
 

 

Chapter 2 

Methodology 

 

This dissertation is a quantitative study based on the econometric models, 

such as GARCH type models, which are very important in volatility study with high 

frequency data, and copula method, which is newly popular in dependence studies.   

The reason why use these models developed for finance study is that the data of this 

study exhibit the same characteristics of financial time series.   The data are high 

frequency (daily), continuous, with no time trend and exhibit obvious volatility 

clustering.   This research will start with univariate volatility study followed by 

multivariate DCC-GARCH studies and then copula based dependence studies, 

comparison between DCC-GARCH studies and copula studies will be made. 

2.1  Univariate Model 

Volatility models have been very popular in empirical research in finance and 

econometrics since the early 1990s.  The models are based on influential papers by 

Engle(1982) and Bollerslev (1986).  All volatility models start off with a ‘mean 

equation’, which is commonly a standard ARIMA or regression model.   Then 

involve adding a ‘variance equation’ to the original mean equation and which in turn 

models the conditional variance. 
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An ARIMA(p, d, q) is expressed as:  

(1 − ∑ θi
p
i Li)(1 − L)dyt=(1 + ∑ Φi

q
i Li)εt       (2.1) 

where p, d, and q are integers greater than or equal to zero and refer to the order of 

the autoregressive, integrated, and moving average parts of the model respectively.   

When one of the terms is zero, it is usual to drop AR, I or MA. 

In this study, volatility models to be estimated are associated with a stationary 

AR (1) conditional means given by: 

Yt = μ + θYt−1 + εt       |θ| < 1        (2.2) 

or a MA(1) conditional means given by: 

Yt = μ + Φεt−1 + εt      |Φ| < 1         (2.3) 

or a ARMA(1,1) conditional means given by: 

Yt = μ + θYt−1 + Φεt−1 + εt          (2.4) 

where, Yt is Air Pollution Index, εt is shock to API. 

2.1.1  GARCH Model 

The generalised autoregressive conditional heterocedasticity (GARCH) 

model was developed by Bollerslev (1986).   It is rare for the order (p, q) of a 

GARCH model to be high;  indeed the literature suggests that the parsimonious 

GARCH(1,1) is often adequate for capturing volatility in financial data.   In this 

empirical application, (p, q) tends to be (1, 1).   The conditional variance is 

modeled as: 
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εt = η
t√ht 

ht = ω + αεt−1
2 + βht−1      (2.5) 

where ht is conditional volatility, conditional on the information of period t-1;  η
t
 

is standardized shock to API.   ω>0, α ≥0, β ≥0 are sufficient to ensure that the 

conditional variance  ht>0;  Using results from Ling and Li and Ling and McAleer, 

the necessary and sufficient condition for the existence of the second moment of εt 

for GARCH (1,1) is α + β <1. 

GARCH model is lack of asymmetric and leverage.   It presumes 

that the impacts of positive and negative shocks are the same or ‘symmetric’.   

This is because the conditional variance in these equations depends on the 

magnitude of the lagged residuals, not their sign.   In order to accommodate the 

differential impacts on the conditional variance between positive and negative 

shocks, Glosten, Jagannathan and Runkle (1992) proposed the following 

specification for ht. 

2.1.2  GJR-GARCH 

The threshold GARCH (TGARCH) (Glosten, Jaganathan, &Runkle, 

1993) is a simple extension of the GARCH scheme with extra term(s) added to 

account for possible asymmetries: 

εt = η
t√ht 
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ht = ω + αεt−1
2 + γΙ(εt−1) + βht−1       (2.6) 

where ω>0, α ≥0, α + γ ≥ 1 and β ≥0 are sufficient conditions to ensure that the 

conditional variance  ht>0.   Ι(εt−1) is an indicator function, taking the values of 1 

if εt−1<0(good news in this study) and 0 if εt−1>0.   The impact of bad news and 

good news on the conditional variance in this model is different, if γ > 0, the 

positive innovations have a higher impact than negative ones.   The GJR is 

asymmetric as long as γ is significant different from zero.    

Regularity condition for the existence of the second moment of GJR 

model is (α + β +
γ

2
) < 1.   When the conditional shock(η

t
) follow a symmetric 

distribution, the expected short run persistence is (α +
γ

2
), and the contribution of 

shocks to expected long run persistence is (α + β +
γ

2
). 

2.1.3  EGARCH 

The EGARCH (p, q) model of Nelson (1991) can also accommodate 

asymmetry and specifies the conditional variance in a different way: 

εt = η
t√ht 

loght = ω + α|εt−1| + γεt−1 + βloght−1      (2.7) 

EGARCH models the logarithm of conditional volatility, thereby 

removing the need for constraints on the parameters to ensure a positive conditional 

variance (Long more& Robinson, 2004).   |εt−1| and εt−1 capture the size and 
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sign effects of standardized shocks respectively.  The presence of leverage effects 

can be tested by the hypothesis that γ<0 and γ<α < −γ.  The model permits 

asymmetries via γand ifγ< 0, negative shocks lead to an increase in volatility.   

Good news generates less volatility than bad news.  The model is asymmetric as 

long as γ ≠ 0. 

EGARCH is asymmetric, can capture leverage, but it does not have 

statistical properties because we cannot differentiate |εt−1|. 

2.1.4  GARCH in Mean 

The ARCH and GARCH framework was further extended to ARCH 

and GARCH in mean (ARCH-M and GARCH-M) by Engle, Lillen and Robins 

(1987).   The GARCH-M model adds a heteroskedasticity term into the mean 

equation.   It has the specification: 

Yt = μ + θYt−1 + λht + εt     |θ| < 1 

εt = η
t√ht 

ht = ω + αεt−1
2 + βht−1         (2.8) 

The only difference of GJR in Mean(GJR-M) and EGARCH in Mean 

(EGARCH-M) with GARCH-M is that they have different variance equations: 

ht = ω + αεt−1
2 + γΙ(εt−1) + βht−1 for GJR-GARCH-M  (2.9) 

and 
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loght = ω + α|εt−1| + γεt−1 + βloght−1 for EGARCH-M (2.10) 

2.1.5  Models with Dummy 

To examine the season dust effect, this study set a dummy variable D, 

which equals to zero when t is in non dust season and D equals to 1 when t is in dust 

season.   Specifically, to consider the seasonal dust effect, we also employ the all 

four above mentioned models;  the only difference is that we put an additional 

intercept term D with d as coefficient in all four variance equations. 

2.2  Multi-variate Model 

In this section, we present the model of the dynamic correlation in urban APIs 

and regional and national APIs.  Let us consider the APIs Yt = (Y1t ,...,Ykt) ′, for t 

= 1,..., T.  The following mean equation was estimated for each series given as: 

Yit = μ
i

+ аYit−1 + εit 

                  εit ~ N(0, Ht )      (2.11) 

where Yit is API in series i at time t, εit is the error term for the API i at time t.   

Eq.  (2.11) was then tested using the test described in Engle (1982) for the 

existence of ARCH.  All estimated series exhibited evidence of ARCH effects.   

We want to examine the existence of volatility in each series and the dynamic 

correlations between urban APIs, regional APIs and national APIs, the MGARCH is 

a good choice.  The specific model we use here is DCC, after Engle (2002).  The 
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parameterization is given as: 

Ht ≡ DtRtDt           (2.12) 

where Dt is the k ×k diagonal matrix of time varying standard deviations from 

univariate GARCH models with √hit on the ith diagonal, and Rt  is the time 

varying correlation matrix.   The log likelihood of this estimator can be written: 

 L = −
1

2
∑ (klog(2π) + log (|Ht|)T

t=1 + rt
, Ht

−1rt) 

 L = −
1

2
∑ (klog(2π) + log (|DtRtDt|)T

t=1 + rt
, Dt

−1Rt
−1Dt

−1rt) 

L = −
1

2
∑ (klog(2π) + 2log (|Dt|)T

t=1 + log(|Rt|) + εt
, Rt

−1εt) (2.11.) 

whereεt ~ N(0;Rt ) are the residuals standardized by their conditional standard 

deviation.  We propose to write the elements of Dt as univariate GARCH models, 

so that  

hit = ωi + ∑ aiprit−p
2 + ∑ βiqhit−q

Qi
q=1

pi
p=1      (2.12.) 

for i =1, 2,······k with the usual GARCH restrictions for non-negativity 

and stationarity being imposed, such as non-negativity of variances and ∑ aip +
pi
p=1

∑ βiq
Qi
q=1 < 1. 

The proposed dynamic correlation structure is: 

Qt = (1- ∑ θ1m − ∑ θ2n)Q̅N
n=1

M
m=1 + ∑ θ1m

M
m=1 (εt−mεt−m

，
) +

∑ θ2nQt−n
N
n=1  
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Rt = Qt
∗−1QtQt

∗−1           (2.15) 

Where Q̅ is the unconditional covariance of the standardized residuals 

resulting from the first stage estimation, and 

Qt
∗ = [

√q11 ⋯ 0

⋮ ⋱ ⋮

0 ⋯ √qkk

]        (2.16) 

so that Qt
∗is a diagonal matrix composed of the square root of the diagonal elements 

of Qt.   The typical element of Rtwill be of the form ρijt =
qijt

√qiiqjj
 . 

To investigate the seasonal effect of mean and variance, and the effect on the 

dynamic correlation between local, regional and national APIs, this study tries to set 

three seasonal dummy in both mean and variance equations, so that equation (2.11) 

now becomes: 

Yit = μi + S2D2 + S3D3 + S4D4 + аYit−1 + εit       (2.17) 

equation (2.14) becomes: 

hit = ωi + S′
2

D2 + S′
3

D3 + S′
4

D4 + ∑ aiprit−p
2 + ∑ βiqhit−q

Qi
q=1

pi
p=1  (2.18) 

So that D is seasonal effect vector where D2, D3, D4 equals 1 when t is in 

summer, autumn, or winter respectively, other equations same.  Spring includes 

March, April and May;  summer includes June, July and August;  autumn includes 

September, October and November;  winter includes December, January and 

February. 
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2.3  Copula Model 

Copula methods have advantages over linear correlation in that the 

copula-based GARCH models allow for better flexibility in joint distributions than 

bivariate normal or Student-t distributions.    

In this study, we are interested in the time varying dependence of air pollution, 

especially time varying dependence of the propensity of air pollution to improve or 

deteriorate.  So we focus on the conditional Symmetrized Joe-Clayton copula and 

conditional Gaussian copula of Patton (2006).    

The conditional Gaussian copula function is the density of the joint standard 

uniform variables (ut, vt), as the random variables are bivariate normal with a 

time-varying correlation, ρt .  Moreover, let xt = ϕ−1(ut) and yt = ϕ−1(vt) , 

where ϕ−1(·)denotes the inverse of the cumulative density function of the standard 

normal distribution.  The density of the time-varying Gaussian copula is then: 

ct
Gau(ut, vt|ρt) =

1

√1−ρt
exp {

2ρtxtyt−xt
2−yt

2

2(1−ρt
2)

+
xt

2+yt
2

2
}    

(2.19) 

Tail dependence captures the behavior of random variables during extreme 

events.  In our study, it measures the propensity of Shenzhen air pollution to 

improve or deteriorate simultaneously with regional and national air pollution.  The 

Gumbel, Clayton and SJC copulas efficiently capture the tail dependences arising 
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from the extreme observations caused by the asymmetry.   

The density of the time-varying Clayton copula is: 

ct
clay(ut, vt|θt) = (θt + 1)(ut

−θt + vt
−θt − 1)

−
2θt−1

θt ut
−θt−1

vt
−θt−1

 (2.20) 

where θt ∈ [0, ∞) is the degree of dependence between utand vt, θt = 0 implies 

no dependence and θt → ∞  a fully dependent relationship.  The lower-tail 

dependence measured by the Clayton copula is λt
L = 2

−
1

θt. 

The SJC copula is Patton's (2006a) modification of the Joe–Clayton (JC) 

copula.  It is more general because the symmetry property of the JC copula is only 

a special case.  The density of the JC copula is: 

CJC(u, v|TU, TL) = 1 − (1 − {[1 − (1 − u)k]
−γ

+ [1 − (1 − v)k]
−γ

− 1}
−

1

γ)

1

k

 (2.21) 

where k = 1 log2(2 − TU)⁄ , γ = −1 log2(TL)⁄ , TU ∈ (0,1) and TL ∈ (0,1)  are 

the measures of the upper and lower-tail dependencies respectively.  The density of 

the generalized SJC copula is: 

CSJC(u, v|TU, TL) = 0.5[CJC(u, v|TU, TL) + CJC(1 − u, 1 − v|TU, TV) + u + v −

1]                   (2.22) 

The SJC copula is symmetric when TU = TL and asymmetric otherwise. 

The dependent process of the time varying Gaussian copula has the following 
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form: 

ρt = ⋀1 (ω + β⋀1
−1(ρt−1) + α

1

m
∑ ϕ−1

m

i=1

(U1,t−1)ϕ−1(U2,t−i)) 

⋀1(x) =
1−exp(−x)

1+exp(−x)
               (2.23) 

where ⋀1(·) is a transformation function which holds the correlation parameter ρt 

in the interval (-1,1), ϕ(·) is the standard normal cdf and m is an arbitrary window 

length. 

The upper and lower-tail dependences of the conditional SJC copula is as: 

TU = ∏ (βU
SJCTt−1

U + ωU
SJC + γU

SJC 1

10
∑|ut−1 − vt−1|

10

i=1

) 

TL = ∏ (βL
SJCTt−1

L + ωL
SJC + γL

SJC 1

10
∑ |ut−1 − vt−1|10

i=1 )     (2.24) 

where ∏ is the logistic transformation to keep TU  and TL  within the (0, 1) 

interval.   

 


