
CHAPTER 3 

BIOLOGICAL TERM RECOGNITION 

 

The huge bio text corpus which has resulted from the dramatically increasing 

biological information provides a rich source of biological information upon which to 

develop automated knowledge extraction methods [43]. Hence, there are many research 

directions which have been developed to handle biological extraction in order to extract 

relations such as Applied Bayesian and Classical Inference: the case of the Federalist 

papers [44], Biobibliometrics [45], Information Hyperlinked over Proteins (iHOP) which 

provides the network of genes and proteins as a natural way of accessing the millions of 

abstracts [46] and Mining literature for protein-protein interactions [47].  

Nevertheless, this is a complicated to recognize the biological names [48] because one 

word or phrase could refer to many entities depending on its context. Many biological 

named entities have various spelling forms, their compound names can be very long and 

different abbreviations are frequently used in the biological domain, all of which makes it 

difficult to recognize them precisely. Thus, Name Entity Recognition (NER) is a 

fundamental task which helps to specify the best boundary of biological terms from the 

literature. One way that NER can be approached is by considering it as a sequence 

labeling task [49 and 50]. This chapter will focus on biological term recognition. For bio-

text mining the named entity recognition is considered as the biological labeling sequence 

problem which is explained in the next section also included the motivation of this work. 
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3.1 Introduction 

Since 2001, the task of labeling sentences has been investigated. It is a useful 

preprocessing step for higher natural language processing tasks. In the biological domain, 

the biological named entity recognition can be thought of as a sequence segmentation 

problem [51, 10], where each word is a token in a sequence to be assigned a label such as 

protein, DNA, RNA, cell-line, cell-type [18, 52], see Figure 3.1 for example 

 

 

 

 

 

 

 

 

 

Figure 3.1 Sentence with <DNA>, <RNA>, <Protein>, <Cell Line>, and <Cell Type> 

tags generated by Biological Named Entities Recognition 

 

NER in biological has been studied for approximately ten years [53]. Biological 

named entities recognition remains a challenging task and active area of research for 

many reasons including:  

 There is no a complete dictionary for most types of biological named entities [54]. 

Analysis of myeloid-associated genes <DNA> in human hematopoietic 

progenitor cells <Cell Type>.The distribution of myeloid lineage-associated 
cytokine receptors <Protein> and lysosomal proteins <Protein> was 

analyzed in human CD34+ cord blood cell (CB) subsets <Cell Line> at 
different stages of myeloid commitment by reverse-transcriptase polymerase 
chain reaction (RT-PCR).  Messenger RNA (mRNA) <RNA> levels for the 

granulocyte-colony stimulating factor (G-CSF) receptor <Protein>, 
granulocyte-macrophage (GM)-CSF receptor alpha subunit <Protein> and 
tumor necrosis factor (TNF) receptors I (p55) and II (p75) <Protein> were 

also detected in this subset in addition to c-kit <Protein> and flt-3 

<Protein>, receptors known to be expressed on progenitor cells <Cell 
Type>. 
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 The same word or phrase can refer to different entities depending upon context.  

 Many biological named entities have various spelling forms. 

 Sometimes biological named entities are very long. These factors highlight the 

difficulties for identifying the boundary of named entities. 

 Named entities may be cascaded. One named entities may be embedded in 

another named entities. More efforts must be made to identify this kind of named 

entities. 

 Abbreviations are frequently used in biological domain. Since abbreviations often 

do not have enough evidence for certain named entities class, it is difficult to 

classify them correctly. 

To address the issues presented above, many machine learning models have been 

developed that can deal with NER [55].  The benefit of these kinds of models is that they 

do not require a dictionary in memory and they can automatically form rule sets by 

learning from a large text corpus. NER tools are a prerequisite for many applications 

working on text, such as information retrieval, information extraction or document 

classification [52] and the state of the art is around F-score of 77.57%. Several techniques 

have been used for the NER task which use the three most important and effective 

approaches [1]. Rule-based methods are quite fast and there is no need to store a 

dictionary in memory but these methods can be difficult to find a perfect grammar. 

Dictionary-based methods yield relatively high accuracy and still solve unknown word 

problems by updating the dictionary, nevertheless the general disadvantage of this 

approach lies in the necessary dictionary update and curation when new protein or gene 
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names are invented [56]. Machine learning is the alternative way so that there is no need 

for a dictionary in memory and it can automatically form a rule set by learning from a 

large text corpus, the disadvantage is that it requires a large corpus and learning time plus 

a good learning algorithm [54]. Machine Learning based approaches are divided into two 

main categories: Classifier-based (Decision trees, naïve Bayes and Support Vector 

Machine:SVMs) [57] and Markov model based (Hidden Markov Models:HMM, 

Maximum Entropy Markov Models:MEMM and Conditonal Random Fields : CRFs) [58, 

59].  This chapter will explain the biological named entity recognition model with 

graphical models. 

 

3.2 Biological Named Entity Recognition with Graphical Models  

This section is about the review of three of the most important and effective named 

entity recognition models that are often applied to biological terms recognition problems: 

Hidden Markov Model (HMM), Maximum Entropy Markov Model (MEMM), Support 

Vector Machine (SVM), and Conditional Random Fields (CRFs). 

3.2.1 Hidden Markov Model (HMM) 

Hidden Markov model (HMM) is a powerful tool for representing sequential data 

[58]. It has been successfully applied to: Part-of-speech tagging: 

<PRP>He</PRP><VB>books</VB><NNS>tickets</NNS>,  

Named entity recognition: <ORG>Mips</ORG> Vice resident     

<PRS>JohnHime</PRS>  
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Information extraction: <TIME>Afterlunch</TIME> meet<LOC>under the oak 

tree</LOC> 

 

The purpose of HMM is to find the most likely tag sequence 𝑌𝑛 = 𝑦1𝑦2 … 𝑦𝑛    for a 

given token sequence 𝑋𝑛 = 𝑥1𝑥2 … 𝑥𝑛   that maximizes𝑃(𝑌𝑛|𝑋𝑛,). In a token sequence 

𝑋𝑛, the token 𝑥𝑖  is defined as 𝑥𝑡 = (𝑓𝑡, 𝑤𝑡)  ,where 𝑤𝑖  is the word and 𝑓𝑖 is the feature 

set related to the word.  

In tag sequence, 𝑌𝑛, each tag consists of the parts:  

Boundary category, which denotes the position of the current word in NE,  

Entity category, which indicates the NE class. This estimates the following joint 

probability of the current token 𝑥𝑡 and label 𝑦𝑡 conditioned on the previous label 𝑦𝑡−1 

and previous two tokens 𝑥𝑡−1 and 𝑥𝑡−2: 𝑃(𝑥𝑡, 𝑦𝑡|𝑦𝑡−1,𝑥𝑡−1,𝑥𝑡−1,) 

                                                

      Same as in Biological Named Entity Recognition, given a sequence of tokens 

(observations): … “p53 protein suppresses mdm2 expression”…and a trained HMM: 

 

Figure 3.2 State transition of Hidden Markov Model (HMM) 

 

 

Find the most likely state sequence: (Viterbi) 𝑎𝑟𝑔𝑚𝑎𝑥𝑌𝑛𝑃(𝑦𝑛|𝑥𝑛,) 
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Figure 3.3 Example of Named Entity Recognition of HMM  

Any words, which are said to be generated by the designated “protein name” state, 

are extracted as a protein name: p53 protein. 

                                                

3.2.2 Maximum Entropy Markov Model (MEMM) 

A limitation of HMM is that it is hard to extend them to allow multiple features of 

observations, rather than atomic observations themselves. An alternative to the HMM 

was proposed in which the transition and observation probability matrices are replaced by 

maximum entropy classifiers for each state [59]. Many classification tasks are most 

naturally handled by representing the instance to be classified as a vector of features. The 

state and observation transition functions into a single maximum entropy model for each 

state are combined. The condition the tag sequence was assigned to a sentence on such 

things as part–of–speech tags, phrasal tags, and predicate verbs. The maximum entropy 

distribution is a conditional exponential model of the form: 

𝑃𝑠′(𝑠|𝑜) =
1

𝑍(𝑜,𝑠,)
exp(∑ 𝜆𝑖𝑓𝑖(𝑜, 𝑠)𝑖 )                                                     (3.1) 

where 𝜆𝑖 are the feature weights that need to be estimated from the training data, and 

𝑍(𝑜, 𝑠 ,) is a normalization factor to ensure P is a probability distribution. 
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Figure 3.4 MEMM states are conditioned on the previous state and the observation. 

 

3.2.3 Conditional Random Field Model (CRFs) 

 The general concepts of the conditional random fields method are described below:  

1) Principles of Conditional Random Fields (CRFs)    

 First introduced by Lafferty et al. (2001) [60], the conditional random fields 

(CRFs) method is a probabilistic model for computing the probability 𝑝(𝑌|𝑋) of an event 

occurring for the conditional probability distribution over the possible output or label 𝑦 =

(𝑦1, 𝑦2, … , 𝑦𝑛)  ∈ 𝑌 given observations  𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)  ∈ 𝑋. For regulatory element 

prediction, a specific case of the CRF called a linear-chain CRF is used. 

2) Linear-chain CRFs    

Linear-chain CRFs are a form of CRFs whose structure is like a linear chain model 

describes the output variables as a sequence. The features of a linear-chain CRFs (as 

represented in Figure 3.5 (b)) are evaluated over all of 𝑋 and consecutive hidden 

variables (𝑦𝑡−1, 𝑦𝑡).  
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Figure 3.5 Graphical structure of the linear chain CRFs for sequence labeling [61]  

 

Graphically, (a) nodes represent the individual 𝑦𝑡, as well as all of X. The graph’s 

edges represent dependencies among the observations and hidden variables where 

features are defined over fully-connected subgraphs (b) or cliques 

Because the CRF directly models the conditional probability of a hidden sequence 𝑌 

given observations  𝑋, 𝑃(𝑌|𝑋), it is referred to as a discriminative model [61]. In a CRF, 

this conditional probability can be formulated as 

𝑃(𝑌|𝑋) =
1

𝑍𝜃(𝑋)
exp (𝜃 ∙ 𝐹(𝑌, 𝑋)) (3.2) 

 

𝑍𝜃(𝑋) is the normalization factor from Lafferty et al. (2001) [92], 

 

𝑍𝜃(𝑋) = ∑ exp(∑ 𝜃𝑗𝑗 𝐹𝑗(𝑌, 𝑋))𝑦     (3.3) 

 

For a linear-chain CRF, the 𝑗𝑡ℎ feature sum 𝐹𝑗 is defined to be the feature function 𝑓𝑗 and 

𝑔𝑗  evaluated over the entire sequence: 

𝐹𝑗(𝑌, 𝑋) = ∑ 𝜆𝑗𝑓𝑗(𝑦𝑖−1, 𝑦𝑖, 𝒙, 𝑖)𝑗 + ∑ 𝜇𝑗𝑔𝑗(𝑦𝑖, 𝒙, 𝑖)𝑗    (3.4) 

(a) (b) 
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Where 𝑓𝑗(𝑦𝑖−1, 𝑦𝑖 , 𝒙, 𝑖) is a transition feature function for the space of all possible 

observation sequences and the labels at positions 𝑖 and 𝑖 − 1 in the label sequence, 

𝑔𝑗(𝑦𝑖, 𝐱, 𝑖) is a state feature function of label sequence at position 𝑖 and the observation 

sequence. The index 𝑗 in 𝑓𝑗 and 𝑔𝑗 is a feature serial number to represent different 

features. The parameter 𝜃 = {𝜆, 𝜇} with  𝜆𝑗 and 𝜇𝑗   correspond to features 𝑓𝑗 and 𝑔𝑗, 

respectively, and they are trained to maximize the conditional likelihood of the training 

data.     

             3) CRF training   

The parameters 𝜃 of a linear-chain CRF are trained by using a gradient descent 

algorithm. Gradient descent algorithms use an objective function  𝐹𝜃 and its gradient with 

respect to 𝜃 to iteratively increase the value of the objective function. L-BFGS, a limited-

memory variant of the traditional Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, is 

one gradient descent algorithm [62]. The BFGS method computes an approximate 

Hessian matrix at each step, using these second derivatives to find a new set of feature 

weights which are used to compute the objective value and its gradient. The L-BFGS 

algorithm was chosen because it has been shown to perform well on CRFs [63]. 

Assuming the training data {(𝑥(𝑘), 𝑦(𝑘))} is independent and identically distributed 

for the product of (3.8) over all training sequences, as a function of the parameters 𝜃, this 

is known as the likelihood, denoted by  𝑝({𝑦(𝑘)}|{𝑥(𝑘)}, 𝜃). Maximum likelihood training 

chooses parameter values such that the logarithm of the likelihood, known as the log-

likelihood, is maximized. For a CRF, the log-likelihood is given by 
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ℒ(𝜃) = ∑ [𝑙𝑜𝑔
1

𝑍(𝐱)
+ ∑ 𝜃𝑗𝐹𝑗𝑗 (𝑥(𝑘), 𝑦(𝑘))]𝑘             (3.5) 

This concave function guarantees convergence to the global maximum.  Differentiating 

the log-likelihood with respect to parameter 𝜃𝑗  gives 

𝜕ℒ(𝜃)

𝜃𝑗
= 𝐸�̃�(𝐗,𝐘)[𝐹𝑗(𝐲, 𝐱)] − ∑ 𝐸𝑝(𝑌|𝑥(𝑘),𝜃)[𝐹𝑗(𝐲, 𝑥(𝑘))]𝐤       (3.6) 

where 𝑝(𝐱, 𝐲) is the empirical distribution of training data and 𝐸𝑝[·] denotes the 

expectation with respect to distribution 𝑝. The setting this derivative to zero yields the 

maximum entropy model constraint which is the expectation of each feature with respect 

to the model distribution which is equal to the expected value under the empirical 

distribution of the training data. 

It is not always possible to analytically determine the parameter values that 

maximize the log-likelihood by setting the gradient to zero and solving for 𝜆 since this 

does not always yield a closed form solution. Instead, the maximum likelihood 

parameters must be identified using an iterative technique such as iterative scaling [65, 65 

and 66] or gradient-based methods [68]. Previously, Wallach H. (2002) [63] also 

proposed that the CRFs parameters can be estimated by two algorithms, based on 

Improved Iterative Scaling (IIS) and Generalized Iterative Scaling (GIS).  

4) CRF inference       

In linear-chain CRFs, a gradient-based training requires computing marginal 

distributions 𝑃(𝑦|𝑥),  and testing requires computing the most likely assignment 

𝑦∗ = 𝐴𝑟𝑔𝑚𝑎𝑥𝑦 𝑃(𝑦|𝑥). Then, the Viterbi algorithm is used infer a straight forward 

variant of that used for HMM to label an unseen instance. The inference task can be 
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performed efficiently and exactly by variants of the standard dynamic-programming 

algorithms for HMM. The review of HMM algorithms is described in more detail by L.R. 

Rabiner and B.H. Juang (1989) [58].  

For each state y at position 𝑡. The most likely previous state is found by taking the 

evaluation of the best partial path to each of the possible previous states 𝑦𝑡−1 with the 

evaluation of the edge (𝑦𝑡−1, 𝑦𝑡). By combining results from the forward and backward 

recursions as described by A. Culotta and A. McCallum (2004) [67], to compute the 

global optimum value 𝑉𝑡(𝑦) of the best partial path to y at position t is thus defined by 

this which yields the Viterbi recursion: 

𝑉𝑡(𝑦) = {

maxy′𝑉𝑡−1(𝑦′) + 𝜃 ∙ 𝐹(𝑦, 𝑦′, 𝑋, 𝑡),         𝑖𝑓 𝑡 > 0

0,                                                                     𝑖𝑓 𝑡 = 0
−∞,                                                                𝑖𝑓 𝑡 < 0

  (3.7) 

A back pointer from the segment is stored to this most likely previous state. When 

the algorithm reaches the end of the sequence, it then chooses the ending segment with 

the highest partial path probability (where the partial path is now the complete path), and 

follows its back pointers to recover the Viterbi path. 

3.2.4 The comparison of HMM, MEMM and CRFs 

From above, HMM is the generative model which is a model for randomly 

generating observable data, typically given some hidden parameters. It specifies a joint 

probability distribution over observation and label sequences. Generative models are used 

in machine learning for either modeling data directly while MEMM and CRFs are 

generative models which opposed to generative models, do not allow one to generate 

samples from the joint distribution of 𝑥 and 𝑦. However, for tasks such 
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as classification and regression that do not require the joint distribution, discriminative 

models can yield superior performance. On the other hand, generative models are 

typically more flexible than discriminative models in expressing dependencies in 

complex learning tasks. In addition, most discriminative models are 

inherently supervised and cannot easily be extended to unsupervised learning. 

Application specific details ultimately dictate the suitability of selecting a discriminative 

versus generative model. HMM and MEMM are based on local normalization while 

CRFs is based on global normalization. The advantage of CRFs is their great flexibility to 

integrate a wide variety of arbitrary, non-independent features in the input [53] which 

results in the relaxation of the independence assumptions required by Hidden Markov 

Model (HMM) in order to ensure a tractable inference, CRFs still avoid the label bias 

problem that is the weakness of Maximum entropy Markov Model (MEMM) [66, 68]. 

CRFs have been shown to outperform both MEMM and HMM on a number of real-world 

sequence labeling tasks [55, 69]. These reasons refers that CRFs is correspond with the 

labeling sequence problem solution to generate the named entity recognition model.  

There are the works about comparing HMM, MEMM and CRFs for disfluency 

detection. Y. Liu and et al. mention that find that the conditional modeling approaches 

(MEMM and CRFs) provide an elegant and successful way to model various and 

potentially correlated features. It thus avoids the use of ad-hoc rules used in the HMM 

and MEMM methods. In terms of effects of transcripts and corpora, found that that 

performance degrades substantially due to word errors in recognition output. They still 

mention that much work still remains to improve system performance for edit detection 
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[Y Liu]. Hence, to recognition biological term, this chapter will focus on CRFs to 

improve the named entity recognition model. 

 

3.3 Biological Information Retrieval using Latent Semantic Indexing and Biological 

Named Entity Recognition 

3.3.1 Introduction 

The objective of this thesis focus on information extraction but in bio-text mining, 

the information retrieval is the techniques which necessary for information extraction to 

retrieve the relevance documents. Hence, this work will consider the information retrieval 

based on LSI and named entity recognition. Since the last chapter, the general terms 

couldn’t help much for information retrieval. To study the effective of named entity 

recognition as feature which generate by CRFs can improve the information retrieval. 

The methods and dataset are described in the next section. 

3.3.2 Methods and Dataset 

This work is arranged more from the chapter 2. The CRFs part is applied to the 

experiment. The framework is designed as Figure 3.6 
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Figure 3.6 Framework of Biological Information Retrieval using Latent Semantic 

Indexing and Biological Named Entity Recognition 

 

From Figure 3.6, The Framework is divided into two parts. First, the biological 

documents from NCBI corpus are labeled with CRFs model which generated by 

GENIA corpus. Then, the biological terms which labeled are scaled by TF-IDF. 

Another part, eigenvector is generated by LSI after scaled by TF-IDF. LSI is 

applied with CRFs. In the information retrieval, the models for both are tested by 

Cosine Similarity with query vector. The retrieved biological documents are 

returned. The methods and dataset in this work as follows, 
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1) Conditional Random Fields 

One of the methods for performing such labeling and segmentation tasks is 

Conditional Random Fields (CRFs). CRFs is a probabilistic framework for labeling and 

segmenting sequential data based on the conditional approach [60]. In Biological Fields, 

the use of CRFs for Biological named entity recognition (NER) is prevalent [70, 10].  

This method makes extensive use of a diverse set of features, including local features, full 

text features and external resource features [53]. The CRFs is an undirected graphical 

model [68], which is suited for sequence analysis.   

Normally conditioned on 𝑥 , the random variable represents observation 

sequences. Let G = (V, E) be an undirected graph such that there is a node 𝜐𝜖𝑉 

corresponding to each of the random variables representing an element  𝑌𝜈 of 𝑌. If each 

random variable  𝑌𝜈  obeys the Markov property with respect to 𝐺, then (𝑋, 𝑌) is a 

Conditional Random Field. In theory, the structure of graph 𝐺 may be arbitrary, it 

represents the conditional independencies in the label sequence being modeled. However, 

when modeling sequences, the simplest and most common graph structure is a simple 

first-order chain, as illustrated in Figure 3.7 

 

 

 

 

 

Figure 3.7 Graphical structures of chain-structured CRFs for sequences. 
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The variables corresponding to un-shaded nodes are not generated by the model. 

Let I define the probability of a particular label sequence  y given observation sequence x 

to be a normalized product of potential functions, each of the form 

exp (∑ 𝜆𝑗𝑡𝑗(𝑦𝑖−1, 𝑦𝑖, 𝑥, 𝑖)𝑗 + ∑ 𝜇𝑘𝑠𝑘(𝑦𝑖, 𝑥, 𝑖) 𝑘                                         (3.8) 

where 𝑡𝑗(𝑦𝑖−1, 𝑦𝑖, 𝑥, 𝑖) is a transition feature function of the observation sequence and the 

labels at positions 𝑖 and 𝑖 − 1 in the label sequence; 𝑠𝑘(𝑦𝑖, 𝑥, 𝑖) is a state feature function 

of the label at position 𝑖 and the observation sequence, 𝜆𝑗 and 𝜇𝑘 are parameters to be 

estimated from the training data. When defining feature functions, I construct a set of 

real-valued features  𝑏(𝑥, 𝑖) of the observation to expresses some characteristic of the 

empirical distribution of the training data that should also hold for the model distribution. 

An example of such a feature is 

𝑏(𝑥, 𝑖) = {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

𝑖𝑠 𝑡ℎ𝑒 𝑤𝑜𝑟𝑑 "𝐺𝑒𝑛𝑒"
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                  (3.9) 

Each feature function takes on the value of one of these real-valued observation 

features  𝑏(𝑥, 𝑖) if the current state (in the case of a state function) or previous and current 

states (in the case of a transition function) take on particular values. Therefore, all feature 

functions are real-valued. For example, consider the following transition function: 

𝑡𝑗(𝑦𝑖−1, 𝑦𝑖, 𝑥, 𝑖) = {
𝑏(𝑥, 𝑖), 𝑖𝑓 𝑦𝑖−1 = 𝑃𝑟𝑜𝑡𝑒𝑖𝑛 
                𝑎𝑛𝑑 𝑦𝑖 = 𝑃𝑟𝑜𝑡𝑒𝑖𝑛

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
               (3.10) 

Let 

                       𝑠𝑘(𝑦𝑖, 𝑥, 𝑖) =  𝑠𝑘(𝑦𝑖−1, 𝑦𝑖, 𝑥, 𝑖)                             (311) 

and 
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                     𝐹𝑗(𝑦, 𝑥) = ∑ 𝑓𝑖
𝑛
𝑖=1 (𝑦𝑖−1, 𝑦𝑖𝑥, 𝑖)                           (3.12) 

 

where each ∑ 𝑓𝑖
𝑛
𝑖=1 (𝑦𝑖−1, 𝑦𝑖𝑥, 𝑖) is either a state function 𝑠𝑘(𝑦𝑖−1, 𝑦𝑖 , 𝑥, 𝑖) or transition 

function 𝑡𝑗(𝑦𝑖−1, 𝑦𝑖, 𝑥, 𝑖). 

This allows the probability of a label sequence 𝑦 given an observation sequence 𝑥 to be 

written as: 

𝑝(𝑦|𝑥, 𝜆) =
1

𝑍(𝑥)
exp (∑ 𝜆𝑗𝐹𝑗(𝑦, 𝑥)𝑗 )                       (3.13) 

 A normalization factor is  𝑍(𝑥).  

2) Dataset  

The dataset is gathered from the NCBI corpus and GENIA corpus. The biological 

documents or abstracts are used in testing process while biological terms are recognized 

by the CRFs model to label named entities types (Protein, DNA, RNA, Cell line and Cell 

type) which generated from GENIA corpus. 

3.3.3 Results and Discussion 

The performance is evaluated by precision and recall values. Then, the harmonic 

mean of precision and recall are weighted with the traditional F-measure. The 

performance of models comparison are shown in Table 3.1 

Table 3.1 Performance of Models for Information Retrieval 

 Recall (%) Precision (%) F-Measure (%) 

CRF 70.00 72.50 71.23 

LSI 65.00 67.00 65.98 

CRF+LSI 75.40 76.50 75.95 
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According to experimental results, the performance of CRFs was about 71% (70% 

recall and 72.5% precision values). The CRFs method is suitable for finding important 

keywords in documents (decrease features), while the performance of LSI (See Chapter 

2) was about 65% (67% recall and 67% precision values).The result showed that LSI 

methods help to find the latent concepts of the whole documents, not only important 

keywords. To improve the biological documents retrieval performance by CRFs and LSI, 

feature selection was generated by the CRFs model to find the names of biological 

entities and the relevance documents could be retrieved by LSI. 

 In this work, a method was proposed to improve biological information retrieval 

by using the CRFs model for finding some specific features and using LSI for retrieving 

the relevant documents. The performance of our proposed model depends on the given 

training data set. In the future, the method could possibly be improved for more effective 

feature selection to enhance the performance of the model.  

 

3.4 Biological Named Entity Recognition using the Conditional Random Fields 

Technique 

3.4.1 Introduction 

The CRFs is another machine learning model which has been used to analyze 

biological text. Some such research topics have included forming NER and rich feature 

sets and identifying gene and protein mentions in text [9]. Biological and chemical named 

entity recognition with CRFs offers the advantage of dictionary feature which can 

integrate linguistic knowledge to identify biological named entities [53], extract semantic 
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biological relations from text [69], identify the results in biological abstracts [3], the 

name alias phenomenon and an open dictionary from the database term list SwissProt and 

the alias list LocusLink, the abbreviation resolution and in domain POS [48], system 

which makes extensive use of local and syntactic features within the text [72] and 

proposed a classifiers ensemble method [55]. These researches shows state of the art 

around 78%.  

However, the problem of NER using CRFs remains a challenging task and is still 

an open and active area of research because of the system still difficult to recognize long, 

complicated NEs and to distinguish between two highly overlapped NE classes, such as 

cell-line and cell-type [1 and 3], suggested that should focus on improving the accuracy 

of detection of entities as well as entity boundaries, which will also greatly improve the 

relation extraction performance. This target work will focus on improving the CRFs 

performance by focusing on the potential function to generate feature for the model 

prediction. 

3.4.2 Methods and Dataset 

This method which uses in this work is CRFs. We will study the performance of 

CRFs via improving the potential function. Finally the models which generated from 

different potential function will be compared. This work is designed the framework as 

Figure 3.8 
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Figure 3.8 The framework of Biological Named Entity Recognition using the 

Conditional Random Fields Technique 

 

1) Conditional Random Fields for Biological Named Entity Recognition 

The CRFs method is an undirected graphical model [51] which is appropriate for 

sequence analysis [60] and can be used for Biological Named Entity Recognition (NER) 

[9]. The advantage of CRFs are in their great flexibility to integrate a wide variety of 

arbitrary, non-independent features from an input dataset and relax the independence 

assumptions required by Hidden Markov Model (HMM) in order to ensure that tractable 

inferences can be made [66]. Also, CRFs have been shown to prevent the label bias 

problem and can outperform HMM on a number of real-world sequence labeling tasks 

[68 and 69].  

Let 𝒙 be a random variable which represents a sequence of words, 𝒚 be the labeling 

random variable associated with 𝒙, 𝑮 = (𝑽, 𝑬) be a linear chain undirected graph 
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representing the conditional independencies of 𝒚 given 𝒙.  For example, given a sequence 

of words 𝒙 as in Figure 3.9  

 

Figure 3.9 Example of Biological Named Entity Recognition 
 

𝒚 is the corresponding label sequence predicted by the CRFs.  In this example, the 

words “beta 2-M” at positions  𝑥3 and  𝑥4 are predicted as protein name; i.e. 𝑦3 = “B-

protein” and 𝑦4 = “I-protein”. “B-protein” indicates the beginning of the protein name, 

and “I-protein” indicates the consecutive compound protein name. The other positions 𝑥𝑡 

which have the label 𝑦𝑡 = “O” indicate that the other 𝑥𝑡 are plain words.  

Conceptually, the conditional probability of a particular label sequence  𝒚 =

𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑇 given observation sequence 𝒙 = 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑇  is defined by a 

normalized product of potential functions. 

where 𝒁(𝒙) is a normalization factor, and  𝑭(𝒚, 𝒙, 𝑡)is the potential function of 𝒙 and 

𝒚 at position 𝑡.                         

The CRFs based NER model is trained with an available known 𝒙 and 𝒚 dataset, from 

which the conditional probability distribution(𝒑(𝒚|𝒙)) is inferred. In the prediction step, 

the label sequence 𝒚 obtains the highest conditional probability. The NER model then 

𝑝(𝒚|𝒙) =
1

𝑧(𝑥)
exp (∑ 𝐹(𝒚, 𝒙, 𝑡)

𝑡
) 

    (3.14)  
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selects the maximum probability path 𝒑(𝒚|𝒙) with a dynamic programming Viterbi-like 

algorithm [60], described as: 

         𝑦∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑦𝑝(𝒚|𝒙)              

                   = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑦 exp (∑ 𝐹(𝒚, 𝒙, 𝑡)

𝑇

𝑡=1

) 

(3.15) 

- Potential Functions of CRFs for Named Entity Recognition 

In this section, word surfaces and labels were used to be a feature selection and focus 

to define the potential function 𝐹(𝒚, 𝒙, 𝑡) of the CRFs for named entity recognition.  The 

potential function for the 1st CRFs is described first, and then one for the second-order 

CRFs is extended from that formulation.   

Let  𝒙 = 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑇 be a sentence (sequence of words),  𝒚 = 𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑇  be 

the corresponding label sequence of 𝒙, associated with class of word  𝑦𝑡  ∈ {𝑙1, 𝑙2, … , 𝑙𝑀}, 

which could be “B-protein”, “I-protein”, “B-cell_line”, “I-cell_line”, “B-cell_type”, “I-

cell_type”, “B-DNA”, “I-DNA”, “B-RNA”, “I_RNA” and “O”. 

- Potentials in 1st  CRFs  

The potential function 𝐹(𝒚, 𝒙, 𝑡) for 1st CRFs is the combination of transition 

potential functions 𝑓
𝑙′,𝑙
𝑖 (𝑦𝑡−1, 𝑦𝑡, 𝒙) and state potential functions 𝑔𝑙

𝑖(𝑦𝑡, 𝒙):  

𝐹 (𝒚, 𝒙, 𝑡) = ∑ 𝜆
𝑙′,𝑙
𝑖

𝑙′,𝑙,𝑖 𝑓
𝑙′,𝑙
𝑖 (𝑦𝑡−1, 𝑦𝑡, 𝒙) + ∑ 𝜇𝑙

𝑖
𝑙,𝑖 𝑔𝑙

𝑖(𝑦𝑡, 𝒙)                                 (3.16) 

for which 𝜆
𝑙′,𝑙
𝑖  and 𝜇𝑙

𝑖 represent the transition function and state function parameters and 𝑖 

is index of the parameters. 𝑧(𝒙, 𝑡) is defined as; 
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                       𝑧(𝒙, 𝑡) = {
1, 𝑖𝑓 𝒙 at position 𝑡 ± 2 is equal to 𝑤𝑜𝑟𝑑𝑠

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
                         (3.17) 

  From equation (3.23), 𝑧(𝒙, 𝑡) represents whether 𝒙 at positions t-2 to t+2 consist 

of word surfaces or biological terms. For example, in Figure 3.10, if  𝑡 is 3, the words, 

“Presence of beta 2-M was” are considered. I consider a sliding window (size=5) which 

surround the position of interest t. 

The transition potential function 𝑓
𝑙′,𝑙
𝑖 (𝑦𝑡−1, 𝑦𝑡, 𝒙) characterizes whether at some 

specific position 𝑡;  the 𝑦𝑡−1,𝑦𝑡 are particularly labelled by  𝑙′ and 𝑙 respectively: 

 

                            𝑓
𝑙′,𝑙
𝑖 (𝑦𝑡−1, 𝑦𝑡 , 𝒙) =  { 𝑧(𝒙, 𝑡)    𝑖𝑓  𝑦𝑡−1 = 𝑙′, 𝑦𝑡 = 𝑙 

0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                        
                                                    

  (3.18) 

  

where  𝑙′ and 𝑙 , associated with some specific i, could be “B-protein”, “I-protein”, “B-

cell_line”, “I-cell_line”, “B-cell_type”, “I-cell_type”, “B-DNA”, “I-DNA”, “B-RNA”, 

“I_RNA” or “O”. 

The state potential function 𝑔𝑙
𝑖(𝑦𝑡, 𝒙) characterizes whether at some specific position 𝑡, 

𝑦𝑡 is particularly labelled by 𝑙. 

      𝑔𝑙
𝑖(𝑦𝑡, 𝑥) =  {

𝑧(𝒙, 𝑡)    𝑖𝑓 𝑦𝑡 = 𝑙       
      0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    

 
   (3.19)                                                     

- Potentials in 2nd CRFs 

 𝐹(𝒚, 𝒙, 𝑡) is defined in equation (3.20) for 2nd CRFs as:  
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  𝐹(𝒚, 𝒙, 𝑡) = ∑ 𝜆𝑙′,𝑙
𝑖

𝑙′,𝑙,𝑖

𝑓𝑙′,𝑙
𝑖 (𝑦𝑡−1, 𝑦𝑡, 𝒙)

+ ∑ 𝜇𝑙
𝑖

𝑙,𝑖

𝑔𝑙
𝑖(𝑦𝑡, 𝒙)                                                              

+ ∑ 𝜆
𝑙′′,𝑙′,𝑙
𝑗 𝑓

𝑙′′,𝑙′,𝑙

𝑗 (𝑦𝑡−2, 𝑦𝑡−1, 𝑦𝑡, 𝑥) + ∑ 𝜇
𝑙′,𝑙
𝑗 𝑔

𝑙′,𝑙

𝑗 (𝑦𝑡−1, 𝑦𝑡, 𝑥)

𝑙′,𝑙,𝑗𝑙′′,𝑙′,𝑙,𝑗

 

(3.20) 

Where  𝑓
𝑙′,𝑙
𝑖 (𝑦𝑡−1, 𝑦𝑡 , 𝒙) and 𝑔𝑙

𝑖(𝑦𝑡, 𝒙) are defined by (3.18) and (3.19).   Let 𝑗 be the index 

of the parameters in the 2nd CRFs. 

            𝑓
𝑙′′,𝑙′,𝑙

𝑗 (𝑦𝑡−2, 𝑦𝑡−1, 𝑦𝑡 , 𝒙) =  {
𝑧(𝑥, 𝑡)    𝑖𝑓 (𝑦𝑡−2 = 𝑙′′, 𝑦𝑡−1 = 𝑙′)

                 𝑎𝑛𝑑 (𝑦𝑡−1 = 𝑙′, 𝑦𝑡 = 𝑙 )

0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                    

                         (3.21) 

𝑔
𝑙′,𝑙

𝑗 (𝑦𝑡−1, 𝑦𝑡, 𝑥) =  {𝑧(𝑥, 𝑡)   𝑖𝑓 𝑦𝑡−1 = 𝑙′, 𝑦𝑡 = 𝑙
0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 

                                         (3.22) 

For example, in the sequence of words in Figure 3.10, when 𝑡 = 4, 𝑥4 = “2-M”; when l= 

“I-protein”, 𝑙′= “B-protein” and 𝑙′′= “O”, 𝑓
𝑙′,𝑙
𝑖 (𝑦𝑡−1, 𝑦𝑡, 𝒙) in equation (3.18) is equal to 1 

if the value of 𝑦3 and 𝑦4 are “B-protein” “I-protein”.  While 𝑓
𝑙′′,𝑙′,𝑙

𝑗 (𝑦𝑡−2, 𝑦𝑡−1, 𝑦𝑡, 𝒙) in 

equation (3.21) is equal to 1 if the value of 𝑦2, 𝑦3 and 𝑦4 are “O”, “B-protein”, and “I-

protein” respectively. 

2) Time complexity of CRFs 

The inference for CRFs based on the Viterbi algorithm is quite efficient. The training 

process is much more expensive due to the heavy forward-backward computation to 

evaluate the log-likelihood function and its gradient vector for each iterative scaling step.  
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The time complexity of the training process is O(mNTQ2nS), in which 𝑚 is the 

number of training iterations; 𝑁 is the number of training data sequences; 𝑇 is the 

average length of training sequences; 𝑄 is the number of class labels; 𝑛 is the number of 

CRF features; and 𝑆 is the searching time of L-BFGS optimization at each step. In 

practical implementation, the computational time should be larger due to many other 

operations such as numerical scaling (to avoid numerical problems), smoothing, and 

mapping between data formats. The time complexity of the 2nd CRFs is even much larger, 

O(mNTQ4nS), because the number of labels is now squared. When the number of labels 

is large, training CRFs on single computer is very time consuming. Consider the 

performance of the 2nd CRFs is efficiency for named entity recognition. These the reason 

while not to be the 3rd CRFs. It is not worth because the time consuming will be 

O(mNTQ8nS). The improvement time complexity is not the objective in this thesis. 

3) Dataset 

Dataset was from GENIA corpus or JNLPBA2004 [69] which composed of 2,000 

PubMed abstracts with term annotation for training data. Evaluation data compose with 

404 PubMed abstracts, with one file with term annotation and one without for each and 

evaluation tool updated evaluation tool. Use this tool to get the evaluation equivalent to 

that of the shared task. 

3.4.3 Results and Discussion 

The CRFs model was tested on the JNLPBA2004 shared task dataset, The corpus 

is composed of five classes: protein, DNA, cell_type, cell_line and RNA. The pattern 

labels of each class begin with “B-” and are followed with the class such as B-protein, B-
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DNA. If the biological terms are composed of two or more words, the pattern is “I-” for 

example, protein name (Human T3 factors) the class labels are in this format.                                              

                                           Human               B-protein 

     T3      I-protein 

                             factors                I-protein 

The FlexCRFs package [83] was used to train and label the text sequences for the first- 

and 2nd CRF analysis. 

The performance of the NER model was evaluated using standard precision, recall and 

F-values. Precision 𝜋 is defined as the fraction of predictions, made by the model, that are 

correctly matched. Recall 𝜌 is defined as the fraction of the manual labels that were 

correctly matched.  

In the evaluation of the model, only the exactly matched results were considered for a 

chunk-based performance evaluation. The performances of the biological named 

recognition models were shown in Tables 3.2 and 3.3 

Table 3.2 Performance of biological named entity recognition based on 1st CRFs  

Label 
Recall Precision F-Measure 

(%) (%) (%) 

Protein 56.01 68.16 61.49 

DNA 57.58 70.45 63.37 

Cell Type 58.15 77.95 66.61 

Cell Line 46.00 53.86 49.62 

RNA 61.86 64.04 62.93 

Average 56.18 69.50 62.13 
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The 1st CRFs model returned F-measure values with an average of 62.13%. The 

precision scores were higher than the recall scores by 13.32%. This shows that the model 

returns fewer false positives than false negatives. The F-measure value of Cell Type had 

the highest percentage, 66.61%, while Cell Line had the lowest at 49.62%. The 

characteristics of Cell Line and Cell Type were quite similar, although the size of the 

training and testing datasets for Cell Type were about two times larger than in than the 

Cell Line. Thus, some Cell Line terms were wrongly predicted to be Cell Type. Although 

the 1st CRFs model explained above performs well for biological term recognition of not 

so long ranges interactions, it fails to encode long-range interactions among states due to 

the limitation of the first order dependency (the current state depends only on one 

previous state). Therefore, the model was extended to consider the more general case of 

2nd CRFs which incorporate the recognition of longer ranged correlations than in 1st 

CRFs. These results are shown in Table 3.3. 

Table 3.3 Performance of biological named entity recognition based on 2nd CRFs 

Label 
Recall Precision F-Measure 

(%) (%) (%) 

Protein 100.00 100.00 100.00 

DNA 99.24 99.62 99.43 

Cell Type 99.79 99.95 99.87 

Cell Line 98.80 97.99 98.39 

RNA 100.00 100.00 100.00 

Average 99.73 99.88 99.81 

 

 

From Table 3.3, the precision scores were still generally higher than the recall scores 

as with the 1st CRFs but with a much smaller gap (only about 0.15%). From the potential 
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function of 2nd CRFs, more potential functions could generate a more complex model 

than for those of the 1st CRFs for capturing longer ranged interactions.  

For the recall value, the average of the recall improvement value was around 43.55%. 

This showed that a higher fraction of the manual labels were correctly matched.  

In general, biological terms which represent Cell Line and Cell Type are similar type 

words. The model from the first-order CRFs at times returned wrong predictions for the 

Cell Type class. The potential function for the 2nd CRFs supported interactions which 

were long enough to discriminate between them. Generally, the 2nd CRFs were very 

efficient as shown in Table 3.3 above, but the time complexity was the drawback.  The 

time complexity of the 2nd CRFs was much larger than in the first order especially when 

the number of labels was large, it was very time consuming, but runtime improvement 

considerations were not within the scope of this work.    

    According to the potential function above, the results showed that 1st CRFs predict 

with very high performance 1-2 words but the 2nd CRFs could predict the co-occurrence 

of words which were suitable for biological named entity recognition and longer sets of 

words. An example which showed the differences between the 1st  and 2nd CRFs models 

was as follows: 

Biological Term        Label               1st CRFs             2nd CRFs 

                               human         B-protein                  O                  B-protein 

                                T3         I-protein            B-protein      I-protein 

                           receptor         I-protein             I-protein      I-protein 
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The 1st CRFs predicted the word “human” to be a normal word and not a biological 

term while the words “T3 receptor” were correctly predicted. In contrast, the 2nd CRFs 

was able to group these words together correctly to form a single biological term. This 

showed that 1st CRFs could only predict single words or word pairs to form biological 

terms. Thus, it was possible to miss some biological terms which were composed of 

many words. The 2nd CRFs returned correct matches because of the potential function 

which focuses on the co-occurrence of words, and they were quite effective to predict the 

long-range relationships between words (biological name entity). That’s the reason why 

2nd CRFs predicted with such a high performance increase over the 1st CRFs. 

  The models were also compared with other existing methods tested on the same 

JNLPBA 2004 task set as is shown in Table 3.4. 

Table 3.4 Comparison of biological named entity recognition performance with others 

existing models 

  Recall Precision F-Measure 

Label (%) (%) (%) 

1st CRFs 56.18 69.50 62.13 

2nd CRFs 99.73 99.88 99.81 

Deep knowledge resources[48] 75.99 69.42 72.55 

Local and syntactic features [72] 68.60 71.60 70.10 

CRF-Simple orthographic features[9] 70.00 69.0 69.50 

Class-attribute stacking [55] 75.57 79.68 77.57 

 

The performance of the 1st CRFs model was lowest. It was not powerful enough for 

accurate prediction when compared with other models. Z. GuoDong and S. Jian [48] have 

explored various deep knowledge resources such as the name alias phenomenon, they 
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used both a closed dictionary from the training corpus and an open dictionary from the 

database term list SwissProt and the alias list LocusLink, the abbreviation resolution and 

in domain POS. For these methods, their performance was 72.55%. Also, B. Settles [9] 

presented in detail a framework for recognizing multiple entity classes in biological 

abstracts with Conditional Random Fields. It showed that a CRFs-based model with only 

simple orthographic features could achieve reasonable performance values while only 

using semantic lexicons which did not affect performance.  

The performance of this model was around 69.50%. J. Finkel, S. Dingare,H. 

Nguyen,M. Nissim,C. Manning, and G. Sinclair [72] have also proposed a system which 

makes extensive use of local and syntactic features within the text, as well as external 

resources including the web and gazetteers. It achieved an F-score of 70.10%. 

    In 2008, H.Wang, T. Zhao,H.Tan and S. Zhang [55] proposed a classifiers ensemble 

method which achieved an F-score of 77.57%. The performance analysis of the 2nd CRFs 

model showed that it model is a highly efficient method to approach name entity 

recognition.  

A biological information extraction technique using the CRFs model has proposed 

to address NER as it is applied to recognize classes of words. The 1st and the 2nd CRFs 

were compared and showed that the later model provided the best NER results.  
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3.5 Comparison of Biological Named Entity Recognition Models Performance  

3.5.1 Introduction 

The recently year, there are many techniques to generate the NER models because 

of they are a prerequisite for many applications working on text, such as information 

retrieval, information extraction or document classification [52]. The NER models almost 

generated with machine learning techniques. The state of the art of NER models around 

F-score of 77.57% [55]. Hence, this work was focus on the comparison between 

biological NER models performance which generated with machine learning techniques 

such as Dictionary based and SVMs. 

3.5.2 Methods and Dataset 

This work, the training and testing dataset from GENIA corpus is used to generate 

the NER models with four methods (1st CRFs, 2nd CRFs, SVMs and Dictionary Based). 

The finally they are compared the prediction performance by recall, precision and F-

Measure scale. The framework of this work is defined as Figure 3.9 
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Figure 3.9 The framework of comparison of Biological Named Entity Recognition 

models performance 

 

The concept of CRFs is described last section. This part will explain only the 

concepts of the Dictionary Based and SVMs as follow, 

1) Dictionary Based  

Dictionaries are intrinsically interesting and a study of their features can be of 

great usefulness to investigate the properties of the sequences they have been extracted 

from [73]. Given an unstructured text string 𝑥 consisting of a sequence of tokens 𝑥1 … 𝑥𝑛 

where each token is either a word or a delimiter. Let 𝑌 denote the set of entity types (such 
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as title, person-names and city-names) to be recognized from 𝑥. The entity recognition 

task is to segment 𝑥 into a sequence 𝑠 of segments 𝑠1 … 𝑠𝑝 where each segment 𝑠𝑗 is 

either labeled with an entity type from 𝑌 or a special label other denoting none of entities. 

For ease of notation, we assume 𝑌 includes the other label. Thus, each segment 𝑠𝑗 is 

associated with a start position 𝑡𝑗, an end position 𝑢𝑗  and a label 𝑦𝑗 ∈ Y . Further, since 

adjacent segment about 𝑡𝑗 and 𝑢𝑗  always satisfy 1 ≤ 𝑡𝑗 ≤ 𝑢𝑗  ≤ | x |, 𝑡𝑗+1 = 𝑢𝑗  + 1; 𝑢𝑝 = | x |, 

and 𝑡1  = 1. Entities were recognized in unstructured text based on various simultaneous 

clues in and around the proposed segment such as capitalization patterns and delimiters. 

Other clues like the implicit ordering of labels and matches with known list of entities are 

also utilized. 

                   2)  Support Vector Machines (SVMs) 

As described in Chapter 2, Support Vector Machines (SVMs) are well-known for their 

good generalization performance for machine learning approaches to solve two-class 

pattern recognition problems. In the topics of NLP, SVMs have been applied to text 

classification, and are reported to have achieved high accuracy without falling into over-

fitting even with a large number of words taken as the features [57]. Suppose a set of 

training data for a two-class problem is given as follows: 

   {(𝑥1, 𝑦1), . . . , (𝑥𝑁, 𝑦𝑁)} , where 𝑥𝑖 ∈ 𝑅𝐷  is a feature vector of the i-th sample in the 

training data and 𝑦 ∈ {+1,−1} is the class to which xi belongs. In their basic form, an 

SVMs finds a linear hyperplane that separates the set of positive examples from the set of 

negative examples with maximal margin (the margin is defined as the distance of the 
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hyperplane to the nearest of the positive and negative examples). In a basic SVMs 

framework, the positive and negative examples are separated by a hyperplane written as: 

(𝑤. 𝑥) + 𝑏 = 0  𝑤 ∈ 𝑅𝑁 , 𝑏 ∈ 𝑅  , SVMs find the optimal-hyperplane (optimal parameter 

w, b) which separates the training data into two classes precisely. The linear separator is 

defined by two elements: a weight vector 𝑤 (with one component for each feature), and a 

bias b which stands for the distance of the hyperplane to the origin. The classification rule 

of a SVMs is:           

𝑠𝑔𝑛(𝑓(𝑥, 𝑤, 𝑏))                                                   (3.23) 

                                                  𝑓(𝑥, 𝑤, 𝑏) =< 𝑤. 𝑥 > +𝑏                                          (3.24) 

being 𝑥 the example to be classified. In the linearly separable case, determining the 

maximal margin hyperplane (𝑤, 𝑏) can be stated as a convex quadratic optimization 

problem with a unique solution: minimize ||w||, subject to the constraints (one for each 

training example): 

𝑦𝑖(< 𝑤. 𝑥𝑖 > +𝑏) ≥ 1                                                   (3.25)                                                                 

The SVMs model has an equivalent dual formulation, characterized by a weight vector α 

and a bias b. In this case, α contains one weight for each training vector, indicating the 

importance of this vector in the solution. Vectors with non null weights are called support 

vectors. The dual classification rule is: 

                 𝑓(𝑥, α, 𝑏) = ∑ 𝑦𝑖α𝑖 < 𝑥𝑖. x > +𝑏𝑁
𝑖=1                                         (3.26) 

The α vectors can also be calculated as a quadratic optimization problem. Given the 

optimal 𝛼∗ vector of the dual quadratic optimization problem, the weight vector 𝑤∗that 

realizes the maximal margin hyperplane is calculated as: 
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𝑤∗ = ∑ 𝑦𝑖α𝑖
∗𝑥𝑖

𝑁
𝑖=1                                                                (3.27)                                                                 

The 𝑏∗ has also has a simple expression in terms of 𝑤∗and the training examples 

(𝑥𝑖, 𝑦𝑖)𝑖=1
𝑁  The advantage of the dual formulation is that efficient learning of non-linear 

SVMs separators can be acheived by introducing kernel functions. Technically, a kernel 

function calculates a dot product between two vectors that have been (non-linearly) 

mapped into a high dimensional feature space. Since there is no need to perform this 

mapping explicitly, the training is still feasible although the dimension of the real feature 

space can be very high or even infinite.  

By simply substituting every dot product of 𝑥𝑖 and 𝑥𝑗 in dual form with any kernel 

function 𝐾(𝑥𝑖, 𝑥𝑗). SVMs can handle non-linear hypotheses. Among the many kinds of 

kernel functions available, the 𝑑 − 𝑡ℎ polynomial kernel is considered; 

𝐾(𝑥𝑖, 𝑥𝑗) = (𝑥𝑖. 𝑥𝑗 + 1)𝑑                                                            (3.28)                                                                 

Use of 𝑑 − 𝑡ℎ polynomial kernel function allows to build an optimal separating 

hyperplane which takes into account all combination of features up to 𝑑. 

The SVMs has advantage over conventional statistical learning algorithms, such 

as Hidden Markov Models, Maximum Entropy Models, from the following two aspects:  

1) SVMs has high generalization performance independent of the dimension of 

the feature vectors. Conventional algorithms require careful feature selection, which is 

usually optimized heuristically, to avoid overfitting. Thus, it can more effectively handle 

the diverse, overlapping and morphologically complex Indian languages. 
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2) SVMs can carry out their learning with all combinations of given features 

without increasing computational complexity by introducing the Kernel function. 

Conventional algorithms cannot handle these combinations efficiently.  

There are many toolkits developed based on SVMs such as the 1YamCha toolkit 

which is the tool for detecting classes in documents and formulating the NER task as a 

sequential labeling problem; 2TinySVM is an implementation of SVMs for the problem of 

pattern recognition. For these reasons, SVMs is a new generation learning algorithm 

based on recent advances in statistical learning theory, and has already been applied to a 

large number of real-world applications, such as text categorization and hand-written 

character recognition. 

3.5.3 Results and Discussion 

To examine the Biological Named Entity Recognition Models. This section is 

designed to evaluate the performance of the four models shown in Table 3.5. 

 

 

 

 

 

 

 

 

1http://chasen-org/ taku/software/yamcha/ 
2http://cl.aist-nara.ac.jp/ taku-ku/software/TinySVM 
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Table 3.5 Comparison of Biological Named Entity Recognition Models 

Performance 

  Recall Precision F-Measure 

Label (%) (%) (%) 

1st CRFs 56.18 69.50 62.13 

2nd  CRFs 99.73 99.88 99.81 

Support Vector Machines (SVMs) 61.97 71.15 66.24 

Dictionary Based 55.16 51.46 53.25 

 

The JNLPBA2004 corpus was a data set used to generate models. The CRFs 

models (1st CRFs and 2nd CRFs) were compared with the SVMs and Dictionary Based 

methods. The results showed that the 2nd CRFs method had the highest F-Measure at 

99.81% while the SVMs and 1st CRFs were nearly equal to each other at 66.24% and 

62.13% respectively. Dictionary based model returned the lowest results at 53.25%. The 

CRFs method was conclude that was suitable for   biological name entity recognition. 

In order to examine, how biological terms identification affects information extraction, 

the next chapter will compare results from biological named entity recognition models. 

 

3.6 Conclusion 

This chapter focuses on biological named entity recognition with machine 

learning. The CRFs was considered as the techniques to generate the model prediction. 

It’s the graphical model which discriminative model and predict without the label bias 

problem. In process of information retrieval, the CRFs could help to improve the 

performance by identify feature selection and support LSI to find the latent concepts. But 
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the name of biological terms almost have long, the 1st CRFs was not support every case. 

The results of the experiment showed that the performance of the 2nd CRFs model 

returned the high performance than the others. It’s suitable for identify the biological 

named entity recognition from literature which was necessary for the information 

extraction. 

 


