
 

 

Chapter 3   

Air Pollution Uncertainty Modelling Based on Urban API: a Case of 

Beijing, China  

Uncertainty is a crucial problem in air pollution modeling and forecasting.  

Ignoring it will impact not only the accuracy of forecasting but also the judgment of 

people, and finally will influent the people’s health.  Models capturing the 

uncertainty are well developed and are widely employed in financial study, but in air 

pollution study, uncertainty study is seldom noticed.   

This chapter is developed from the original paper ‘Air Pollution 

Uncertainty Modelling based on urban API: a case of Beijing, China’ by He et al.  

(2011) presented at the 4
th

 Conference of the Thailand Econometric Society.   

Abstract 

This paper models the uncertainty of Beijing API by introducing the 

econometric models widely used in financial econometrics in this field.  In particular, 

this research focus on three aspects: comparing the estimation and forecast 

performance of GARCH, GJR-GARCH, EGARCH and GARCH-M models;  

examine the seasonal dust effect of data, and the existence of asymmetry in the data.  

With model diagnostic criteria, EGARCH out performs other models, while 

out-of-data static forecast performance does not. 
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3.1  Introduction  

Air pollution is a critical problem in China.  According to the World Bank, 16 

of the world’s 20 cities with the worst air pollution are located in China.  According 

to Chinese government sources, about a fifth of urban Chinese breath heavily polluted 

air.  Air pollution problems in cities and their immediate vicinities have been and 

will continue to be one of the environmental concerns in the next decade in China 

(Chak K.  Chan, Xiaohong Yao, 2008).   

The air pollution index (API), a referential parameter describing air pollution 

levels, provides information to enhance the public awareness of air pollution.  The 

API reporting in China requires to convert monitored daily average air quality data 

into integer values, and then to report to the public.  In China, Shanghai is the first to 

report APIs dating back to June 1997.  Before June 2000, three major pollutants, 

including total suspended particulates (TSPs), sulfur dioxide (SO2) and nitrogen 

oxides (NOx), were selected for API reporting.  After June 2000, required by the 

State Environment Protection Agency of China, these pollutants were switched to 

respirable particulate matter (PM10), SO2 and nitrogen dioxide (NO2) (Kai, et 

al,2008).   

API forecasting is important since it can be released to the public so than they 

can decide and adjust their activity the next day.  Many researches on API 

forecasting have been published.  Most widely used models in this field of study are 
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artificial neutral network based models (Uwe et al, 2006, 2003).  Some tried Linear 

multiple partial correlation statistical method (Euro Cogliani, 2001).  Other 

researchers used time series models.  Xie and Wei used the auto-Regressive moving 

average (ARMA) method to forecast the API time series in different seasonal 

specifications and found that the ARMA model can provide reliable, satisfactory 

predictions for the problem interested (Xie, Wei, 2006).   

Volatility modeling is important in controlling and forecasting uncertainty in 

API alert.  But because API is affected by a series of factors like energy use (V.  

Kimmel, 2002), transportation (Xie, 2006), topographic features (Chu et al.  2008), 

wind speed and temperature (Euro Cogliani, 2001), pressure(Chen et al.  2008, Jiang 

et al.  2004),  much of the uncertainty may arise from data used, which again 

maybe based on sub-data from the observation stations, simple parameterized 

representation of atmospheric processes and so on.  There may also be factors 

omitted or ignored in the modeling, either because they are not recognized as 

significant or because of incomplete knowledge.  So, this is not only complex, but 

also inaccurate to address the uncertainty of the API of a whole city via so many 

sub-data.  Urban API is integrated from the sub-data of many observation stations.  

It is helpful since it can monitor the air quality affecting a larger number of people, 

and become comparable between different cities.  By examine the best model 

modeling the uncertainty in API of a larger area, Beijing, this study contribute to the 
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practical area in improving the API forecasting and air pollution alert accurate. 

Instrumental in most of volatility studies has been the Generalized 

Autoregressive Conditional Heteroskedasticity (GARCH) family models which are 

widely used in finance.  Although volatility clustering was documented earlier, it 

was not until Engle (1982) and the advent of the ARCH and GARCH (Bollerslev, 

1986) models that financial econometricians started to seriously model this 

phenomenon.  It then became a popular tool for volatility modeling and forecasting.  

However, despite the success of the GARCH model, it has been criticized for failing 

to capture asymmetric volatility.  This limitation has been overcome by introducing 

more flexible volatility treatments by accommodating the asymmetric responses of 

volatility to positive and negative shocks.  This more recent class of asymmetric 

GARCH models includes the Exponential GARCH (EGARCH) of Nelson (1991) and 

the threshold GARCH by Glosten, Jagannathan, and Runkle (1993) (GJR-GARCH) 

(Hung, Jui, 2010).   

Daily API data has the same volatility clustering feature as financial data; 

GARCH type models have advantages in this field of reaches.  McAleer et al.  

argue that, for a wide range of financial and other data series, time-varying 

conditional variances can be explained empirically through the autoregressive 

conditional heteroskedasticity (ARCH) model which was proposed by Engle.  But 

to the best of our knowledge, it has not been used in the study of urban API.  Our 
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contribution in this paper is to complement the previous API researches with 

applying new econometric models.   First, we examine and compare the predictive 

ability of different GARCH models with various volatility specifications in API, 

second, we examined the seasonal effect of Beijing API, compared the API with and 

without dust storm. 

The arrangement of this paper is as follows: in section two, three GARCH 

family models used in this paper are discussed;  in section three, data description is 

provided followed by empirical study in section four and conclusion in section five. 

3.2  Model 

Volatility models have been very popular in empirical research in Finance and 

Econometrics since the early 1990s.  The models are based on influential papers by 

Engle(1982) and Bollerslev (1986).  All volatility models start off with a ‘mean 

equation’, which is commonly a standard ARIMA or regression model.  Then 

involve adding a ‘variance equation’ to the original mean equation and which in turn 

models the conditional variance. 

An ARIMA (p, d, q) is expressed as:  

(1 − ∑ θi
p
i Li)(1 − L)dyt=(1 + ∑ Φi

q
i Li)εt              (3.1) 

where p, d, and q are integers greater than or equal to zero and refer to the order of the 

autoregressive, integrated, and moving average parts of the model respectively.  

When one of the terms is zero, it is usual to drop AR, I or MA.   
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In this paper, volatility models to be estimated are associated with a stationary 

AR (1) conditional means given by: 

Yt = μ + θYt−1 + εt      |θ| < 1                      (3.2) 

Or a MA(1) conditional means given by: 

Yt = μ + Φεt−1 + εt      |Φ| < 1                            (3.3) 

Or a ARMA (1,1) conditional means given by: 

Yt = μ + θYt−1 + Φεt−1 + εt                                 (3.4) 

where, Yt is Air Pollution Index, εt is shock to API. 

GARCH 

Generalised autoregressive conditional heterocedasticity (GARCH) model was 

developed by Bollerslev (1986).  It is rare for the order (p, q) of a GARCH model to 

be high;  indeed the literature suggests that the parsimonious GARCH(1,1) is often 

adequate for capturing volatility in financial data.  In this empirical application, (p, q) 

tends to be (1, 1).  The conditional variance is modeled as: 

  εt = ηt√ht     

ht = ω + αεt−1
2 + βht−1                                     (3.5) 

where ht is conditional volatility, conditional on the information of period t-1;  ηt 

is standardized shock to API.  ω>0, α ≥0, β ≥0 are sufficient to ensure that the 

conditional variance  ht>0;  Using results from Ling and Li and Ling and McAleer, 
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the necessary and sufficient condition for the existence of the second moment of εt 

for GARCH (1,1) is α + β <1. 

GARCH model is lack of asymmetric and leverage.  It presumes that the 

impacts of positive and negative shocks are the same or ‘symmetric’.  This is 

because the conditional variance in these equations depends on the magnitude of the 

lagged residuals, not their sign.  In order to accommodate the differential impacts on 

the conditional variance between positive and negative shocks, Glosten, Jagannathan 

and Runkle(1992) proposed the following specification for ht. 

GJR-GARCH 

The threshold GARCH (TGARCH) (Glosten, Jaganathan, & Runkle, 1993) is a 

simple extension of the GARCH scheme with extra term(s) added to account for 

possible asymmetries: 

εt = ηt√ht       

ht = ω + αεt−1
2 + γΙ(εt−1) + βht−1                            (3.6) 

where ω>0, α ≥0, α + γ ≥ 1 and β ≥0 are sufficient conditions to ensure that the 

conditional variance  ht>0.  Ι(εt−1) is an indicator function, taking the values of 1 if 

εt−1 <0(good news in this study) and 0 if εt−1>0.  The impact of bad news and good 

news on the conditional variance in this model is different, if γ > 0, the positive 

innovations have a higher impact than negative ones.  The GJR is asymmetric as 

long as γ is significant different from zero.   
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Regularity condition for the existence of the second moment of GJR model is 

(α + β +
γ

2
) < 1.  When the conditional shock(ηt) follow a symmetric distribution, 

the expected short run persistence is (α +
γ

2
), and the contribution of shocks to 

expected long run persistence is (α + β +
γ

2
). 

EGARCH 

The EGARCH (p, q) model of Nelson(1991) can also accommodate asymmetry 

and specifies the conditional variance in a different way: 

εt = ηt√ht     

loght = ω + α|εt−1| + γεt−1 + βloght−1                        (3.7) 

EGARCH models the logarithm of conditional volatility, thereby removing the 

need for constraints on the parameters to ensure a positive conditional variance (Long 

more & Robinson, 2004).  |εt−1| and εt−1 capture the size and sign effects of 

standardized shocks respectively.  The presence of leverage effects can be tested by 

the hypothesis that γ<0 and γ<α < −γ.  The model permits asymmetries via γ and 

if γ< 0, negative shocks lead to an increase in volatility.  Good news generate less 

volatility than bad news.  The model is asymmetric as long as γ ≠ 0. 

EGARCH is asymmetric, can capture leverage, but it does not have statistical 

properties because we cannot differentiate |εt−1|. 

GARCH in Mean 

The ARCH and GARCH framework was further extended to ARCH and 
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GARCH in mean (ARCH-M and GARCH-M) by Engle, Lillen and Robins (1987).  

The GARCH-M model adds a heteroskedasticity term into the mean equation.  It has 

the specification: 

Yt = μ + θYt−1 + λht + εt     |θ| < 1 

εt = ηt√ht  

ht = ω + αεt−1
2 + βht−1                                     (3.8) 

The only difference of GJR in Mean(GJR-M) and EGARCH in Mean 

(EGARCH-M) with GARCH-M is that they have different variance equations: 

ht = ω + αεt−1
2 + γΙ(εt−1) + βht−1  for GJR-GARCH-M           (3.9) 

and  

loght = ω + α|εt−1| + γεt−1 + βloght−1 for EGARCH-M         (3.10) 

Models with dummy 

To examine the season dust effect, we set a dummy variable D, which equals to 

zero when t is in non dust season and D equals to 1 when t is in dust season.  

Specifically, to consider the seasonal dust effect, we also employ the all four above 

mentioned models;  the only difference is that we put an additional intercept term D 

with d as coefficient in all four variance equations. 

3.3  Data description 

The data for this study consists of daily average Air Pollution Index (API) of 

Beijing during the period from June 5th, 2000 to June 4th, 2010, which constitutes a 
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total of 3652 observations.  The data employed was retrieved from the database of 

Ministry of Environmental Protection of the People’s Republic of China 

(http://www.zhb.gov.cn//) (MEPPRC).  The APIs is released to the public freely by 

MEPPRC, which were reported by the Environment Protection Bureau of each city.  

According to the Beijing Environment Protection Bureau, daily average API of 

Beijing was integrated from the daily average index of 28 observation stations. 

A total 3287 observations were used to estimate the models, while the 

forecasting performance of various volatility models for the last 365 days (from June 

5th, 2009 to June 4th, 2010) of the data set is the focus of our out-of-sample 

evaluation and comparison.   

According to previous researches, API is closely related with dust storm (Pisoni 

2009, Zhang et al. 2010).  To examine whether there are different features of API in 

dust storm season  and non dust storm season, we disaggregated the data into two 

segments: dust season and non dust season, then examine three series of API: 

complete API data, which start from, June 5th, 2000 to June, 4th, 2009;  API in non 

dust season, which consist of daily API from, June 5th, 2000 to June 4th 2009, but 

exclude the dust season, say , from March 1st, to May 31st each year;  and API in 

dust season, which consists of daily API form March 1st to May 31st during the 

period from 2001 to 2009.  The three series are examined and illustrated in figure 

3-1.   

http://www.zhb.gov.cn/
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As shown in Table 3-1, API of Beijing in dust season exhibits the highest mean 

and variance, while the data in non dust season has the lowest of which.  The 

complete data is affected accordingly.  These indicate that taking into consideration 

the seasonal dust effect when modeling the API of Beijing is important.   

An initial assessment of the three series for unit root test for stationarity using 

the Phillips–Perron procedure, and ADF procedure rejects the null hypothesis that 

there is a unit root in the series at the 1% level of significance.  From the figure 1 

above, we can’t see strong seasonality and positive or negative trends. 

3.4  Empirical Study 

The ARMA(p,q)-GARCH(1,1), ARMA(p,q)-GJR-GARCH(1,1), ARMA(p, 

q)-EGARCH(1,1) and GARCH in mean models are used to estimate the conditional 

mean and volatility of Beijing daily average API between period June 5th, 2000 to 

June 4th, 2009.  In our paper, only models which passed the residual non 

heteroskedasticity test with statistic of order 10, and with all the coefficients are 

significant were listed in Table 3-2 and Table 3-3. 

Tables 3-2 present the model estimates and diagnostic tests for Beijing API 

during their sample period.  Table 3-3 is the out-of-sample forecasting evaluation of 

different models. 

All the estimates in this paper are obtained using the EViews 6.1 econometric 

software package.  The error normal distribution assumption and Marquardt 
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algorithm have been used in all cases.   

As shown in Table 3-2, the parameters, μ, θ, Φ, ω, а, and β in the mean and 

conditional variance equations in panel A and B are all positive and found to be highly 

significant.  ARCH effect tests of residual did notreject the null hypothesis of no 

serial correlation in the squared standardized residuals at 1% level, suggesting that the 

models listed capture the time varying volatility in the data very well.  The 

symmetric GARCH component exhibits the existence of strong volatility persistence 

in the Beijing API, as the а+β≈1.  Turning to the asymmetric effect, in panel A, the 

parameter γ of the conditional volatility equation in GJR-GARCH model is negative 

and highly significant, implying that negative shocks(good news) exert smaller impact 

on Beijing API volatility than positive shocks (bad news) of the same magnitude.  

Similarly, γ in EGARCH models in both panels are positive and highly significant, 

implying that positive shock(bad news) exert bigger impact on Beijing API.  The 

parameter d in the four models: AR(1) GARCH, ARMA(1,1)-EGARCH, 

MA(1)-EGARCH, AR(1)-TGARCH-M are positive and highly significant, indicating 

a strong seasonal effect, with higher volatility in the dust season compare with non 

dust season. 

The results of the diagnostic tests are reported in the lower parts of Tables 3- 2.  

In general, the Log(L), AIC and SC values for the Beijing API are very close to each 

other under the different GARCH type models.  In panel A, AR(1)-EGARCH model 
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is slightly better than other models.  In panel B, ARMA(1,1)-EGARCH out performs 

other models.  Even though GARCH parameters λin mean equation is significant 

in both GARCH in Mean models, they are not winners in terms of Log(L), AIC and 

BC criterions, indicating considering the time varying conditional mean did not 

necessarily improve the estimation effects. 

Table 3-3 is the comparative evaluation of the predictive performance of the 

competing models.  We present 7 criteria which were provided by EVIEWS 6 

measuring the accuracy of one step ahead out-of-sample forecasts.  There is no 

universally preferred measure of estimation accuracy and forecasting experts often 

disagree as which measure should be used (Chu, 2009).  The most widely used is the 

MAPE and RMSE.  MAPE is the mean of the absolute percentage differences 

between the forecasts and the actual APIs measuring the magnitude of the error.  

While RMSE gives more weight to larger forecasting errors than the smaller ones, 

some researchers (Witt and Witt, 1991) suggest that an accuracy criterion specified in 

terms of squared errors is more appropriate than one specified in absolute errors.  

The bias proportion tells us how far the mean of the forecast is from the mean of the 

actual series.  The variance proportion tells us how far the variation of the forecast is 

from the variation of the actual series.  The covariance proportion measures the 

remaining unsystematic forecasting errors.  In this research, considering the health 

impact caused by heavy pollution (very high API) is serious, we rank the RMSE as 
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the first forecasting evaluation criteria, followed by MAPE and BP accordingly.  

Other criteria in both panel A and B, the forecasting performance of different models 

are very similar.  In both panel A and B, the parsimonious model AR(1)-GARCH 

outperformed other ones.  This reveal that the best model chosen by Log(L) and AIC, 

BC criteria did not necessarily provide best forecast.  In this case of Beijing API, 

since the forecast performance difference between EGARCH model and the GARCH 

model is slightly, and since EGARCH can capture the leverage effect, we think 

ARMA (1,1)-EGARCH model with seasonal effect is the best choice in modeling and 

forecasting the Beijing API. 

3.5  Conclusion 

Beijing daily Air Pollution Index series is characterized by stationary and 

volatility clustering.  Another feature is that it is affected by the spring dust storm 

(Guo et al.  2004, Zheng et al.  2005, Han et al.  2007). 

In this study, we introduce the GARCH type models which are widely used in 

finance studies into Beijing daily API study.  Specifically, we estimated GARCH, 

GJR-GARCH, EGARCH as well as GARCH in Mean models.  The estimated 

models are compared in terms of Log Likelihood ratio, AIC and SC criteria. 

The estimation of the model indicates that GARCH type models can capture the 

conditional mean and conditional variance of the Beijing API very well.   

In addition, the seasonal dust dummy parameter confirmed that both conditional 
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mean and conditional variance of the data were higher in dust season than that in 

other seasons.  This result is compatible with other research in this field. 

The existence of leverage effect was confirmed by the asymmetric parameters 

in all the significant models we estimated.  Both GJR-GARCH and EGARCH 

models reveal that bad news (higher API) cause higher volatility. 

Even though Log Likelihood ratio, AIC and SC criteria choose EGARCH 

model as the best one, forecasting performance tells a different story.  Parsimonious 

models give a best forecast.   

The practical policy suggests arose from this study are mostly fall in two 

aspects.  For the API forecasting agency, GARCH type models can be incorporated 

with meteorology method now in use so as to improve the forecasting.  For the 

vulnerable population such as the elderly and patient, they should take actions to 

protect their health, especially during the dust storm season, since the mean, variance, 

volatility is higher, and bad news exert higher uncertainty. 

The flaws of this study come mostly from three aspects.  First, urban ambient 

air pollution comes from many sources of emission, but the pollution index employed 

in this study is non-disaggregated by particulate matter, carbon dioxide, nitrous oxide, 

etc.  so that it is difficult to trace the source of the pollution to particular industries.  

This should be considered in the future research.  Second is the data we employed.  

Since the data is integrated from the observation of 28 observe station, and it is the 
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daily average index, much information has been left aside.  Another flaw is from the 

method we used.  Incorporating relevant exogenous variable in the model may 

improve the performance of the model, this need to be considered in the future study. 
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Table 3-1 Statistical Descriptions of the Three Series 

 

 

 

 

 Beijing  

API Complete 

Beijing API  

Nondust 

Beijing Dust 

 Season API 

Mean 100.7904 95.88685 116.5966 

Median 91 89 97 

Maximum 500 500 500 

Minimum 12 12 19 

Std.  Dev. 56.84017 49.19411 74.31373 

Skewness 3.166342 2.941982 2.870551 

Kurtosis 18.85839 19.25981 13.34073 

Jarque-Bera 42487.29 33251.57 4826.237 

Probability 0 0 0 

Sum 352464 255922 96542 

Sum Sq. Dev. 11294895 6456722 4567133 

Observations 3497 2669 828 
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Table 3-2 Alternative Model Estimates 
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Table 3-2 Alternative Model Estimates (Continued) 

 

Notes: Standard errors for the estimators are included in parentheses.  ***indicate 

significant at the 1% level.  Log(L) is the logarithm maximum likelihood function value.  

AIC is the average Akaike information criterion.  SC is the Schwarz's Bayesian Information 

Criterion
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Table 3-3 Forecasting Comparison 

Panel A: Beijing API complete 

Forecast 

evaluation 

AR(1) 

GARCH 

ARMA(1,

1) GJR 

AR(1) 

EGARCH 

AR(1) 

GARCH-M 

RMSE 

MAE 

MAPE 

TIC  

BP 

VP 

CP 

45.48273 

27.21879 

40.62409 

0.238841 

0.001121 

0.206929 

0.791949 

45.59952 

29.07968 

47.53355 

0.232276 

0.042088 

0.355866 

0.602046 

45.48113 

27.36118 

41.67376 

0.236899 

0.005284 

0.217117 

0.777599 

46.07910 

27.69474 

42.57467 

0.238182 

0.009583 

0.190030 

0.800388 

Panel B: Beijing API Dust Season Effect 

Forecast 

evaluation 

AR(1) 

GARCH 

ARMA(1,

1) EGARCH 

MA(1) 

EGARCH 

AR(1) 

TGARCH-M 

RMSE 

MAE 

MAPE 

TIC  

BP 

VP 

CP 

44.99964 

26.95854 

39.43186 

0.240208 

0.000370 

0.272077 

0.727553 

45.89406 

27.55905 

42.19349 

0.237159 

0.009488 

0.185714 

0.804798 

45.68275 

28.11112 

42.69992 

0.240223 

0.004742 

0.365482 

0.629776 

47.70428 

28.51678 

45.05349 

0.241483 

0.028827 

0.140638 

0.830535 

Note: RMSE is Root Mean Squared Error, MAE is Mean Absolute Error, MAPE 

is Mean Abs.  Percent Error, TIC is Theil Inequality Coefficient, BP is Bias 

Proportion, VP is Variance Proportion, CP is Covariance Proportion. 
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Figure 3-1 Daily Average API of Beijing 
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