
CHAPTER 2 

INFORMATION EXTRACTION BACKGROUND 

 

 Information Extraction (IE) [16] is any process which selectively structures and 

combines data which is found, explicitly stated or implied, in one or more texts. It is a 

part of text mining that refers to the process of extracting patterns or knowledge from 

unstructured text documents. It can be viewed as an extension of data mining or 

knowledge discovery [17]. The most natural form of storing information is in text where 

each text element depends on the topic fields. This thesis focuses on the biological 

extraction of textual information from literature which is related to specific functional 

genomics. Chapter 1 explored how biological terms are very special and have a different 

form from other words. Hence, the preliminary of bio text mining and techniques which 

are used for information extraction is explained in the next section. 

 

2.1 Introduction 

The large volume of biological or biomedical literature and its continuing fast growth 

has created an increasingly important need for text mining tools. Text mining and 

information-extraction approaches have been developed to extract relevant information 

such as proteins, and DNA Analysis with the aim of helping biologists to transform 

available data into usable information and knowledge. 

 In biology, the information resources available are, essentially, a vast collection of 

databases that cover a broad range of source types such as keywords, protein sequences, 
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abstracts and structural information. In addition, some databases focus on specific aspects 

of protein function. The primary source of free textual data information in molecular 

biology and biomedicine is Medline, which is a collection of more than 12,000,000 

abstracts maintained by the National Library of Medicine (NLM) that is commonly 

accessed by biologists using the PubMed suite as shown in Figure 2.1 

 

Figure 2.1 Number of MEDLINE-indexed articles published per year 

 In general, text mining applications take advantage of a range of domain-

independent methods such as part of speech (POS) taggers, which label each word with 

its corresponding part of speech (e.g. noun, verb or adjective), or stemmers, which are 

algorithms that return the morphological root of a word form. Also, domain specific tools 

and resources such as protein taggers and ontologies are employed. Information 

extraction attempts to identify biologically meaningful semantic structures within free 

text using strategies based on POS information, ontologies or the identification of 
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patterns. An example of the use of information extraction applications in molecular 

biology is the identification of protein interactions.  

 In the biological domain, extracted entities often correspond to proteins, genes, 

diseases or chemical compounds, for which automated identification methods are often 

incorporated. For the extraction of entities, parsing tools and POS taggers that can detect 

verbs of interest are also often useful.  The pattern matching and syntactic analysis 

techniques can also highlight relevant text passages from large abstract collections.  

 For the analysis of biological literature using NLP, the field of NLP is concerned 

with the analysis of free textual information and has been applied recently in the context 

of molecular biology. Biological text mining approaches also involve analyzing and 

extracting information from large collections of free textual data by using automatic or 

semiautomatic systems. Currently, text mining applications are being employed in the 

identification of biological entities such as protein or gene names, automated protein 

annotation, analysis of microarrays and extraction of protein–protein interactions.  

 However, generating new insights to direct future research is far more complex. 

The goal of knowledge discovery is to find hidden information in the literature by 

exploring the internal structure of the knowledge network created by the textual 

information. Knowledge discovery could be of major help in the discovery of indirect 

relationships, which might imply new scientific discoveries. Such new discoveries might 

provide hints for experts working on specific biological processes. 

 There are many applications relates with biological text mining such as information 

retrieval of biological articles, DNA expression arrays, functional annotation and tagging 
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biological entities. In biomedical literature, the identification of biological entities such as 

gene and protein names, chemical compounds and diseases is crucial for facilitating the 

retrieval of relevant documents and the identification of relationships between those 

biological entities (e.g. between proteins and diseases). Most TM systems have not relied 

on ontologies or terminologies, which is a main reason why biomedical TM systems 

generally provide poorer results compared to other domains (e.g. newswire) [18]. 

Biological language and vocabulary is highly complex and rapidly evolving, making the 

identification of entities a cumbersome task, especially in the case of protein and gene 

names. When labeling text relative to the occurrence of genes or proteins, several 

obstacles are encountered. First, a variety of alternative expressions can occur that refer 

to the same protein object are often encountered; proteins might be mentioned in 

documents in terms of gene symbols, protein names, synonymous gene names and 

typographical variants. Moreover, some gene symbols are ambiguous and might 

correspond to disease names or experimental methods. These are all reasons why bio text 

mining is still a challenging task [4]. 

 

2.2 Effectiveness of General Term in Biological Literature 

 2.2.1 Introduction 

 From the last section, terms or words are referred to be the main reason of the 

different from other topics. In this section, text analysis is studied. One of the text 

analysis methods is a tokenization technique which is the process of extracting plain 

words and terms from a document and stripping out administrative metadata and 
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structural or formatting elements. This operation needs to be performed prior to indexing 

or before converting documents to vector representations that are used for retrieval or 

categorization. Tokenization appears to be a straightforward problem but in many 

practical situations the task can actually be quite challenging. The simplest approach 

consists of reducing the document to an unstructured representation such as a plain 

sequence of words with no particular relationship among them other than a serial order, 

removing tags, and perhaps converting strings that encode international characters to a 

standard representation. The resulting unstructured representation allows simple queries 

to be run related to the presence of terms and to their positional vicinity.  

After plain text is extracted, punctuation and other special characters need to be 

stripped off. In addition the character case may be folded to reduce the number of index 

terms. However these strings are not necessarily entire words. Words are typically split 

into fragments and separate show commands are issued for each of the fragments. Hence, 

it is necessary to track the position of each string and use information about the font in 

order to correctly reconstruct word boundaries. 

 2.2.2 Methods and Dataset 

 To study the effectiveness of general term which appear in biological literature, the 

experiment framework is designed as shown in Figure 2.2 
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Figure 2.2 The framework of effectiveness of general term in biological literature 

 

From Figure 2.2, the biological documents from NCBI are collected. Then, general 

terms are counted and transformed to the matrix of general terms /documents. After that, 

the matrix will scale with TF-IDF and visualized by Principle Component Analysis 

(PCA). The graph in Figure 2.2 shows the expectation of how general terms could 

represent its class. The methods used in this experiment as follow: 

  1) Term-document matrix scaling by TF-IDF 

For the case of two sparse vectors x and y associated with two documents A and 

A’, the above sum can be computed efficiently in time Ω (|A| + |A’|). Several refinements 

can be obtained by extending the Boolean vector model and introducing real valued 

weights associated with terms in a document. A more informative weighting scheme 

consists of counting the actual number of occurrences of each term in the document. In 

this case xj  ∈ N counts term occurrences in the corresponding document. x may be 

multiplied by the constant 1/|A| to obtain a vector of term frequencies (TF) within the 

document. An important family of weighting schemes combines term frequencies (which 

are relative to each document) with an absolute measure of term importance called 
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inverse document frequency (IDF). IDF importance decreases as the number of 

documents in which the term occurs increases in a given collection. Hence, terms that are 

globally rare receive a higher weight. Formally, let D = {A1, . . . , An} be a collection of 

documents and for each term ωj let nij denote the number of occurrences of ωj in Ai and nj 

the number of documents that contain ωj at least once.  

Define, 

𝐼𝐷𝐹𝑗 = 𝑙𝑜𝑔
𝑛𝑗

𝑛
 (2.1) 

 

𝑇𝐹𝑖𝑗 =
𝑛𝑖𝑗

|𝑑𝑖|
 (2.2) 

 

Here the logarithmic function is employed as a damping factor. The TF–IDF weight 

of ωj in di can be computed as 

𝑥𝑖𝑗 = 𝑇𝐹𝑖𝑗 ∙ 𝐼𝐷𝐹𝑗  
(2.3) 

 

The IDF weighing is commonly used as an effective heuristic. A theoretical 

justification has been recently proposed by Papineni (2001) [19]. 

 2) General terms visualization by Principle Component Analysis (PCA) 

 PCA is a technique that is useful for the compression and classification of data. The 

purpose is to reduce the dimensionality of a data set (sample) by finding a new set of 

variables, smaller than the original set of variables, which nonetheless retains most of the 

sample's information. By information we mean the variation present in the sample, given 

by the correlations between the original variables. The new variables, called principal 

components (PCs), are uncorrelated, and are ordered by the fraction of the total 
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information each retains. The other main advantage of PCA is that once you have found 

these patterns in the data, you can compress the data, by reducing the number of 

dimensions, without much loss of information. The PCA is computed by determining the 

eigenvectors and eigenvalues of the covariance matrix. The covariance of two random 

variables is their tendency to vary together [20]. This is expressed as: 

𝑐𝑜𝑣(𝑋, 𝑌 )  =  𝐸[𝐸[𝑋]  −  𝑋]  ·  𝐸[𝐸[𝑌 ]  −  𝑌 ] 
(2.4) 

where E[X] denotes the expected value of X. For sampled data this can be explicitly 

written out as: 

 

𝑐𝑜𝑣(𝑋, 𝑌 )  = ∑
(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)

𝑁

𝑁

𝑖=1

 

 

 

(2.5) 

With �̅� = mean(X) and �̅� = mean(Y) cov(X, X) = var(X), and for independent variables 

cov(X, Y ) = 0. The covariance matrix is a matrix A with elements Ai,j = cov(i, j). The 

covariance matrix is square and symmetric. For independent variables, the covariance 

matrix will be a diagonal matrix with the variances along the diagonal. To calculate the 

covariance matrix from a dataset, first center the data by subtracting the mean of each 

sample vector. Considering the columns of the data matrix A as the sample vectors, we 

can write the elements of the covariance matrix C as: 

𝑐𝑖𝑗  =
1

𝑁
∑ 𝑎𝑖𝑗

𝑁

𝑖=1

𝑎𝑗𝑖  
(2.6) 

written in matrix form: 
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𝐶 =
1

𝑁
𝐴𝐴𝑇                                                              (2.7) 

 

Often the scale factor 1/N is distributed throughout the matrix and the covariance matrix 

is written simply as  𝐴𝐴𝑇 . The eigenvectors of the covariance matrix are the axes of 

maximum variance. The PCA technique is widely used because of the fact that in many 

datasets, a majority of the variance of the data can be captured by a small subset of the 

eigenvectors.  

 3) Dataset 

 120 abstracts from the NCBI were used as the dataset. They are 4 classes 

[Evolution, Genetics, Genome Studied and Molecular Biology].The corpus is in the XML 

platform format. 

 2.2.3 Results and discussion 

Term-document matrix were scaled by IF-IDF, (equations 2.3) as is shown in Figure 

2.3 

 

 

 

 

 

 

 

Figure 2.3 Term-document matrix scaling by TF-IDF  
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TF-IDF is mentioned that can find documents that make frequent use of said words 

and determine if they are relevant in the document. Then to study the effectiveness of 

general term in biological literature, the matrix with TF-IDF is visualized by PCA. The 

results is shown in Figure 2.4, 

 

 

 

 

 

 

 

 

Figure 2.4 Abstracts classification with general term by TF-IDF Scaling 

 

From Figure 2.4, the results showed that general terms could not represent text or 

document for each class well. In a biological content, many terms appear in every class. 

Hence, general terms were not enough for biological information extraction. 

 

2.3 Biological Information Retrieval using Latent Semantic Indexing 

 2.3.1 Introduction 

The information in the literature and documents is currently increasing. In order to 

extract knowledge, information retrieval of all relevant documents is essential. The 
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ultimate goal of information retrieval and extraction is the automatic transformation of 

unstructured textual information into a structured form [21]. According to information 

extraction is a sub-task of information retrieval where the goal is to extract structured 

information from unstructured text, section 2.2 focused on the effectiveness of retrieval 

of general terms in the biological literature. This section aimed to study the effectiveness 

of general terms to the biological information retrieval system. 

 2.3.2 Methods and Dataset 

The experiment framework is designed. After scaling by TF-IDF, eigenvectors are 

generated with Latent Semantic Indexing (LSI). Then information retrieval performance 

is tested with query vector by the Cosine Similarity technique as Figure 2.5. 

 

 Figure 2.5 The framework of biological information retrieval using LSI 

 

The methods which used in this section were LSI and Cosine Similarity as follow, 
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  1) Latent Semantic Indexing (LSI) 

This retrieval approach is based on vector space similarities that can reach 

satisfactory recall rates only if the terms in the query are actually present in the relevant 

documents. Natural language has a very rich expressive power and even at the lexical 

level, the large variability due to synonymy and polysemy can cause serious problems for 

retrieval methods based on term matching. Synonymy means that the same concept can 

be expressed using different sets of terms. Synonymy negatively affects recall. Polysemy 

means that identical terms can be used in very different semantic contexts. Polysemy 

negatively affects precision. Overall, synonymy and polysemy lead to a complex relation 

between terms and concepts that cannot be captured through simple matching. 

Thus, although a query may conceptually be very close to a given set of documents, 

its associated vector could be orthogonal or nearly orthogonal to those document vectors, 

simply because the authors of the document and the user have a different usage of 

language. Another more statistical way of thinking about this is to observe that the 

number of terms that are present in a document is a rather small fraction of the entire 

dictionary, reducing the likelihood that two documents use the same set of words to 

express the same concept.  

Latent Semantic Indexing (LSI) is a statistical technique that attempts to estimate the 

hidden structure that generates terms for given concepts. It uses a linear algebra technique 

known as Singular Value Decomposition (SVD) to discover the most important 

associative patterns between words and concepts. LSI is a data driven method, where a 
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large collection of sentences or documents is employed to discover the statistically most 

significant co-occurrences of terms. 

- LSI and text documents 

Let X denote a term–document matrix, defined as 

Each row in the matrix is simply the vector-space representation of a document. In 

LSI each column contains the occurrences of a term in each document in the data set. The 

LSI technique consists of computing the SVD of X and setting to zero all the singular 

values except the largest K ones. In practical applications K is often set to values between 

100 and 1000. This can be seen as analogous to the PCA dimensionality reduction: 

documents are mapped to a lower-dimensional latent semantic space induced by selecting 

directions of maximum covariance. The reconstructed matrix  �̂� is not as sparse as the 

original matrix X. The new term weights account for word co-occurrences and appear to 

infer relations among words that pertain to synonymy, at least in a loose sense. When 

performing the numerical computation of the SVD of a very large document matrix, it is 

important to take advantage of sparsity. A variety of well-known numerical methods for 

computing the SVD of sparse matrices can be brought to bear (Berry and Browne 1999) 

[22]. 

Latent semantic indexing (LSI) is a statistical technique that attempts to estimate the 

hidden structure that generates terms given concepts [22]. It uses a linear algebra 

technique known as singular value decomposition (SVD) to discover the most important 

associative patterns between words and concepts. LSI is a data-driven method, where a 

𝑋  = [𝑥1 ∙∙∙ 𝑥𝑛]𝑇  
(2.8) 
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large collection of sentences or documents is employed to discover the statistically most 

significant co-occurrences of terms. 

Let X denote a term–document matrix, defined as 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛]𝑇, where each 

row in the matrix is simply the vector-space representation of a document. In LSI, use the 

occurrence counts as components. Each column contains the occurrences of a term in 

each document in the data set. The LSI technique consists of computing the SVD of X 

and setting to zero all the singular values except the largest k ones (k is the dimension). 

Documents are mapped to a lower dimensional latent semantic space induced by 

selecting directions of maximum covariance. Performing SVD in this example yields a 

singular value Matrix. The reconstruction of X is obtained as X^ = US^V T. The new term 

weights account for word co-occurrences and appear to infer relations among words that 

pertain to synonymy, at least in a loose sense. SVD has inferred a link between features 

through the co-occurrences of other words (they never occur together).When performing 

the numerical computation of the SVD of a very large document matrix, it is important to 

take advantage of sparsely. A variety of well-known numerical methods for computing 

the SVD of sparse matrices can be brought to bear. 

For the LSI process, words in the document are transformed into a vector form to 

construct the term-document and query matrices, then decompose the matrix term-

document matrix X as X= USVT to rank documents in a decreasing order of query-

document cosine similarities [23]. The Similarity is measured by the dot product between 

the query and document vector coordinates divided by the product of the norms of the 

query and document vectors. 
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 2) Cosine Similarity 

 A Boolean query to a search engine may return several thousand matching 

documents, but a typical user will only be able to examine a small fraction of these. 

Ranking matching documents according to their relevance to the user is therefore a 

fundamental problem. In this section will review some classics models. 

- The vector space model and document similarity 

 Text documents can be conveniently represented in a high dimensional vector space 

where terms are associated with vector components. More precisely, a text document d 

can be represented as a sequence of terms, d = (ω(1), ω(2), . . . , ω(|d|)), where |d| is the 

length of the document and ω(t) ∈ V . A vector-space representation of d is then defined 

as a real vector x ∈ R|V |, where each component xj is a statistic related to the occurrence 

of the j th vocabulary entry in the document. The simplest vector based representation is 

Boolean, i.e. xj ∈ {0, 1} indicates the presence or the absence of term ωj in the document 

being represented. Vector based representations are sometimes referred to as a bag-of- 

words, emphasizing  that document vectors are invariant with respect to term 

permutations, since the original word order ω(1), . . . , ω(|v|) is clearly lost. 

Representations of this kind are appealing for their simplicity. Moreover, although they 

are necessarily lossy from an information theoretic point of view, many text retrieval and 

categorization tasks can be performed quite well in practice using the vector space model. 

The total number of terms in a set of documents is much larger than the number of 

distinct terms in any single document, |V| >> |d|, so that vector space representations tend 
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to be very sparse. This property can be advantageously exploited for both memory 

storage and algorithm design. 

Two documents A and A' are defined similarity as a function s(d, d') ∈ R. This 

function allows ranking documents with respect to a query (by measuring the similarity 

between each document and the query). A classic approach is based on the vector space 

representation and the metric defined by the cosine coefficient (Salton and McGill 1983) 

[24]. This measure is simply the cosine of the angle formed by the vector-space 

representations of the two documents, x and x' (see Figure 2.6) 

 

 

Figure 2.6 Cosine measure of document similarity 

 

𝑐𝑜𝑠(𝑥, 𝑥′) =
𝑥𝑇𝑥′

‖𝑥‖ ∙ ‖𝑥′‖
=

√𝑥𝑇𝑥′

√𝑥𝑇𝑥′ ∙ √𝑥𝑇𝑥′
 

(2.9) 

 

where the superscript  T denotes the transpose operator and xTy indicates the dot 

product or inner product between two vectors x, y ∈ Rm, defined as 
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𝑥𝑇𝑦 = ∑ 𝑥𝑖𝑦𝑖

𝑚

𝑖=1

 
(2.10) 

 

The case of two sparse vectors x and y associated with two documents A and A’, the 

above sum can be computed efficiently in time Ω (|A| + |A’|). Several refinements can be 

obtained by extending the Boolean vector model and introducing real valued weights 

associated with terms in a document. 

 3) Dataset 

 120 abstracts from NCBI were used as the dataset. They were 4 classes [Evolution, 

Genetics, Genome Studied and Molecular Biology].The corpus is in the XML platform 

format. (The same as section 2.3) 

 2.3.3 Results and Discussion 

In the validation step, the performance of this work was evaluated by precision and 

recall values. Precision  𝜋 (equation 2.11) is defined as the fraction of retrieved 

documents that are actually relevant. Recall 𝜌 (equation 2.12) is defined as the fraction of 

relevant documents that are retrieved by the system. Then, harmonic mean of precision 

and recall are weighted with the traditional F-measure. The concept is as follow, 

Let’s consider a collection of n documents D. Each document is represented by an m-

dimensional vector, where m = |V | and V is the set of terms that occurred in the 

collection. Let q ∈ Rm denote the vector associated with a user query (terms that are 

present in the query but not in V will be stripped off). Each document is then assigned a 

score, relative to the query, by computing s(xi , q), i = 1, . . . , n. The set R of retrieved 
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documents that are presented to the user can be formed by collecting the top ranking 

documents according to the similarity measure. The quality of the returned collection can 

be defined by comparing R to the set of documents R* that is actually relevant to the 

query. Two common metrics for comparing R and R* are precision and recall. Precision 

π is defined as the fraction of retrieved documents that are actually relevant. Recall that ρ 

is defined as the fraction of relevant documents that are retrieved by the system. More 

precisely, 

𝜋 =
|𝑅 ∩ 𝑅∗|

|𝑅|
 (2.11) 

 

𝜌 =
|𝑅 ∩ 𝑅∗|

|𝑅∗|
 (2.12) 

 

In this context the ratio between relevant and irrelevant documents is typically very 

small. For this reason, other common evaluation measures like accuracy or error, where 

the denominator consists of |D|. Sometimes precision and recall are combined into a 

single number called Fβ measure defined as 

𝐹𝛽 =
(𝛽2 + 1)𝜋𝜌

𝛽2𝜋 + 𝜌
 (2.13) 

 

The F1 measure is the harmonic mean of precision and recall. If β tends to zero (∞) the 

Fβ measure tends to precision (recall).  

The results of experiment showed in Table 2.1 

 



27 

 

Table 2.1 Information retrieval model performance which generated by general terms 

and LSI 

 Recall (%) Precision (%) F-Measure (%) 

General Terms + LSI 65.00 67.00 7565.98 

 

       The result from Table 2.1, the model returned precision value higher than recall by 

2%. This shows that the model returns fewer false positives than false negatives. LSI 

helped to discover the most important associative patterns between words and concepts. 

But the F-measure returns only almost 66%. This showed that the general terms still were 

not enough for a general information retrieval system. 

 

2.4 Biological Text Classification using Machine Learning Techniques 

 2.4.1 Introduction 

Biological Information extraction can relate to many techniques. The section above 

presented general terms which were used for factor in machine learning not only in 

information extraction but also in information retrieval. The results showed that general 

terms still could not represent its class well. Hence, this work focused on generating 

general terms as features. The feature selections based on machine learning were studied 

and used to generate classification models. 

 2.4.2 Methods and Dataset 

The framework of this work was divided into two processes. The first was feature 

selection based on machine learning. The matrix scaling by TF-IDF was selected to be 
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the feature for the feature selection models. This work focused on traditional techniques 

such as Information Gain, Mutual Information and Odd Ratio while another was 

classification models. The k-nearest neighbor, Naïve Byes and Support Vector Machines 

were the scope which studied as Figure 2.7, 

 

 Figure 2.7 The framework of bioinformatics-text classification using machine 

learning techniques 

Three of the most important and effective machine learning algorithms that are often 

applied to text classification: k-nearest neighbors (k-NN), Naive Bayes, and Support 

Vector Machines (SVMs) are briefly reviewed. 

1)  Text Classification models 

- k-Nearest Neighbors     

k-NN is a memory based classifier that learns by simply storing all the training 

instances. During prediction, the k-NN algorithm first measures the distances between a 

new point x and all the training instances, returning the set N(x, D, k) of the k points that 

are closest to x. For example, if training instances are represented by real-valued vectors 
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x, the Euclidean distance is used to measure the distance between x and all other points in 

the training data, i.e.  

where  i = 1, . . . , n. 

After calculating the distances, the algorithm predicts a class label for x by a simple 

majority voting rule using the labels in the elements of N(x, D, k), breaking ties 

arbitrarily. In spite of its apparent simplicity, k-NN is known to perform well in many 

domains. The results by Cover and Hart (1967) [25] show that the asymptotic error rate 

of the 1-NN classifier (as the size of the training data set gets infinitely large) is always 

less than twice the optimal Bayes error (which is the lowest possible error rate achievable 

by any classifier in a particular feature space x). In the case of texts, the majority voting 

can be replaced by a smoother metric where, for each class c,  

a scoring function is computed through vector-space similarities between the new 

documents and the subset of the k neighbors that belong to class c, where Nc(x, D, k) is 

the subset of N(x, D, k) containing only points of class c.  Despite the simplicity of the 

method, the performance of k-NN in text categorization is quite often satisfactory in 

practice. Han et al. (2001) [26] have proposed a variant of k-NN where the weights 

associated with features are learned iteratively  while the other statistically motivated 

||x−xi||
2    

 

(2.14) 

𝑠(𝑐|𝑥 ) = ∑ cos(𝑥, 𝑥′)

𝑥′∈𝑁𝑐(𝑥,𝐷,𝑘)

 (2.15) 
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techniques that extend the basic k-NN classifier are also discussed in Hastie et al. (2001) 

[27] 

- Naïve Bayes  

This classifier attempts to estimate the conditional probability of the class given the 

document, namely P(c | d), for c = 1, . . . , S. Using Bayes’ theorem, it can write this 

probability as 

𝑃(𝑐|𝑑, 𝜽) =
𝑃(𝑑|𝑐, 𝜽)𝑃(𝑐|𝜽)

𝑃(𝑑|𝑑, 𝜽)
𝛼 𝑃(𝑑|𝑐, 𝜽)𝑃(𝑐|𝜽) (2.16) 

 

where θ are the parameters of the model. The classes are assumed to be mutually 

exclusive, the term that can be thought of as a normalization factor guarantees that Σ c 

P(c | d) = 1. The key idea behind the Naive Bayes classifier is the assumption that the 

terms in a document are conditionally independent given the class. This assumption is 

clearly false in many if not most practical situations, but it is often adequate to first order 

for the bag of words representation, where word order in the document is not taken into 

account. Ng and Jordan (2002) [28] mention that this should discriminate among classes, 

not in a high quality generative model of the document given the class. In practice, the 

classifier is known to work satisfactorily even when the conditional independence 

assumption is known not to hold (Domingos and Pazzani 1997) [29] 

There is a subtle issue concerning the interpretation of the document in terms of a 

probabilistic event (McCallum and Nigam 1998) [30]. If the document as a whole is 

considered to be an event, then it should be naturally described by a bag of words, and 

the words are the attributes of this event. In this case, each vocabulary term is associated 
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with a Bernoulli attribute whose realization is unity if the term appears in the document, 

and zero otherwise. In addition to reducing documents to bags of words, the Naive Bayes 

model postulates that binary attributes are mutually independent given the class.  

The conditional independence assumption in this model can be depicted graphically 

using a Bayesian network, suggesting that the class is the only cause of the appearance of 

each word in a document. 

 

Figure 2.8 A Bayesian network for the Naive Bayes classifier under the Bernoulli 

document-based event model. 

The example document is the sentence in which appears words 𝑥𝑗 and 𝑥𝑘. Under this 

model, generating a document is like tossing |V | independent coins and the occurrence of 

each word in the document is a Bernoulli event. Therefore, the generative portion of 

equation (2.16) is 

𝑃(𝑑|𝑐, 𝜽) = ∏ 𝑥𝑗

|𝑉|

𝑗=1

𝑃(𝜔𝑗|𝑐) + (1 − 𝑥𝑗)[1 − 𝑃(𝜔𝑗|𝑐)] 
(2.17) 
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where xj = 1 [0] means that word ωj does [does not] occur in d and P(ωj | c) is the 

probability of observing word ωj in documents of class c. Here θ represents the set of 

probabilities (or parameters) P(ωj | c), which is the probability of the binary event that 

word ωj is within class c. Alternatively, a document can be viewed as a sequence of 

events W1, . . . , W|d|.  Each observed Wt has a vocabulary entry (from 1 to |V |) as an 

admissible realization. In addition, since the document is a sequence, serial order among 

words should also be taken into account when modeling P(W1, . . . , W|d|| c). This could be 

done, for example, by using a Markov chain. A simplifying assumption, however, is that 

word occurrences are independent of their (relative) positions, given the class. 

Equivalently, it is assumed that the bag of words representation retains all the relevant 

information for assessing the probability of a document whose class is known. Under the 

word based event model, generating a document is like throwing a die with |V | faces |d| 

times, and the occurrence of each word in the document is a multinomial event. Hence, 

the generative portion of the model is a multinomial distribution. 

𝑃(𝑑|𝜽) = 𝐺𝑃(|𝑑|) ∏ 𝑃(𝜔𝑗|𝑐)
𝑛𝑗

|𝑉|

𝑗=1

 

 

(2.18) 

where nj is the number of occurrences of word ωj in d, and P(ωj | c) is the probability 

that word ωj occurs at any position t ∈ [1, . . . , |d|]; because of the bag of words 

assumption this does not depend on t . Here the parameters θ are the set of probabilities 

P(ωj | c), where now Σ j=1 |V |P(ωj | c) = 1. McCallum and Nigam (1998) [31] found 

empirically that the multinomial model outperforms the Bernoulli model in several 

evaluation benchmarks. The bag of words assumption results in a factorization of P(W1, . 
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. . , W|d| | c) explaining why the Naive Bayes is often used in the literature to refer to both 

event models. The normalization factor is the multinomial coefficient 

𝐺 =
|𝑑|!

∏ 𝑛𝑗!𝑗
 

 

(2.19) 

Neither P(|d|) nor G are needed for classification, hence |d|, the number of words or 

terms in a document is assumed to be independent of the class. This last assumption can 

be removed and P(|d| | c) explicitly modeled. Models of document length (e.g. based on 

Poisson distributions) have been used for example in the context of probabilistic retrieval. 

Note that in the case of the Bernoulli model there are 2|V | possible different documents, 

while in the case of the multinomial model there is an infinite (but countable) number of 

different documents.        

An additional model that may be developed that lies somewhere in between the 

Bernoulli and the multinomial models consists of keeping the document based event 

model but extending Bernoulli distributions to integer distributions, such as the Poisson 

(Lewis 1998) [32]. Finally, extensions of the basic Naive Bayes approach that allow 

limited dependencies among features have also been proposed (Friedman and Goldszmidt 

1996; Pazzani 1996) [33, 34]. However, these models are characterized by a larger set of 

parameters and may overfit the data (Koller and Sahami 1997) [35]. Teaching a Naive 

Bayes classifier consists of estimating the parameters θ from the available data. It 

assumes that the training data set consists of a collection of labeled documents {(di, ci ), i 

= 1, . . . , n}. In the Bernoulli model, the parameters θ include θc,j = P(ωj | c), j = 1, . . . , 

|V |, c = 1, . . . , K. These are estimated as normalized sufficient statistics 
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𝜃𝑐,𝑗 =
1

𝑁𝑐
∑ 𝑥𝑖𝑗

𝑛

𝑖:𝑐𝑖≔𝑐

 

 

(2.20) 

where Nc = |{i : ci = c}| and xij = 1 if ωj occurs in di . Additional parameters are the class 

prior probabilities θc = P(c), which are estimated as 

𝜃𝑐 =
𝑁𝑐

𝑛
 

 

(2.21) 

The estimates above correspond to machine learning estimates of the parameters. 

Bayesian estimates can be quite useful when estimating parameters from sparse data. A 

model based on Machine Learning parameter estimates would assign a probability of zero 

to that document, irrespective of how well the other words in the document matched class 

c. On the other hand, a model based on Bayesian estimates would assign that word-class 

combination a low nonzero probability and still allow the other words to play a role in 

determining the final class prediction for the document. In the case of the multinomial 

model of equation (2.18), the generative parameters are θc,j = P(ωj | c). These parameters 

must satisfy Σj θc,j = 1 for each class c. To estimate these parameters it is common 

practice to introduce Dirichlet priors. The resulting estimation equations are derived as 

follows. In the case of the distributions of terms given the class, a Dirichlet prior with 

hyperparameters qj and α, results in the estimation formula 

𝜃𝑐,𝑗 =
𝛼𝑞𝑗 + ∑ 𝑛𝑖𝑗

𝑛
𝑖:𝑐𝑖=𝑐

𝛼 + ∑ ∑ 𝑛𝑖𝑗𝑖:𝑐𝑖=𝑐
|𝑉|
𝑙=1

 

 

(2.22) 

where nij is the number of occurrences of ωj in di . A simple non-informative prior 

assigns qj = 1/|V | and α = |V |. Intuitively, this prior corresponds to the assumption that 
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each word is observed exactly once in one document of each class. This method (also 

known as Laplace smoothing) prevents the problem of estimating a null value for a 

parameter if a certain term ωj never occurs in documents of a given class c in the training. 

Similarly, the estimation formula for the (unconditional) class probabilities is 

𝜃𝑐 =
𝑞𝑐

′ 𝛼 , + 𝑁𝑐

𝛼 , + 𝑛
 

 

(2.23) 

 - Support Vector machines (SVMs)  

Support vector machines (SVMs) were introduced in Cortes and Vapnik (1995) [35] 

to extend earlier seminal work by Vapnik on statistical learning theory. The basic 

underlying idea, often referred to as structural risk minimization is closely related to the 

theory of regularization but also to Bayesian approaches to learning (Evgeniou et al. 

2000) [36] and is essentially guided by the principle that the hypothesis that explains a 

finite set of examples should be searched in an appropriately small hypothesis space.        

SVMs are particularly well suited to deal with high dimensional data such as vector 

space representations of text documents. In their standard formulation, they deal with the 

binary classification problems where the number of classes is restricted to two. 

Consider a training set D = {(xi, yi ), i = 1, . . . , n} with xi ∈ Rm, and where yi ∈{−1, 

1} is an integer that specifies whether xi is a positive or a negative example. A linear 

discriminant classifier is then defined by introducing the separating hyperplane 

{𝑥 ∶ 𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑤0 = 0} 

 

(2.24) 
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where w ∈ Rm and w0 ∈ R are adjustable coefficients that play the role of model 

parameters. A binary classification function h : Rm → {0, 1} can be obtained by taking 

the sign of  f (x), i.e. 

ℎ(𝑥) = {
1,    𝑖𝑓 𝑓(𝑥) > 0
0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

(2.25) 

Learning in this class of models consists of determining w and w0 from the data. The 

training examples are said to be linearly separable if there exists a hyperplane whose 

associated classification function is consistent with all the labels, i.e. if yi f (xi) > 0 for 

each i = 1, . . . , n. see Figure 2.9.  

 

 

 

 

 

 

Figure 2.9 Alternative linear decision boundaries for a binary classification problem 

 Here, suppose that positive and negative examples are generated by two Gaussian 

distributions with the same covariance matrix and that positive and negative points are 

generated with the same probability. In such a setting, the optimal (Bayes) decision 

boundary is the one that minimizes the posterior probability that a new point is 

misclassified and, as it turns out, this boundary is the hyperplane that is orthogonal to the 

segment connecting the centers of mass of the two distributions (dotted line). 
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A random hyperplane that just happens to separate training points (dashed line) can 

be substantially far away from the optimal separation boundary, leading to poor 

generalization to new data. The difficulty grows with the dimensionality of the input 

space m since for a fixed n the set of separating hyperplane grows exponentially with m 

(a problem known as the curse of dimensionality). Remember that in the case of text 

categorization m may be significantly large (several thousands). 

The statistical learning theory developed by Vapnik (1998) [37] shows that an 

optimal separating hyperplane (relative to the training set) has two important properties: 

it is unique for each linearly separable data set, and its associated risk of overfitting is 

smaller than for any other separating hyperplane. The margin M of the classifier is 

defined to be the distance between the separating hyperplane and the closest training 

examples. The optimal separating hyperplane is then the one having the maximum 

margin. 

  

 

 

 

 

 

 

Figure 2.10 Illustration of the optimal separating hyperplane and margin. Circled points 

are support vectors. 
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From Figure 2.10, the theory suggests that the risk of overfitting for the 

maximum margin hyperplane (solid line) is smaller than for the dashed hyperplane. 

Indeed, in this example the maximum margin hyperplane is significantly closer to the 

Bayes optimal decision boundary. In order to compute the maximum margin hyperplane, 

the distance of a point x from the separating hyperplane is observed first, 

1

‖𝑤‖
(𝑤𝑇𝑥 + 𝑤0) 

 

(2.26) 

Thus, the optimal hyperplane can be obtained by solving the constrained optimization 

problem. 

min
𝑤,𝑤0

𝑀 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 
1

‖𝑤‖
𝑦

𝑖
(𝑤𝑇𝑥 + 𝑤0) ≥ 𝑀, 𝑖 = 1, … , 𝑛 

 

(2.27) 

The above problem can be transformed to its dual by first introducing the vector of 

Lagrangian multipliers α ∈ Rn and writing the Lagrangian function 

ℒ(𝐷) =  −
1

2
‖𝑤‖2 + ∑ 𝛼𝑖[𝑦

𝑖
(𝑤𝑇𝑥 + 𝑤0) − 1]

𝑛

𝑖=1

 

 

(2.28) 

and subsequently setting to zero the derivatives of (2.30) with respect to w, w0, obtaining 

max
𝛼

−
1

2
𝛼𝑇Λ𝛼 + ∑ 𝛼𝑖 

𝑛

𝑖=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝛼𝑖 ≥ 0 , 𝑖 = 1, … , 𝑛 

 

(2.29) 

where ʌ is an n × n matrix with λij = yiyj𝒙𝒊
𝑻 xj . This is a quadratic programming (QP) 

problem that can be solved, in principle, using standard optimization packages. For each 

training example i, 
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𝛼𝑖[𝑦𝑖(𝑤𝑇𝑥 + 𝑤0) − 1] = 0  
(2.30) 

and therefore either αi = 0 or yi (w
Tx + w0) = 1. In other words, if αi > 0 then the distance 

of point xi from the separating hyperplane must be exactly M (see Figure 2.8). Points with 

associated αi > 0 are called support vectors. The decision function h(x) can be computed 

via equation (2.25) or, equivalently, from the following dual form: 

𝑓(𝑥) = ∑ 𝑦𝑖𝛼𝑖 

𝑛

𝑖=1

𝑥𝑇𝑥𝑖  
(2.31) 

  

It is important to point out that in the case of text classification it may be very 

important to exploit the sparseness of the data vectors while computing dot products in 

Equations (2.31) and (2.32). If the training data are not linearly separable, then this 

analysis can be generalized by introducing m nonnegative slack variables ξi and replacing 

the optimization problem in equation (2.29) with  

min
𝑤,𝑤0

 ‖𝑤‖ + 𝑐 ∑ 𝜉𝑖  

𝑛

𝑖=1

subject to {
𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑤0) ≥ 1 − 𝜉𝑖, 𝑖 = 1, , , , , 𝑛  
𝜉𝑖 ≥ 0,                                                𝑖 = 1, , , , , 𝑛 

 

 

(2.32) 

where the constant  C controls the cost associated with misclassifications. This problem 

can also be dualized in the form. 

max
𝛼

−
1

2
𝛼𝑇Λ𝛼 + ∑ 𝛼𝑖 

𝑛
𝑖=1 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1, … , 𝑛       (2.33) 

 

     The classifier obtained in this way is commonly referred to as a support vector 

machine (SVMs).  
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If the data are considerably nonlinearly separable then an SVMs classifier will have a 

low accuracy, i.e. even the best linear hyperplane may be quite inferior in terms of 

prediction accuracy relative to a good nonlinear decision boundary. The methods 

developed in this section can be further extended to accommodate nonlinear separation 

by using kernel functions that map points x ∈ Rm into a higher dimensional space called 

the feature space, where data are linearly separable. Details on kernel methods can be 

found in Schoelkopf and Smola (2002) [38] and the extraction of conditional probabilities 

from multiclass SVMs is studied in Passerini et al. (2002) [39].   

2) Feature selection for classification models generating  

   In the classification task, the appropriate feature selection leads to an effective 

classification model. In this work, Information Gain Measure, Mutual information 

measure and Odds ratio measures are selected to be the feature for the generating models. 

-  Information gain measure 

Information gain (IG) measures the amount of information in bits in the class 

prediction, if the only information available is the presence of a feature and the 

corresponding class distribution. Concretely, it measures the expected reduction in 

entropy (uncertainty associated with a random feature) [40]. Given SX the set of training 

examples, xi the vector of the ith variables in this set, |𝑆𝑥𝑖=𝑣|/|𝑆𝑥| is the fraction of 

examples of the ith variable having the value 

 

𝐼𝐺(𝑆𝑋 , 𝑋𝑖) = 𝐻(𝑆𝑋) = ∑ 𝐻(𝑆𝑥𝑖=𝑣)

|𝑆𝑥𝑖=𝑣|

|𝑆𝑥|

𝒗=𝒗𝒂𝒍𝒖𝒍𝒆𝒔(𝑋𝑖)
 with entrophy                     (2.34) 



41 

 

where 𝐻(𝑆𝑋) = p±(S) is the probability of a training example in the set S to be of the 

positive/negative class. 

-  Mutual information measure 

Mutual information, which is also known as information gain or best individual 

feature, perhaps is the most naïve measurement. For the candidate feature f, its criterion 

function of MI is 

                                                 J(f)=I(C; f)=H(f)-H(f|C)                                              (2.35) 

where H(f) is information entropy of  f and H(f|C) is its conditional value with respect to 

C. That is to say, α=1, g(C, f, S)=I(C; f) and δ = 0. This method chooses the best 

individual features out of the feature selection procedure [41]. It first evaluates all 

candidate features individually according to the criterion function J(f), and then sorts 

them in descending order in terms of J(f). After that, the best k features are picked out to 

take the place of the whole feature set. 

- Odds ratio measure 

The Odds Ratio reflects the odds of a word occurring in the positive class normalized 

by that of the negative class. It has been used for relevance ranking in information 

retrieval.  

Let P(t|c) be the probability of a randomly chosen word being t given that the 

document it was chosen from belongs to a class c. Then odds(t|c) is defined as P(t|c)/[1–

P(t |c)] and the odds ratio is equal to 

    𝑂𝑅(𝑡)  =  ln[𝑜𝑑𝑑𝑠(𝑡|𝑐+)/𝑜𝑑𝑑𝑠(𝑡|c−)]                                   (2.36) 
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This scoring measure favors features that are representative of positive examples. As 

a result a feature that occurs very few times in positive documents but never occurs in 

negative documents will get a relatively high score. Thus, many features that are rare 

among the positive documents will be ranked at the top of the feature list. Odds ratio is 

known to work well in combination with Naïve Bayes [42]  

 3) Dataset 

480 from the NCBI corpus were used as the dataset. They were part of the group of 

papers related to (Bio Medical Text) bioinformatics. This dataset is composed of 4 

classes, Evolution, Genetics, Genomes_studies and Molecular Biology.  

 2.4.3 Results and Discussion 

The classification models were implemented using the R programming language. 

The results of the classification model predictions are shown in Table 2.2  

Table 2.2 The performance of classifications models with features selections 

 

 From Table 2.2, the classification model generated by the SVMs returned the 

highest score prediction while the k-nearest neighbor classification model returned the 

 Information Gain 

(IG) Measure (%) 

Mutual 

Information (MI) 

Measure (%) 

Odds Ratio 

Measure 

(%) 

k-Nearest neighbors 25 24 25 

Naive Bayes 50 49 49 

Support Vector Machines  

(SVMs) 

75 73 75 
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lowest score prediction. The feature selection measure, IG measure and Odds Ratio 

Measure returned higher score prediction than the MI Measure. 

The objective of this work was the preliminary review and comparison of 

bioinformatics-text classification models which were generated by using machine 

learning techniques; k-nearest neighbor, Naive Bayes and SVMs. The results showed that 

the SVMs model was suitable for generating the classification model and feature 

selection still remained an important process for text mining.  

 

2.5 Conclusion 

 In this chapter, general terms from the biological literature were studied via 

machine learning techniques. The results show that the biological texts characteristics are 

different from others. Even though, collaborate with the LSI which is a statistical 

technique that attempts to estimate the hidden structure that generates terms given 

concepts to discovers the most important associative patterns between words and 

concepts. The results still show that general terms could represent each class well. In the 

classification task, three classic feature selections techniques were selected to study. We 

found that feature selection methods (on Odds Ratio IG and MI) based on computational 

approaches were not enough for biological text in information extraction while the 

classification model performance, SVMs is particularly well suited to deal with high 

dimensional data such as vector space representations of text documents than the others. 

As these reason, features are important for to be the factor to generate the prediction 
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model. Thus the next chapter, the suitable feature selection from biological literature is 

considered to improve the information extraction. 

 

 


