, some gene symbols are ambiguous and might

correspond to disease names or experimental methods. These are all reasons why bio text

mining is still a challenging task [4].

2.2 Effectiveness of General Term in Biological Literature

 2.2.1 Introduction

 From the last section, terms or words are referred to be the main reason of the

different from other topics. In this section, text analysis is studied. One of the text

analysis methods is a tokenization technique which is the process of extracting plain

words and terms from a document and stripping out administrative metadata and

13

structural or formatting elements. This operation needs to be performed prior to indexing

or before converting documents to vector representations that are used for retrieval or

categorization. Tokenization appears to be a straightforward problem but in many

practical situations the task can actually be quite challenging. The simplest approach

consists of reducing the document to an unstructured representation such as a plain

sequence of words with no particular relationship among them other than a serial order,

removing tags, and perhaps converting strings that encode international characters to a

standard representation. The resulting unstructured representation allows simple queries

to be run related to the presence of terms and to their positional vicinity.

After plain text is extracted, punctuation and other special characters need to be

stripped off. In addition the character case may be folded to reduce the number of index

terms. However these strings are not necessarily entire words. Words are typically split

into fragments and separate show commands are issued for each of the fragments. Hence,

it is necessary to track the position of each string and use information about the font in

order to correctly reconstruct word boundaries.

 2.2.2 Methods and Dataset

 To study the effectiveness of general term which appear in biological literature, the

experiment framework is designed as shown in Figure 2.2

14

Figure 2.2 The framework of effectiveness of general term in biological literature

From Figure 2.2, the biological documents from NCBI are collected. Then, general

terms are counted and transformed to the matrix of general terms /documents. After that,

the matrix will scale with TF-IDF and visualized by Principle Component Analysis

(PCA). The graph in Figure 2.2 shows the expectation of how general terms could

represent its class. The methods used in this experiment as follow:

 1) Term-document matrix scaling by TF-IDF

For the case of two sparse vectors x and y associated with two documents A and

A’, the above sum can be computed efficiently in time Ω (|A| + |A’|). Several refinements

can be obtained by extending the Boolean vector model and introducing real valued

weights associated with terms in a document. A more informative weighting scheme

consists of counting the actual number of occurrences of each term in the document. In

this case xj ∈ N counts term occurrences in the corresponding document. x may be

multiplied by the constant 1/|A| to obtain a vector of term frequencies (TF) within the

document. An important family of weighting schemes combines term frequencies (which

are relative to each document) with an absolute measure of term importance called

15

inverse document frequency (IDF). IDF importance decreases as the number of

documents in which the term occurs increases in a given collection. Hence, terms that are

globally rare receive a higher weight. Formally, let D = {A1, . . . , An} be a collection of

documents and for each term ωj let nij denote the number of occurrences of ωj in Ai and nj

the number of documents that contain ωj at least once.

Define,

𝐼𝐷𝐹𝑗 = 𝑙𝑜𝑔
𝑛𝑗

𝑛
 (2.1)

𝑇𝐹𝑖𝑗 =
𝑛𝑖𝑗

|𝑑𝑖|
 (2.2)

Here the logarithmic function is employed as a damping factor. The TF–IDF weight

of ωj in di can be computed as

𝑥𝑖𝑗 = 𝑇𝐹𝑖𝑗 ∙ 𝐼𝐷𝐹𝑗
(2.3)

The IDF weighing is commonly used as an effective heuristic. A theoretical

justification has been recently proposed by Papineni (2001) [19].

 2) General terms visualization by Principle Component Analysis (PCA)

 PCA is a technique that is useful for the compression and classification of data. The

purpose is to reduce the dimensionality of a data set (sample) by finding a new set of

variables, smaller than the original set of variables, which nonetheless retains most of the

sample's information. By information we mean the variation present in the sample, given

by the correlations between the original variables. The new variables, called principal

components (PCs), are uncorrelated, and are ordered by the fraction of the total

16

information each retains. The other main advantage of PCA is that once you have found

these patterns in the data, you can compress the data, by reducing the number of

dimensions, without much loss of information. The PCA is computed by determining the

eigenvectors and eigenvalues of the covariance matrix. The covariance of two random

variables is their tendency to vary together [20]. This is expressed as:

𝑐𝑜𝑣(𝑋, 𝑌) = 𝐸[𝐸[𝑋] − 𝑋] · 𝐸[𝐸[𝑌] − 𝑌]
(2.4)

where E[X] denotes the expected value of X. For sampled data this can be explicitly

written out as:

𝑐𝑜𝑣(𝑋, 𝑌) = ∑
(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)

𝑁

𝑁

𝑖=1

(2.5)

With �̅� = mean(X) and �̅� = mean(Y) cov(X, X) = var(X), and for independent variables

cov(X, Y) = 0. The covariance matrix is a matrix A with elements Ai,j = cov(i, j). The

covariance matrix is square and symmetric. For independent variables, the covariance

matrix will be a diagonal matrix with the variances along the diagonal. To calculate the

covariance matrix from a dataset, first center the data by subtracting the mean of each

sample vector. Considering the columns of the data matrix A as the sample vectors, we

can write the elements of the covariance matrix C as:

𝑐𝑖𝑗 =
1

𝑁
∑ 𝑎𝑖𝑗

𝑁

𝑖=1

𝑎𝑗𝑖
(2.6)

written in matrix form:

17

𝐶 =
1

𝑁
𝐴𝐴𝑇 (2.7)

Often the scale factor 1/N is distributed throughout the matrix and the covariance matrix

is written simply as 𝐴𝐴𝑇 . The eigenvectors of the covariance matrix are the axes of

maximum variance. The PCA technique is widely used because of the fact that in many

datasets, a majority of the variance of the data can be captured by a small subset of the

eigenvectors.

 3) Dataset

 120 abstracts from the NCBI were used as the dataset. They are 4 classes

[Evolution, Genetics, Genome Studied and Molecular Biology].The corpus is in the XML

platform format.

 2.2.3 Results and discussion

Term-document matrix were scaled by IF-IDF, (equations 2.3) as is shown in Figure

2.3

Figure 2.3 Term-document matrix scaling by TF-IDF

18

TF-IDF is mentioned that can find documents that make frequent use of said words

and determine if they are relevant in the document. Then to study the effectiveness of

general term in biological literature, the matrix with TF-IDF is visualized by PCA. The

results is shown in Figure 2.4,

Figure 2.4 Abstracts classification with general term by TF-IDF Scaling

From Figure 2.4, the results showed that general terms could not represent text or

document for each class well. In a biological content, many terms appear in every class.

Hence, general terms were not enough for biological information extraction.

2.3 Biological Information Retrieval using Latent Semantic Indexing

 2.3.1 Introduction

The information in the literature and documents is currently increasing. In order to

extract knowledge, information retrieval of all relevant documents is essential. The

19

ultimate goal of information retrieval and extraction is the automatic transformation of

unstructured textual information into a structured form [21]. According to information

extraction is a sub-task of information retrieval where the goal is to extract structured

information from unstructured text, section 2.2 focused on the effectiveness of retrieval

of general terms in the biological literature. This section aimed to study the effectiveness

of general terms to the biological information retrieval system.

 2.3.2 Methods and Dataset

The experiment framework is designed. After scaling by TF-IDF, eigenvectors are

generated with Latent Semantic Indexing (LSI). Then information retrieval performance

is tested with query vector by the Cosine Similarity technique as Figure 2.5.

 Figure 2.5 The framework of biological information retrieval using LSI

The methods which used in this section were LSI and Cosine Similarity as follow,

20

 1) Latent Semantic Indexing (LSI)

This retrieval approach is based on vector space similarities that can reach

satisfactory recall rates only if the terms in the query are actually present in the relevant

documents. Natural language has a very rich expressive power and even at the lexical

level, the large variability due to synonymy and polysemy can cause serious problems for

retrieval methods based on term matching. Synonymy means that the same concept can

be expressed using different sets of terms. Synonymy negatively affects recall. Polysemy

means that identical terms can be used in very different semantic contexts. Polysemy

negatively affects precision. Overall, synonymy and polysemy lead to a complex relation

between terms and concepts that cannot be captured through simple matching.

Thus, although a query may conceptually be very close to a given set of documents,

its associated vector could be orthogonal or nearly orthogonal to those document vectors,

simply because the authors of the document and the user have a different usage of

language. Another more statistical way of thinking about this is to observe that the

number of terms that are present in a document is a rather small fraction of the entire

dictionary, reducing the likelihood that two documents use the same set of words to

express the same concept.

Latent Semantic Indexing (LSI) is a statistical technique that attempts to estimate the

hidden structure that generates terms for given concepts. It uses a linear algebra technique

known as Singular Value Decomposition (SVD) to discover the most important

associative patterns between words and concepts. LSI is a data driven method, where a

21

large collection of sentences or documents is employed to discover the statistically most

significant co-occurrences of terms.

- LSI and text documents

Let X denote a term–document matrix, defined as

Each row in the matrix is simply the vector-space representation of a document. In

LSI each column contains the occurrences of a term in each document in the data set. The

LSI technique consists of computing the SVD of X and setting to zero all the singular

values except the largest K ones. In practical applications K is often set to values between

100 and 1000. This can be seen as analogous to the PCA dimensionality reduction:

documents are mapped to a lower-dimensional latent semantic space induced by selecting

directions of maximum covariance. The reconstructed matrix �̂� is not as sparse as the

original matrix X. The new term weights account for word co-occurrences and appear to

infer relations among words that pertain to synonymy, at least in a loose sense. When

performing the numerical computation of the SVD of a very large document matrix, it is

important to take advantage of sparsity. A variety of well-known numerical methods for

computing the SVD of sparse matrices can be brought to bear (Berry and Browne 1999)

[22].

Latent semantic indexing (LSI) is a statistical technique that attempts to estimate the

hidden structure that generates terms given concepts [22]. It uses a linear algebra

technique known as singular value decomposition (SVD) to discover the most important

associative patterns between words and concepts. LSI is a data-driven method, where a

𝑋 = [𝑥1 ∙∙∙ 𝑥𝑛]𝑇
(2.8)

22

large collection of sentences or documents is employed to discover the statistically most

significant co-occurrences of terms.

Let X denote a term–document matrix, defined as 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛]𝑇, where each

row in the matrix is simply the vector-space representation of a document. In LSI, use the

occurrence counts as components. Each column contains the occurrences of a term in

each document in the data set. The LSI technique consists of computing the SVD of X

and setting to zero all the singular values except the largest k ones (k is the dimension).

Documents are mapped to a lower dimensional latent semantic space induced by

selecting directions of maximum covariance. Performing SVD in this example yields a

singular value Matrix. The reconstruction of X is obtained as X^ = US^V T. The new term

weights account for word co-occurrences and appear to infer relations among words that

pertain to synonymy, at least in a loose sense. SVD has inferred a link between features

through the co-occurrences of other words (they never occur together).When performing

the numerical computation of the SVD of a very large document matrix, it is important to

take advantage of sparsely. A variety of well-known numerical methods for computing

the SVD of sparse matrices can be brought to bear.

For the LSI process, words in the document are transformed into a vector form to

construct the term-document and query matrices, then decompose the matrix term-

document matrix X as X= USVT to rank documents in a decreasing order of query-

document cosine similarities [23]. The Similarity is measured by the dot product between

the query and document vector coordinates divided by the product of the norms of the

query and document vectors.

23

 2) Cosine Similarity

 A Boolean query to a search engine may return several thousand matching

documents, but a typical user will only be able to examine a small fraction of these.

Ranking matching documents according to their relevance to the user is therefore a

fundamental problem. In this section will review some classics models.

- The vector space model and document similarity

 Text documents can be conveniently represented in a high dimensional vector space

where terms are associated with vector components. More precisely, a text document d

can be represented as a sequence of terms, d = (ω(1), ω(2), . . . , ω(|d|)), where |d| is the

length of the document and ω(t) ∈ V . A vector-space representation of d is then defined

as a real vector x ∈ R|V |, where each component xj is a statistic related to the occurrence

of the j th vocabulary entry in the document. The simplest vector based representation is

Boolean, i.e. xj ∈ {0, 1} indicates the presence or the absence of term ωj in the document

being represented. Vector based representations are sometimes referred to as a bag-of-

words, emphasizing that document vectors are invariant with respect to term

permutations, since the original word order ω(1), . . . , ω(|v|) is clearly lost.

Representations of this kind are appealing for their simplicity. Moreover, although they

are necessarily lossy from an information theoretic point of view, many text retrieval and

categorization tasks can be performed quite well in practice using the vector space model.

The total number of terms in a set of documents is much larger than the number of

distinct terms in any single document, |V| >> |d|, so that vector space representations tend

24

to be very sparse. This property can be advantageously exploited for both memory

storage and algorithm design.

Two documents A and A' are defined similarity as a function s(d, d') ∈ R. This

function allows ranking documents with respect to a query (by measuring the similarity

between each document and the query). A classic approach is based on the vector space

representation and the metric defined by the cosine coefficient (Salton and McGill 1983)

[24]. This measure is simply the cosine of the angle formed by the vector-space

representations of the two documents, x and x' (see Figure 2.6)

Figure 2.6 Cosine measure of document similarity

𝑐𝑜𝑠(𝑥, 𝑥′) =
𝑥𝑇𝑥′

‖𝑥‖ ∙ ‖𝑥′‖
=

√𝑥𝑇𝑥′

√𝑥𝑇𝑥′ ∙ √𝑥𝑇𝑥′

(2.9)

where the superscript T denotes the transpose operator and xTy indicates the dot

product or inner product between two vectors x, y ∈ Rm, defined as

25

𝑥𝑇𝑦 = ∑ 𝑥𝑖𝑦𝑖

𝑚

𝑖=1

(2.10)

The case of two sparse vectors x and y associated with two documents A and A’, the

above sum can be computed efficiently in time Ω (|A| + |A’|). Several refinements can be

obtained by extending the Boolean vector model and introducing real valued weights

associated with terms in a document.

 3) Dataset

 120 abstracts from NCBI were used as the dataset. They were 4 classes [Evolution,

Genetics, Genome Studied and Molecular Biology].The corpus is in the XML platform

format. (The same as section 2.3)

 2.3.3 Results and Discussion

In the validation step, the performance of this work was evaluated by precision and

recall values. Precision 𝜋 (equation 2.11) is defined as the fraction of retrieved

documents that are actually relevant. Recall 𝜌 (equation 2.12) is defined as the fraction of

relevant documents that are retrieved by the system. Then, harmonic mean of precision

and recall are weighted with the traditional F-measure. The concept is as follow,

Let’s consider a collection of n documents D. Each document is represented by an m-

dimensional vector, where m = |V | and V is the set of terms that occurred in the

collection. Let q ∈ Rm denote the vector associated with a user query (terms that are

present in the query but not in V will be stripped off). Each document is then assigned a

score, relative to the query, by computing s(xi , q), i = 1, . . . , n. The set R of retrieved

26

documents that are presented to the user can be formed by collecting the top ranking

documents according to the similarity measure. The quality of the returned collection can

be defined by comparing R to the set of documents R* that is actually relevant to the

query. Two common metrics for comparing R and R* are precision and recall. Precision

π is defined as the fraction of retrieved documents that are actually relevant. Recall that ρ

is defined as the fraction of relevant documents that are retrieved by the system. More

precisely,

𝜋 =
|𝑅 ∩ 𝑅∗|

|𝑅|
 (2.11)

𝜌 =
|𝑅 ∩ 𝑅∗|

|𝑅∗|
 (2.12)

In this context the ratio between relevant and irrelevant documents is typically very

small. For this reason, other common evaluation measures like accuracy or error, where

the denominator consists of |D|. Sometimes precision and recall are combined into a

single number called Fβ measure defined as

𝐹𝛽 =
(𝛽2 + 1)𝜋𝜌

𝛽2𝜋 + 𝜌
 (2.13)

The F1 measure is the harmonic mean of precision and recall. If β tends to zero (∞) the

Fβ measure tends to precision (recall).

The results of experiment showed in Table 2.1

27

Table 2.1 Information retrieval model performance which generated by general terms

and LSI

 Recall (%) Precision (%) F-Measure (%)

General Terms + LSI 65.00 67.00 7565.98

 The result from Table 2.1, the model returned precision value higher than recall by

2%. This shows that the model returns fewer false positives than false negatives. LSI

helped to discover the most important associative patterns between words and concepts.

But the F-measure returns only almost 66%. This showed that the general terms still were

not enough for a general information retrieval system.

2.4 Biological Text Classification using Machine Learning Techniques

 2.4.1 Introduction

Biological Information extraction can relate to many techniques. The section above

presented general terms which were used for factor in machine learning not only in

information extraction but also in information retrieval. The results showed that general

terms still could not represent its class well. Hence, this work focused on generating

general terms as features. The feature selections based on machine learning were studied

and used to generate classification models.

 2.4.2 Methods and Dataset

The framework of this work was divided into two processes. The first was feature

selection based on machine learning. The matrix scaling by TF-IDF was selected to be

28

the feature for the feature selection models. This work focused on traditional techniques

such as Information Gain, Mutual Information and Odd Ratio while another was

classification models. The k-nearest neighbor, Naïve Byes and Support Vector Machines

were the scope which studied as Figure 2.7,

 Figure 2.7 The framework of bioinformatics-text classification using machine

learning techniques

Three of the most important and effective machine learning algorithms that are often

applied to text classification: k-nearest neighbors (k-NN), Naive Bayes, and Support

Vector Machines (SVMs) are briefly reviewed.

1) Text Classification models

- k-Nearest Neighbors

k-NN is a memory based classifier that learns by simply storing all the training

instances. During prediction, the k-NN algorithm first measures the distances between a

new point x and all the training instances, returning the set N(x, D, k) of the k points that

are closest to x. For example, if training instances are represented by real-valued vectors

29

x, the Euclidean distance is used to measure the distance between x and all other points in

the training data, i.e.

where i = 1, . . . , n.

After calculating the distances, the algorithm predicts a class label for x by a simple

majority voting rule using the labels in the elements of N(x, D, k), breaking ties

arbitrarily. In spite of its apparent simplicity, k-NN is known to perform well in many

domains. The results by Cover and Hart (1967) [25] show that the asymptotic error rate

of the 1-NN classifier (as the size of the training data set gets infinitely large) is always

less than twice the optimal Bayes error (which is the lowest possible error rate achievable

by any classifier in a particular feature space x). In the case of texts, the majority voting

can be replaced by a smoother metric where, for each class c,

a scoring function is computed through vector-space similarities between the new

documents and the subset of the k neighbors that belong to class c, where Nc(x, D, k) is

the subset of N(x, D, k) containing only points of class c. Despite the simplicity of the

method, the performance of k-NN in text categorization is quite often satisfactory in

practice. Han et al. (2001) [26] have proposed a variant of k-NN where the weights

associated with features are learned iteratively while the other statistically motivated

||x−xi||
2

(2.14)

𝑠(𝑐|𝑥) = ∑ cos(𝑥, 𝑥′)

𝑥′∈𝑁𝑐(𝑥,𝐷,𝑘)

 (2.15)

30

techniques that extend the basic k-NN classifier are also discussed in Hastie et al. (2001)

[27]

- Naïve Bayes

This classifier attempts to estimate the conditional probability of the class given the

document, namely P(c | d), for c = 1, . . . , S. Using Bayes’ theorem, it can write this

probability as

𝑃(𝑐|𝑑, 𝜽) =
𝑃(𝑑|𝑐, 𝜽)𝑃(𝑐|𝜽)

𝑃(𝑑|𝑑, 𝜽)
𝛼 𝑃(𝑑|𝑐, 𝜽)𝑃(𝑐|𝜽) (2.16)

where θ are the parameters of the model. The classes are assumed to be mutually

exclusive, the term that can be thought of as a normalization factor guarantees that Σ c

P(c | d) = 1. The key idea behind the Naive Bayes classifier is the assumption that the

terms in a document are conditionally independent given the class. This assumption is

clearly false in many if not most practical situations, but it is often adequate to first order

for the bag of words representation, where word order in the document is not taken into

account. Ng and Jordan (2002) [28] mention that this should discriminate among classes,

not in a high quality generative model of the document given the class. In practice, the

classifier is known to work satisfactorily even when the conditional independence

assumption is known not to hold (Domingos and Pazzani 1997) [29]

There is a subtle issue concerning the interpretation of the document in terms of a

probabilistic event (McCallum and Nigam 1998) [30]. If the document as a whole is

considered to be an event, then it should be naturally described by a bag of words, and

the words are the attributes of this event. In this case, each vocabulary term is associated

31

with a Bernoulli attribute whose realization is unity if the term appears in the document,

and zero otherwise. In addition to reducing documents to bags of words, the Naive Bayes

model postulates that binary attributes are mutually independent given the class.

The conditional independence assumption in this model can be depicted graphically

using a Bayesian network, suggesting that the class is the only cause of the appearance of

each word in a document.

Figure 2.8 A Bayesian network for the Naive Bayes classifier under the Bernoulli

document-based event model.

The example document is the sentence in which appears words 𝑥𝑗 and 𝑥𝑘. Under this

model, generating a document is like tossing |V | independent coins and the occurrence of

each word in the document is a Bernoulli event. Therefore, the generative portion of

equation (2.16) is

𝑃(𝑑|𝑐, 𝜽) = ∏ 𝑥𝑗

|𝑉|

𝑗=1

𝑃(𝜔𝑗|𝑐) + (1 − 𝑥𝑗)[1 − 𝑃(𝜔𝑗|𝑐)]
(2.17)

32

where xj = 1 [0] means that word ωj does [does not] occur in d and P(ωj | c) is the

probability of observing word ωj in documents of class c. Here θ represents the set of

probabilities (or parameters) P(ωj | c), which is the probability of the binary event that

word ωj is within class c. Alternatively, a document can be viewed as a sequence of

events W1, . . . , W|d|. Each observed Wt has a vocabulary entry (from 1 to |V |) as an

admissible realization. In addition, since the document is a sequence, serial order among

words should also be taken into account when modeling P(W1, . . . , W|d|| c). This could be

done, for example, by using a Markov chain. A simplifying assumption, however, is that

word occurrences are independent of their (relative) positions, given the class.

Equivalently, it is assumed that the bag of words representation retains all the relevant

information for assessing the probability of a document whose class is known. Under the

word based event model, generating a document is like throwing a die with |V | faces |d|

times, and the occurrence of each word in the document is a multinomial event. Hence,

the generative portion of the model is a multinomial distribution.

𝑃(𝑑|𝜽) = 𝐺𝑃(|𝑑|) ∏ 𝑃(𝜔𝑗|𝑐)
𝑛𝑗

|𝑉|

𝑗=1

(2.18)

where nj is the number of occurrences of word ωj in d, and P(ωj | c) is the probability

that word ωj occurs at any position t ∈ [1, . . . , |d|]; because of the bag of words

assumption this does not depend on t . Here the parameters θ are the set of probabilities

P(ωj | c), where now Σ j=1 |V |P(ωj | c) = 1. McCallum and Nigam (1998) [31] found

empirically that the multinomial model outperforms the Bernoulli model in several

evaluation benchmarks. The bag of words assumption results in a factorization of P(W1, .

33

. . , W|d| | c) explaining why the Naive Bayes is often used in the literature to refer to both

event models. The normalization factor is the multinomial coefficient

𝐺 =
|𝑑|!

∏ 𝑛𝑗!𝑗

(2.19)

Neither P(|d|) nor G are needed for classification, hence |d|, the number of words or

terms in a document is assumed to be independent of the class. This last assumption can

be removed and P(|d| | c) explicitly modeled. Models of document length (e.g. based on

Poisson distributions) have been used for example in the context of probabilistic retrieval.

Note that in the case of the Bernoulli model there are 2|V | possible different documents,

while in the case of the multinomial model there is an infinite (but countable) number of

different documents.

An additional model that may be developed that lies somewhere in between the

Bernoulli and the multinomial models consists of keeping the document based event

model but extending Bernoulli distributions to integer distributions, such as the Poisson

(Lewis 1998) [32]. Finally, extensions of the basic Naive Bayes approach that allow

limited dependencies among features have also been proposed (Friedman and Goldszmidt

1996; Pazzani 1996) [33, 34]. However, these models are characterized by a larger set of

parameters and may overfit the data (Koller and Sahami 1997) [35]. Teaching a Naive

Bayes classifier consists of estimating the parameters θ from the available data. It

assumes that the training data set consists of a collection of labeled documents {(di, ci), i

= 1, . . . , n}. In the Bernoulli model, the parameters θ include θc,j = P(ωj | c), j = 1, . . . ,

|V |, c = 1, . . . , K. These are estimated as normalized sufficient statistics

34

𝜃𝑐,𝑗 =
1

𝑁𝑐
∑ 𝑥𝑖𝑗

𝑛

𝑖:𝑐𝑖≔𝑐

(2.20)

where Nc = |{i : ci = c}| and xij = 1 if ωj occurs in di . Additional parameters are the class

prior probabilities θc = P(c), which are estimated as

𝜃𝑐 =
𝑁𝑐

𝑛

(2.21)

The estimates above correspond to machine learning estimates of the parameters.

Bayesian estimates can be quite useful when estimating parameters from sparse data. A

model based on Machine Learning parameter estimates would assign a probability of zero

to that document, irrespective of how well the other words in the document matched class

c. On the other hand, a model based on Bayesian estimates would assign that word-class

combination a low nonzero probability and still allow the other words to play a role in

determining the final class prediction for the document. In the case of the multinomial

model of equation (2.18), the generative parameters are θc,j = P(ωj | c). These parameters

must satisfy Σj θc,j = 1 for each class c. To estimate these parameters it is common

practice to introduce Dirichlet priors. The resulting estimation equations are derived as

follows. In the case of the distributions of terms given the class, a Dirichlet prior with

hyperparameters qj and α, results in the estimation formula

𝜃𝑐,𝑗 =
𝛼𝑞𝑗 + ∑ 𝑛𝑖𝑗

𝑛
𝑖:𝑐𝑖=𝑐

𝛼 + ∑ ∑ 𝑛𝑖𝑗𝑖:𝑐𝑖=𝑐
|𝑉|
𝑙=1

(2.22)

where nij is the number of occurrences of ωj in di . A simple non-informative prior

assigns qj = 1/|V | and α = |V |. Intuitively, this prior corresponds to the assumption that

35

each word is observed exactly once in one document of each class. This method (also

known as Laplace smoothing) prevents the problem of estimating a null value for a

parameter if a certain term ωj never occurs in documents of a given class c in the training.

Similarly, the estimation formula for the (unconditional) class probabilities is

𝜃𝑐 =
𝑞𝑐

′ 𝛼 , + 𝑁𝑐

𝛼 , + 𝑛

(2.23)

 - Support Vector machines (SVMs)

Support vector machines (SVMs) were introduced in Cortes and Vapnik (1995) [35]

to extend earlier seminal work by Vapnik on statistical learning theory. The basic

underlying idea, often referred to as structural risk minimization is closely related to the

theory of regularization but also to Bayesian approaches to learning (Evgeniou et al.

2000) [36] and is essentially guided by the principle that the hypothesis that explains a

finite set of examples should be searched in an appropriately small hypothesis space.

SVMs are particularly well suited to deal with high dimensional data such as vector

space representations of text documents. In their standard formulation, they deal with the

binary classification problems where the number of classes is restricted to two.

Consider a training set D = {(xi, yi), i = 1, . . . , n} with xi ∈ Rm, and where yi ∈{−1,

1} is an integer that specifies whether xi is a positive or a negative example. A linear

discriminant classifier is then defined by introducing the separating hyperplane

{𝑥 ∶ 𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑤0 = 0}

(2.24)

36

where w ∈ Rm and w0 ∈ R are adjustable coefficients that play the role of model

parameters. A binary classification function h : Rm → {0, 1} can be obtained by taking

the sign of f (x), i.e.

ℎ(𝑥) = {
1, 𝑖𝑓 𝑓(𝑥) > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(2.25)

Learning in this class of models consists of determining w and w0 from the data. The

training examples are said to be linearly separable if there exists a hyperplane whose

associated classification function is consistent with all the labels, i.e. if yi f (xi) > 0 for

each i = 1, . . . , n. see Figure 2.9.

Figure 2.9 Alternative linear decision boundaries for a binary classification problem

 Here, suppose that positive and negative examples are generated by two Gaussian

distributions with the same covariance matrix and that positive and negative points are

generated with the same probability. In such a setting, the optimal (Bayes) decision

boundary is the one that minimizes the posterior probability that a new point is

misclassified and, as it turns out, this boundary is the hyperplane that is orthogonal to the

segment connecting the centers of mass of the two distributions (dotted line).

37

A random hyperplane that just happens to separate training points (dashed line) can

be substantially far away from the optimal separation boundary, leading to poor

generalization to new data. The difficulty grows with the dimensionality of the input

space m since for a fixed n the set of separating hyperplane grows exponentially with m

(a problem known as the curse of dimensionality). Remember that in the case of text

categorization m may be significantly large (several thousands).

The statistical learning theory developed by Vapnik (1998) [37] shows that an

optimal separating hyperplane (relative to the training set) has two important properties:

it is unique for each linearly separable data set, and its associated risk of overfitting is

smaller than for any other separating hyperplane. The margin M of the classifier is

defined to be the distance between the separating hyperplane and the closest training

examples. The optimal separating hyperplane is then the one having the maximum

margin.

Figure 2.10 Illustration of the optimal separating hyperplane and margin. Circled points

are support vectors.

38

From Figure 2.10, the theory suggests that the risk of overfitting for the

maximum margin hyperplane (solid line) is smaller than for the dashed hyperplane.

Indeed, in this example the maximum margin hyperplane is significantly closer to the

Bayes optimal decision boundary. In order to compute the maximum margin hyperplane,

the distance of a point x from the separating hyperplane is observed first,

1

‖𝑤‖
(𝑤𝑇𝑥 + 𝑤0)

(2.26)

Thus, the optimal hyperplane can be obtained by solving the constrained optimization

problem.

min
𝑤,𝑤0

𝑀 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
1

‖𝑤‖
𝑦

𝑖
(𝑤𝑇𝑥 + 𝑤0) ≥ 𝑀, 𝑖 = 1, … , 𝑛

(2.27)

The above problem can be transformed to its dual by first introducing the vector of

Lagrangian multipliers α ∈ Rn and writing the Lagrangian function

ℒ(𝐷) = −
1

2
‖𝑤‖2 + ∑ 𝛼𝑖[𝑦

𝑖
(𝑤𝑇𝑥 + 𝑤0) − 1]

𝑛

𝑖=1

(2.28)

and subsequently setting to zero the derivatives of (2.30) with respect to w, w0, obtaining

max
𝛼

−
1

2
𝛼𝑇Λ𝛼 + ∑ 𝛼𝑖

𝑛

𝑖=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝛼𝑖 ≥ 0 , 𝑖 = 1, … , 𝑛

(2.29)

where ʌ is an n × n matrix with λij = yiyj𝒙𝒊
𝑻 xj . This is a quadratic programming (QP)

problem that can be solved, in principle, using standard optimization packages. For each

training example i,

39

𝛼𝑖[𝑦𝑖(𝑤𝑇𝑥 + 𝑤0) − 1] = 0
(2.30)

and therefore either αi = 0 or yi (w
Tx + w0) = 1. In other words, if αi > 0 then the distance

of point xi from the separating hyperplane must be exactly M (see Figure 2.8). Points with

associated αi > 0 are called support vectors. The decision function h(x) can be computed

via equation (2.25) or, equivalently, from the following dual form:

𝑓(𝑥) = ∑ 𝑦𝑖𝛼𝑖

𝑛

𝑖=1

𝑥𝑇𝑥𝑖
(2.31)

It is important to point out that in the case of text classification it may be very

important to exploit the sparseness of the data vectors while computing dot products in

Equations (2.31) and (2.32). If the training data are not linearly separable, then this

analysis can be generalized by introducing m nonnegative slack variables ξi and replacing

the optimization problem in equation (2.29) with

min
𝑤,𝑤0

 ‖𝑤‖ + 𝑐 ∑ 𝜉𝑖

𝑛

𝑖=1

subject to {
𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑤0) ≥ 1 − 𝜉𝑖, 𝑖 = 1, , , , , 𝑛
𝜉𝑖 ≥ 0, 𝑖 = 1, , , , , 𝑛

(2.32)

where the constant C controls the cost associated with misclassifications. This problem

can also be dualized in the form.

max
𝛼

−
1

2
𝛼𝑇Λ𝛼 + ∑ 𝛼𝑖

𝑛
𝑖=1 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1, … , 𝑛 (2.33)

 The classifier obtained in this way is commonly referred to as a support vector

machine (SVMs).

40

If the data are considerably nonlinearly separable then an SVMs classifier will have a

low accuracy, i.e. even the best linear hyperplane may be quite inferior in terms of

prediction accuracy relative to a good nonlinear decision boundary. The methods

developed in this section can be further extended to accommodate nonlinear separation

by using kernel functions that map points x ∈ Rm into a higher dimensional space called

the feature space, where data are linearly separable. Details on kernel methods can be

found in Schoelkopf and Smola (2002) [38] and the extraction of conditional probabilities

from multiclass SVMs is studied in Passerini et al. (2002) [39].

2) Feature selection for classification models generating

 In the classification task, the appropriate feature selection leads to an effective

classification model. In this work, Information Gain Measure, Mutual information

measure and Odds ratio measures are selected to be the feature for the generating models.

- Information gain measure

Information gain (IG) measures the amount of information in bits in the class

prediction, if the only information available is the presence of a feature and the

corresponding class distribution. Concretely, it measures the expected reduction in

entropy (uncertainty associated with a random feature) [40]. Given SX the set of training

examples, xi the vector of the ith variables in this set, |𝑆𝑥𝑖=𝑣|/|𝑆𝑥| is the fraction of

examples of the ith variable having the value

𝐼𝐺(𝑆𝑋 , 𝑋𝑖) = 𝐻(𝑆𝑋) = ∑ 𝐻(𝑆𝑥𝑖=𝑣)

|𝑆𝑥𝑖=𝑣|

|𝑆𝑥|

𝒗=𝒗𝒂𝒍𝒖𝒍𝒆𝒔(𝑋𝑖)
 with entrophy (2.34)

41

where 𝐻(𝑆𝑋) = p±(S) is the probability of a training example in the set S to be of the

positive/negative class.

- Mutual information measure

Mutual information, which is also known as information gain or best individual

feature, perhaps is the most naïve measurement. For the candidate feature f, its criterion

function of MI is

 J(f)=I(C; f)=H(f)-H(f|C) (2.35)

where H(f) is information entropy of f and H(f|C) is its conditional value with respect to

C. That is to say, α=1, g(C, f, S)=I(C; f) and δ = 0. This method chooses the best

individual features out of the feature selection procedure [41]. It first evaluates all

candidate features individually according to the criterion function J(f), and then sorts

them in descending order in terms of J(f). After that, the best k features are picked out to

take the place of the whole feature set.

- Odds ratio measure

The Odds Ratio reflects the odds of a word occurring in the positive class normalized

by that of the negative class. It has been used for relevance ranking in information

retrieval.

Let P(t|c) be the probability of a randomly chosen word being t given that the

document it was chosen from belongs to a class c. Then odds(t|c) is defined as P(t|c)/[1–

P(t |c)] and the odds ratio is equal to

 𝑂𝑅(𝑡) = ln[𝑜𝑑𝑑𝑠(𝑡|𝑐+)/𝑜𝑑𝑑𝑠(𝑡|c−)] (2.36)

42

This scoring measure favors features that are representative of positive examples. As

a result a feature that occurs very few times in positive documents but never occurs in

negative documents will get a relatively high score. Thus, many features that are rare

among the positive documents will be ranked at the top of the feature list. Odds ratio is

known to work well in combination with Naïve Bayes [42]

 3) Dataset

480 from the NCBI corpus were used as the dataset. They were part of the group of

papers related to (Bio Medical Text) bioinformatics. This dataset is composed of 4

classes, Evolution, Genetics, Genomes_studies and Molecular Biology.

 2.4.3 Results and Discussion

The classification models were implemented using the R programming language.

The results of the classification model predictions are shown in Table 2.2

Table 2.2 The performance of classifications models with features selections

 From Table 2.2, the classification model generated by the SVMs returned the

highest score prediction while the k-nearest neighbor classification model returned the

 Information Gain

(IG) Measure (%)

Mutual

Information (MI)

Measure (%)

Odds Ratio

Measure

(%)

k-Nearest neighbors 25 24 25

Naive Bayes 50 49 49

Support Vector Machines

(SVMs)

75 73 75

43

lowest score prediction. The feature selection measure, IG measure and Odds Ratio

Measure returned higher score prediction than the MI Measure.

The objective of this work was the preliminary review and comparison of

bioinformatics-text classification models which were generated by using machine

learning techniques; k-nearest neighbor, Naive Bayes and SVMs. The results showed that

the SVMs model was suitable for generating the classification model and feature

selection still remained an important process for text mining.

2.5 Conclusion

 In this chapter, general terms from the biological literature were studied via

machine learning techniques. The results show that the biological texts characteristics are

different from others. Even though, collaborate with the LSI which is a statistical

technique that attempts to estimate the hidden structure that generates terms given

concepts to discovers the most important associative patterns between words and

concepts. The results still show that general terms could represent each class well. In the

classification task, three classic feature selections techniques were selected to study. We

found that feature selection methods (on Odds Ratio IG and MI) based on computational

approaches were not enough for biological text in information extraction while the

classification model performance, SVMs is particularly well suited to deal with high

dimensional data such as vector space representations of text documents than the others.

As these reason, features are important for to be the factor to generate the prediction

44

model. Thus the next chapter, the suitable feature selection from biological literature is

considered to improve the information extraction.

